
1

Introduction to SMV

Angelo gargantini 
unibg



2

NuSMV: overview
 SMV = “Symbolic Model Verifier” (McMillan 

1993). 
 NuSMV is a reimplementation of SMV.
 NuSMV (http://nusvm.irst.itc.it) is an open 

source, automatic model checker.
 Joint effort IRST-ITC (Italy), CMU (USA), and 

others.
 It implements efficient techniques (ordered 

binary decision diagrams and SAT methods).
 It supports CTL (and LTL) model checking.



3

Symbolic Model Verifier
 Ken McMillan, Symbolic Model Checking: An 

Approach to the State Explosion Problem, 
1993.

 Kripke structues described in a specialized 
language

 Specifications given as CTL formulas + 
Fairness

 Internal representation using ROBDDs
 Automatically verifies specification or 

produces a counterexample



NuSMV basics

4

 Any model checker should provide at least:
 An input language to describe the model Ms
 And the properties φ to be checked
 An automated mechanism for checking Ms|= 

φ  
 The input language of NuSMV is called SMV



5

Language Characteristics
 Allows description of synchronous and 

asynchronous systems

 Modularized and hierarchical descriptions

 Finite data types: Boolean and enumerated
 Integer only bounded (intervals)

 Nondeterminism



The model of Single Process 

6

Un sistema che inizialmente è ready. Se 
arriva una richiesta va a busy. Dopo un po' 
torna ready (se non c'è una ulteriore 
richiesta) 

req
ready

req
busy

!req
ready

!req
busy

Leggeremente diversa dal libro



A Sample SMV Program
MODULE main
VAR
     request: boolean;
     state: {ready, busy};
ASSIGN
     init(state) := ready;
     next(state) := 

case
    state=ready & request: busy;

        state=busy & request: busy;
        state=ready & not request: ready;
    TRUE: {ready, busy};

esac;
SPEC AG(request -> AF (state = busy))

Declaration of main module

Declaration of variables

Initial state

State transition

formula to be
checked



How to map a M into a NuSMV 
model 
MODULE main
VAR
     p,q,r: boolean;
     state: {s0,s1,s2,s3};
ASSIGN
     init(state) := {s0,s1,s2,s3};
     next(state) := 

case
    state=s0 & p & q & !r & !next(p) & !next(q) & next(r): s2;
    state=s0 & p & q & !r & !next(p) & next(q) & next(r): s1;
    state=s1 & !p & q & r & next(p) & next(q) & !next(r): s0;
    state=s2 & !p & !q & r & !next(p) & next(q) & next(r): s3;
    state=s3 & !p & q & r & !next(p) & next(q) & next(r): s3;
    1: state;
esac;

8



NuSMV language
 One “main” module. Three portions of 

code, identified by VAR, ASSIGN, SPEC.
 VAR identifies a portion of code where 

variables are defined.
 ASSIGN identifies a portion of code 

where variables are initialized and 
evolution is described.

 SPEC defines properties to be verified.

9



10

Variable Assignments
 Assignment to initial state: 

init(value) := 0;
 Assignment to next state (transition relation)

next(value) := value + carry_in mod 2;
 Assignment to current state (invariant)

carry_out := value & carry_in;

 Use either init-next or invariant - never both



11

Types
 Boolean

 TRUE is true and FALSE is false
 Enumerate

 VAR
    a : {red, blue, green};
    b : {1, 2, 3};
    c : {1, 5, 7};
ASSIGN
    next(b) := case
                        b<3 : b+1;
                        TRUE : 1;
                     esac;

 Numerical operations must be properly guarded otherwise 
they can go outside the domain

 Integers as intervals
   A: 1 .. 100;



12

ASSIGN and DEFINE
 VAR a: boolean;

ASSIGN a := b | c;
 declares a new state variable a
 becomes part of invariant relation

 DEFINE d:= b | c;
 is effectively a macro definition, each occurrence 

of d is replaced by b | c
 no extra BDD variable is generated for d
 the BDD for b | c becomes part of each 

expression using d



13

Next
 Expressions can refer to the value of a 

variable in the next state
 Examples:

 VAR a,b : boolean;
ASSIGN
next(b) := !b;
a := next(b);

 ASSIGN next(a) := !next(b)

(a is the negation of b, except for the initial 
state)

 Disclaimer: different SMV versions differ on this



14

Circular definitions
 … are not allowed!
 This is illegal:

 a := next(b);
next(b) := c;
c := a;

 This is o.k.
 init(a) := 0;

next(a) := !b;

init(b) := 1;
next(b) := !a;

init(c) := 0;
next(c)  := a & next(b);



15

The Case Expression
 case is an expression, not a statement

 Guards are evaluated sequentially.
 The first one that is true determines 

the resulting value
 If none of the guards are true, an 

arbitrary valid value is returned
 Always use an else guard!



16

Nondeterminism
 Completely unassigned variable can model 

unconstrained input.

 {val_1, …, val_n} is an expression taking on any 
of the given values nondeterministically.

 Nondeterministic choice can be used to:
 Model an implementation that has not been 

refined yet
 Abstract behavior
 Inputs of the system



17

Describing Automata
 A simplified elevator model
 Variable state definition:

MODULE main
VAR

     cabin: 0..3;
     dir: {up, down};

  request: array 0..3 of boolean;

 With no other variables, the system has 
4x2x24 = 128 possible states



18

Describing Automata
 Describe the initial states:

ASSIGN
     init(cabin) := 0;

  init(dir) := up;
  init(request[0]) := 0;

…..

     



19

Describing Automata
 Describe the transitions:

ASSIGN
next(cabin) := case

dir=up & cabin<3: 
cabin+1; -- moves up

dir=down & cabin>0: 
cabin-1; -- moves down

TRUE : cabin;
    esac;



20

Describing Automata
 Describe the transitions:

next(dir) := case
dir=up & next(cabin)=3: 

down; -- switch dir
dir=down & next(cabin)=0: 

up; -- switch dir
TRUE: dir; -- keep dir;

   esac;

Per semplicità va sempre o 
up o down



21

Describing Automata
 A request for some floor appears at any time 

except if the cabin is actually on this floor, so 
the request cannot disappear until the cabin does 
reach that floor:

next(request[0]) := case
next(cabin)=0 : FALSE; -- disappears
request[0] : TRUE; -- remains
TRUE : {FALSE,TRUE}; -- may appear;
  esac;

next(request[1]) := case
next(cabin)=1 : FALSE; -- disappears
request[1] : TRUE; -- remains
… Devo ripetere la cosa per tutti gli elementi 

dell'array: posso farlo piu' rapidamente?



22

Describing Automata
 SMV offers another way to describe 

initial states and transitions in a declative 
way

 Initial states and transitins described by 
a chatacteristic property:
INIT

     (dir = up & cabin =0);
 for request[i] all values are possible

TRANS
     ...



23

Verification properties
 SMV supports LTL formulas
 Verify that the elevator model has no deadlock:

LTLSPEC
G F dir = up ….

 Check that all requests are eventually satisfied:
LTLSPEC

….



24

Verification properties
 SMV supports CTL formulas
 Verify that the elevator model has no deadlock:

SPEC
AG EX TRUE

 Check that all requests are eventually satisfied:
SPEC

AG(AF!request[0] & AF!request[1] & 
AF!request[2] & AF!request[3])  



25

Modules and Hierarchy
 Modules can be instantiated many times, each 

instantiation creates a copy of the local 
variables

 Each program has a module main

 Scoping
 Variables declared outside a module can be passed as 

parameters
 Internal variables of a module can be used in 

enclosing modules (submodel.varname). 

 Parameters are passed by reference.



26

The bit counter example
 A counter repeatedly counts from 000 to 111 is described 

as three single-bit counters

 A single-bit counter add carry_in to value and reports in 
carry_out

 If carry_in is TRUE, the counter adds 1 to its value (with 
a possible carry out to signal to the next counter)
 Value is incremented if carry_in is TRUE
 Carry_out signals that the next single bit counter must 

be incremented, iif value = TRUE and carry_in

carry_in carry_out
value



The bit counter example

27

carry_out carry_in
value = 0 carry_out carry_in

value = 0
carry_out carry_in

value = 0

Bit counter 3 Bit counter 2
Bit counter 1

• parte da 000
• +1 in carry_in di bit counter 1
• passa a 001
• +1 in carry_in di bit counter 1
• passa a 010
• ecc

Bit meno significativo
Bit piu' significativo



The bit counter example

28

carry_out carry_in
value = 0 carry_out carry_in

value = 0
carry_out carry_in

value = 0

Bit counter 3 Bit counter 2
Bit counter 1

The first counter has input 1, while the other two 
have as input the carry_out of the previous 
counter



29

MODULE main
VAR

bit0 : counter_cell(1);
bit1 : counter_cell(bit0.carry_out);

  bit2 : counter_cell(bit1.carry_out);
SPEC ! F bit2.carry_out = 1

MODULE counter_cell(carry_in)
VAR value : {0,1};
ASSIGN
  init(value) := 0;
  next(value) := (value + carry_in) mod 2;
DEFINE  carry_out := value * carry_in;

The bit counter example



30

MODULE main
VAR

bit0 : counter_cell(TRUE);
bit1 : counter_cell(bit0.carry_out);

  bit2 : counter_cell(bit1.carry_out);
SPEC AG AF bit2.carry_out

MODULE counter_cell(carry_in)
VAR value : boolean;
ASSIGN
  init(value) := FALSE;
  next(value) := (carry_in & ! value) | (!carry_in & value);
DEFINE  carry_out := value & carry_in;

The bit counter example con 
boolean



31

The lock example (con moduli)
 Un lucchetto elettronico in cui ho una serie di cifre 

da indovinare.
 Per comandare una cifra posso incrementare o dec il 

numero al display
 Se indovino passo l'output al prossimo lucchetto ad una 

cifra

7 4 6 OK

+ + +

-- --



Single lock

7

+

--

previousLock

down

up
digit

unlock

= key?

none  se non 
faccio nulla



Lock smv code
MODULE main

 VAR

   unlock1 : boolean;

   --unlock2 : boolean;

   lock1 : lock(7,TRUE,unlock1);

   lock2 : lock(2,unlock1,unlock2);

MODULE lock(key,previousLock,unlock)

VAR

digit : 0 .. 9;

command: {up,down,none};

ASSIGN

init(digit) := 0;

next(digit) := case

    command = none : digit;

    command = up: (digit +1) mod 10;

    command = down: (digit + 9) mod 10;

esac;

unlock := digit = key & previousLock;



34

Module Composition
 Synchronous composition

 All assignments are executed in parallel and 
synchronously (a global clock).

 A single step of the resulting model corresponds 
to a step in each of the components.

 Asynchronous composition
 A step of the composition is a step by exactly one 

process 
 at each tick of clock one process is chosen non-

deterministically and executed for one cycle.
 Variables, not assigned in that process, are left 

unchanged.



35

Module Composition

 The bit-counter is synchronous
 Asynchronous composition is possible 

by means of the process keyword 
 The following program represents a 

ring of three asynchronous inverting 
gates

 Among all the modules instantiated 
with the process keyword, one is 
nondeterministically chosen



Lock ansync
1. Every lock is a process:
lock1 : process lock(7,TRUE,unlock1);

...

2. It is superflous having a none command:

command: {up,down};



Inverter ring

 Three inverters that are placed in 
circle

 three asynchronous inverting gates



38

Asynchronous Composition
MODULE main
VAR 

gate1: process inverter(gate3.output);
gate2: process inverter(gate1.output);
gate3: process inverter(gate2.output);

SPEC  (AG AF gate1.output)
SPEC (AG AF !gate1.output)

MODULE inverter(input)
VAR output: boolean;
ASSIGN
     init(output) := 0;
     next(output) := !input;



39

Aletrnative: declarative specification
 The set of possible initial states is specified 

as a formula in the current state variables. 
 A state is initial if it satisfies the formula. 

 The transition relation is directly specified 
as a propositional formula in terms of the 
current and next values of the state 
variables. 
 Any current state/next state pair is in the 

transition relation if and only if it satisfies the 
formula.

 These two functions are accomplished by the 
‘INIT’ and ‘TRANS’ keywords



40

Asynchronous Composition
MODULE main

VAR
gate1 : inverter(gate3.output);
gate2 : inverter(gate1.output);
gate3 : inverter(gate2.output);

MODULE inverter(input)
VAR

output : boolean;
INIT

output = 0
TRANS

next(output) = !input | next(output) = output



41

Asynchronous Composition
 The system is not forced to choose a 

given process to execute, thus the 
output of a given gate may remain 
constant, regardless of its input. 

 Therefore, the properties 
 SPEC  (AG AF gate1.output)
 SPEC  (AG AF !gate1.output)

are both false



42

Counterexamples
-- specification AG AF (!gate1.output) is false
-- as demonstrated by the following execution
state 2.1:
gate1.output = 0 gate2.output = 0 
gate3.output = 0

state 2.2:
[executing process gate1]

-- loop starts here --
state 2.3:
gate1.output = 1
[stuttering]



43

Fairness constraint
 In order to force a process to execute 

infinitely often, we can use a fairness 
constraint. 

 A fairness constraint restricts the attention 
of the model checker to only those 
execution paths along which a given formula 
is true infinitely often. 

 Each process has a special variable called 
running which is 1 if and only if that process 
is currently executing.



44

Fairness constraint
 By adding the declaration:

FAIRNESS
running

we can effectively force every instance 
of inverter to execute infinitely often.

 The properties 
 SPEC  (AG AF gate1.output)
 SPEC  (AG AF !gate1.output)

are both true



45

Fairness
 FAIRNESS ctl_formulae

 Assumed to be true infinitely often
 Model checker only explores paths satisfying fairness 

constraint
 Each fairness constraint must be true infinitely often



47

Counter Revisited

MODULE main
VAR

count_enable: boolean;
bit0 : counter_cell(count_enable);
bit1 : counter_cell(bit0.carry_out);

  bit2 : counter_cell(bit1.carry_out);
SPEC AG AF bit2.carry_out
FAIRNESS count_enable

If the counter has an input which can be 
both true or false, we must add fairness



48

Mutual exclusion
 Another example of asynchronous model. 
 It uses a variable semaphore to implement 

mutual exclusion between two asynchronous 
processes. 

 Each process has four states: idle, entering, 
critical and exiting. 
 The entering state indicates that the process 

wants to enter its critical region. 
 If the variable semaphore is 0, it goes to the 

critical state, and sets semaphore to 1. 
 On exiting its critical region, the process 

sets semaphore to 0 again.



49

Mutual exclusion
MODULE main

VAR
semaphore : boolean;
proc1 : process user(semaphore);
proc2 : process user(semaphore);

ASSIGN
init(semaphore) := 0;

MODULE user(semaphore)
VAR

state : {idle, entering, critical, exiting};
ASSIGN

init(state) := idle;



50

Mutual exclusion
next(state) := case

state = idle : {idle, entering};
state = entering & !semaphore : critical;
state = critical : {critical, exiting};
state = exiting : idle;
1 : state;
esac;

next(semaphore) := case
state = entering : 1;
state = exiting : 0;
1 : semaphore;
esac;

FAIRNESS
running



51

Mutual exclusion Properties
We require:
 Safety: only one process is in his 

critical section at any time
 Liveness : whenever any process 

requests to enter its critical section, 
it will eventually be permitted to do so



52

Mutual exclusion Properties
We require:
 Safety:
AG ! (proc1.state = critical & proc2.state = critical)

 Liveness :
AG (proc1.state = entering -> EF proc1.state = 

critical)
AG (proc2.state = entering -> EF proc2.state = 

critical)



53

Mutual exclusion Properties
 Liveness :
AG (proc1.state = entering -> EF proc1.state = 

critical)
AG (proc2.state = entering -> EF proc2.state = 

critical)

Note that:
AG (proc1.state = entering -> AF proc1.state = 

critical)

only if FAIRNESS proc1.state = critical



54

The ferryman problem
 A ferryman, a goat, a cabbage and a 

wolf are on one side of a river. 
 The ferryman can cross the river with 

at most one passinger in the boat.
 There is a behaviour conflict between:

 The goat and the cabbage
 The goat and the wolf

 Can the ferryman transport all goods 
to the other side without any conflict?



55

The ferryman problem
 Four agents: 

 ferryman, goat, wolf, cabbage
 The location of each variable is 

modelled by a boolean value:
 F denotes the agant is on the initial side
 T denotes the agant is on the final side

 The variable carry indicates which 
good is carried by the ferryman



56

The ferryman problem
MODULE main 
VAR 

ferryman : boolean; 
goat : boolean; 
cabbage : boolean; 
wolf : boolean; 
carry : {g,c,w,0}; 

ASSIGN 
init(ferryman) := 0; 
init(goat) := 0; 
init(cabbage) := 0; 
init(wolf) := 0; 
init(carry) := 0; 



57

The ferryman problem
next(ferryman) := {0,1}; 

the ferryman can decide to cross the river or not

the value of carry is non deterministic but 
determined by the value of ferryman, goat, 
wolf, cabbage



58

The ferryman problem
next(carry) := case 
ferryman=goat : g; g is a member of set from
1 : 0;   which next(carry) is chosen
esac union 
case ferryman=cabbage : c; 
1 : 0; 
esac union 
case ferryman=wolf : w; 
1 : 0; 
esac union 0; 

the next value of goat, cabbage, wolf are deterministic, 
since whether they are carried or not is determined by 
the ferryman’choice represented by carry



59

The ferryman problem
next(goat) := case 

ferryman=goat & next(carry)=g : next(ferryman); 
1 : goat; 
esac; 

next(cabbage) := case 
ferryman=cabbage & next(carry)=c : next(ferryman); 
1 : cabbage; 
esac; 

next(wolf) := case 
ferryman=wolf & next(carry)=w : next(ferryman); 
1 : wolf; 
esac; 



60

The ferryman problem
We like to find a path satisfying:
 the final reachability condition:

  cabbage & goat & wolf & ferryman
 under the safety condition: 

goat=cabbage | goat=wolf) -> goat=ferryman

SPEC 
E (( (goat=cabbage | goat=wolf) ->
goat=ferryman) 
U (cabbage & goat & wolf & ferryman))

This is true but why??? 



61

The ferryman problem
We run SMV  with the negation of the 

property hoping to find a counter 
example:

 
! (E((goat=cabbage | goat=wolf) ->

goat=ferryman) 
U (cabbage & goat & wolf & ferryman)))

However, SMV finds the following loop:



62

The ferryman problem
-> State 1.1 <- 

ferryman = 0 
goat = 0 
cabbage = 0 
wolf = 0 
carry = 0 

-> State 1.2 <- 
ferryman = 1 
goat = 1
carry = g



63

The ferryman problem
-> State 1.3 <- 

ferryman = 0 
carry = 0 

-> State 1.4 <- 
ferryman = 1 
cabbage = 1
carry = c



64

The ferryman problem
-> State 1.5 <- 

ferryman = 0 
goat = 0
carry = g 

-> State 1.6 <- 
ferryman = 1 
wolf = 1
carry = w



65

The ferryman problem
-> State 1.7 <- 

ferryman = 0 
carry = 0

-> State 1.8 <- (satisfy the property!!!)
ferryman = 1 
goat = 1
carry = g 



66

The ferryman problem
-> State 1.9 <- 
-> State 1.10 <-

ferryman = 0 
cabbage = 0
carry = c

-> State 1.11 <- 
ferryman = 1 
carry = 0



67

The ferryman problem
-> State 1.2 <- 

ferryman = 0
wolf = 0
carry = w

-> State 1.13 <-
ferryman = 1 
carry = 0

-> State 1.14 <- 
ferryman = 0
goat = 0
carry = g

-> State 1.15 <- 
carry = 0



68

The ferryman problem
SMV finds an infinite path which loops 

around the 15 states. 
Along the infinite path, the farryman 

repeatedly takes his goods across 
(safely), and then back again (unsafely).

The property asserts the safety of the 
forward journey but say nothing about 
what happens after that.



69

The ferryman problem
The correct property is
SPEC 

E (( (goat=cabbage | goat=wolf) ->
goat=ferryman) 

U (cabbage & goat & wolf & ferryman) 
& AG(goat -> AG goat))

the goat makes at least three trips, and 
once it has crossed, it remains across





71

The alternating bit protocol
 ABP is a protocol for transmitting 

messages along a “loose line”( a line 
which may lose or duplicate messages)

 Proving the line doesn’t lose infinitely 
many messages, the protocol 
guarantees that communication 
between sender and reveiver will be 
successful.
 we allow losing or duplication of 

messages but not corruption



72

The alternating bit protocol
 There are 4 agents:

 the sender
 the receiver
 the message channel
 the acknowledgement channel



73

The alternating bit protocol
 The sender sends the first part of the packet 

+ the ctrl-bit 0 along the msg-channel
 If and when the receiver gets a message with 

ctrl-bit 0, it sends 0 along the ack-channel
 When the sender receives the ack, it sends 

the next packet + ctrl-bit 1
 If and when the receiver gets the a msg with 

ctrl-bit 1, it sends 1 along the ack-channel
 If the sender doesn’t receive the expected 

ack, it continually resends the message
 If the receiver doesn’t get the message with 

the expected ctrl-bit, it continually resends 
the previous ack



74

Alternating Bit Protocol 

ack1/^ackmsg/^ctl0

ack0/^ack

msg/^ctrl1

timeout/^ctrl1

timeout/^ctrl0

Sender SM

SentPktA

WaitAck0

SentPktB

WaitAck1

Receiver SM

pktA/^msg
ack/^ack0

pktB/^msg
ack/^ack1

timeout/^ackB

timeout/^ack0

RcvdPktA

WaitPktB

RcvdPktB

WaitPktA



75

The alternating bit protocol: sender
MODULE sender(ack) 
VAR 

st : {sending,sent}; 
message1 : boolean; 
message2 : boolean;

 We assume the packet to be sent is divided up into 
single-bit message which are sent sequentially

 message1 is the current bit of the msg
 message2  is the control bit
 The sender goes in mode sent only when recives the ack 

of the msg it has been sending



76

The alternating bit protocol: sender
ASSIGN 

init(st) := sending; 
next(st) := case 
ack = message2 & !(st=sent) : sent; 
1 : sending; 
esac;
next(message1) := case 
st = sent : {0,1}; 
1 : message1; 
esac; 
next(message2) := case 
st = sent : !message2; 
1 : message2; 
esac; 



77

The alternating bit protocol:sender
FAIRNESS running 

SPEC 
AG AF st=sent  -- liveness



78

The alternating bit protocol: receiver
MODULE receiver(message1,message2) 
VAR 

st : {receiving,received}; 
ack : boolean; 

expected : boolean; 



79

The alternating bit protocol : receiver
ASSIGN 

init(st) := receiving; 
next(st) := case 
message2=expected & !(st=received) :received; 
1 : receiving; 
esac; 
next(ack) := case 
st = received : message2; 
1 : ack; 
esac; 
next(expected) := case 
st = received : !expected; 
1 : expected; 
esac; 



80

The alternating bit protocol : receiver
FAIRNESS running 

SPEC 

AG AF st=received -- liveness



81

The alternating bit protocol: 
one-bit-channel

MODULE one-bit-chan(input) 
VAR 

output : boolean; 
forget : boolean; -- specifies lossy char 

ASSIGN 
next(output) := case 
forget : output; -- input is transmitted to output unless forget is 
true
1: input; 
esac; 

FAIRNESS running 
FAIRNESS input & !forget
FAIRNESS !input & !forget

 ack-channel is an instance of the one-bit-channel



82

The alternating bit protocol : 
two-bit-channel
MODULE two-bit-chan(input1,input2) 
VAR 

forget : boolean; -- specifies lossy char 
output1 : boolean; 
output2 : boolean; 

ASSIGN 
next(output1) := case 

forget : output1; 
1: input1; 
esac; 

next(output2) := case 
forget : output2; 
1: input2; 
esac; 



83

The alternating bit protocol : 
two-bit-channel
FAIRNESS running 
FAIRNESS input1 & !forget
FAIRNESS !input1 & !forget
FAIRNESS input2 & !forget
FAIRNESS !input2 & !forget

 Fairness constrants are intended to model the fact 
that, although channels can lose messages, they 
infinitively often transmit the message correctly
 Without this constraint liveness can not be proved

 Fairness constrant “infinitively often !forget”, is not 
sufficient since it doesn’t prevent to drop all 0-bits 
and send only all 1-bits.



84

The alternating bit protocol : main
MODULE main 
VAR 

s : process sender(ack_chan.output); 
r : process     
receiver(msg_chan.output1,msg_chan.output2); 
msg_chan : process 

two-bit-chan(s.message1,s.message2); 
ack_chan : process one-bit-chan(r.ack); 

ASSIGN 
init(s.message2) := 0; 
init(r.expected)   := 0; 
init(r.ack)           := 1; 
init(msg_chan.output2) := 1; 
init(ack_chan.output)    := 1; 



85

The alternating bit protocol : 
properties
 Safety: if the msg bit 1 has been sent and the 

correct ack has been returned, then a 1 was 
received by the rceiver
SPEC 
AG (s.st=sent & s.message1=1 ->       
msg_chan.output1=1) 

 Liveness: 
 messages get througt eventually

SPEC AG AF s.st=sent
 acknowledgenets get througt eventually

SPEC AG AF r.st=received


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

