Verifica formale di proprietà mediante model checking

Angelo Gargantini

June 1, 2016

Angelo Gargantini model checking

TESTO DI RIFERIMENTO: M.R.A. Ruth, M.D. Ryan Logic in Computer Science Modelling and Reasoning about systems -Capitolo 3 - allegato a questi appunti

- There is a great advantage in being able to verify the correctness of computer systems, whether they are hardware, software, or a combination. This is most obvious in the case of safety-critical systems, but also applies to those that are commercially critical, such as mass-produced chips, mission critical, etc.
- Formal verification methods have quite recently become usable by industry and there is a growing demand for professionals able to apply them.
- ► We study a fully automatic way to perform formal verification
 - not rule-based
 - called model checking

Formal verification by model checking

- Le tecniche di verifica formale sono generalmente viste come la somma di tre componenti:
 - Un framework in cui modellare il sistema che vogliamo analizzare
 - Un linguaggio di specifica delle proprietà da verificare
 - Un metodo per verificare che il sistema soddisfi le proprietà specificate.
- Solitamente il Model Checking si basa sull'utilizzo di una logica temporale. Quindi, le tre componenti possono essere costituite come segue:
 - Si costruisce un modello M che descrive il comportamento del sistema
 - \blacktriangleright Si codifica la proprietà da verificare in una formula temporale ϕ
 - \blacktriangleright Si chiede al model checker di verificare che $M\models\phi$

Formal verification by model checking

- Le tecniche di verifica formale sono generalmente viste come la somma di tre componenti:
 - Un framework in cui modellare il sistema che vogliamo analizzare
 - Un linguaggio di specifica delle proprietà da verificare
 - Un metodo per verificare che il sistema soddisfi le proprietà specificate.
- Solitamente il Model Checking si basa sull'utilizzo di una logica temporale. Quindi, le tre componenti possono essere costituite come segue:
 - Si costruisce un modello M che descrive il comportamento del sistema
 - $\blacktriangleright\,$ Si codifica la proprietà da verificare in una formula temporale ϕ
 - Si chiede al model checker di verificare che $M \models \phi$

- Esistono diverse logiche temporali che possono essere divise in due clasi fondamentali:
 - ► le linear-time logics (LTL) e le branching-time logics (CTL).
- LTL considera il tempo come un insieme di cammini, dove cammino é una sequenza di istanti di tempo
- CTL rappresenta il tempo come un albero, con radice l'istante corrente
- Un'altra classificazione divide tra tempo continuo e discreto.
 Noi studieremo solo logiche discrete e senza metrica.

- La logica è costruita su di un insieme di formule atomiche AP {p, q, r, ...} che rappresentano descrizioni atomiche del sistema
- Definiamo in maniera ricorsiva le formule LTL:
- (1) come la logica proposizionale

$$\phi ::= \top |\bot| p \in AP | \neg \phi | \phi \land \phi | \phi \lor \phi | \phi \to \phi |$$

•
$$\top, \bot, \neg, \land, \lor, \rightarrow$$
 sono connettivi logici classici

LTL sintassi - (2) operatori temporali

$$\phi ::= \begin{array}{c} \top |\bot| p \in AP| & \neg \phi | \phi \land \phi | \phi \lor \phi | \phi \to \phi | \\ X \phi | F \phi | G \phi | & \phi U \phi | \phi W \phi | \phi R \phi \end{array}$$

X, F, G, U,W, R sono connettivi temporali

- In particolare:
- X means 'neXt state,'
- F means 'some Future state,' and
- G means 'all future states (Globally).'
- The next three, U, R and W are called 'Until,' 'Release' and 'Weak-until' respectively.

Convention 3.2 The unary connectives (consisting of \neg and the temporal connectives X, F and G) bind most tightly. Next in the order come U, R and W; then come \land and \lor ; and after that comes \rightarrow .

alcuni esempi di LTL con e senza parentesi

- The kinds of systems we are interested in verifying using LTL may be modelled as transition systems. A transition system models a system by means of states (static structure) and transitions (dynamic structure).
- A transition system $M = (S, \rightarrow, L)$ is
 - a set of states S endowed
 - ▶ with a transition relation \rightarrow (a binary relation on S), such that every $s \in S$ has some $s' \in S$ with $s \rightarrow s'$, and
 - ▶ a labelling function $L : S \rightarrow P(Atoms)$

I transition system sono i nostri modelli.

▶ a labelling function $L : S \rightarrow P(Atoms)$

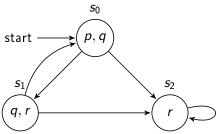
 $\mathcal{P}(Atoms)$ è il powerset – l'insieme delle parti – di Atoms

- L is that it is just an assignment of truth values to all the propositional atoms, as it was the case for propositional logic (we called that a valution)
- The difference now is that we have more than one state, so this assignment depends on which state s the system is in: L(s) contains all atoms which are true in state s.

Graphical representation

all the information about a (finite) transition system M can be expressed using directed graphs whose nodes (which we call states) contain all propositional atoms that are true in that state.

Example: M has only three states s0, s1, and s2. The only possible transitions are s0 \rightarrow s1, s0 \rightarrow s2, s1 \rightarrow s0, s1 \rightarrow s2 and s2 \rightarrow s2; and if L(s0) = {p, q}, L(s1) = {q, r} and L(s2) = {r}:



- ► The requirement in Definition that for every s ∈ S there is at least one s' ∈ S such that s → s' means that no state of the system can 'deadlock.'
 - This is a technical convenience, and in fact it does not represent any real restriction on the systems we can model. If a system did deadlock, we could always add an extra state sd representing deadlock,

un esempio di deadlock

- A path in a model M = (S, →, L) is an infinite sequence of states s1, s2, s3, . . . in S such that, for each i ≥ 1, si → si+1.
- \blacktriangleright We write the path as s1 ightarrow s2 ightarrow
- \blacktriangleright We write π^i for the suffix starting at s_i , e.g., π^3 is s3 ightarrow s4 ightarrow
 -
- Esempio

Definition

Let $M = (S, \rightarrow, L)$ be a model and $\pi = s1 \rightarrow ...$ be a **path** in M. Whether π satisfies an LTL formula is defined by the satisfaction relation \models as follows:

- π⊨ ⊤
- π⊭⊥
- 3. $\pi \models p \text{ iff } p \in L(s_1)$
- 4. $\pi \models \neg \phi$ iff $\pi \not\models \phi$
- 5. $\pi {\models} \phi 1 \land \phi 2$ iff $\pi {\models} \phi 1$ and $\pi {\models} \phi 2$
- 6. $\pi \models \varphi 1 \lor \varphi 2$ iff $\pi \models \varphi 1$ or $\pi \models \varphi 2$
- 7. $\pi{\models}\phi1\rightarrow\phi2$ iff $\pi{\models}\phi2$ whenever $\pi{\models}\phi1$

Definition

Let $M = (S, \rightarrow, L)$ be a model and $\pi = s1 \rightarrow ...$ be a path in M. Whether π satisfies an LTL formula is defined by the satisfaction relation \models as follows:

8.
$$\pi \models X \varphi$$
 iff $\pi^2 \models \varphi$
9. $\pi \models G \varphi$ iff, for all $i \ge 1$, $\pi^i \models \varphi$
10. $\pi \models F \varphi$ iff there is some $i \ge 1$ such that $\pi^i \models \varphi$

Validità di una formula LTL (time 2)

- 11. (Until) $\pi \models a \cup b$ iff there is some $i \ge 1$ such that $\pi^i \models b$ and for all $j = 1, \ldots, i 1$ we have $\pi^j \models a$
- 12. (Weak Until) $\pi \models a$ W b iff either there is some $i \ge 1$ such that $\pi^i \models b$ and for all j = 1, ..., i 1 we have $\pi^j \models a$; or for all $k \ge 1$ we have $\pi^k \models a$
 - U, which stands for 'Until,' is the most commonly encountered one of these. The formula *a U b* holds on a path if it is the case that a holds continuously until b holds. Moreover, a U b actually demands that b does hold in some future state.
 - Weak-until is just like U, except that a W b does not require that b is eventually satisfied along the path in question, which is required by a U b.

伺 ト イヨ ト イヨト

- 13. (Release) $\pi \models a \ R \ b$ iff either there is some $i \ge 1$ such that $\pi^i \models a$ and for all $j = 1, \ldots, i$ we have $\pi^j \models b$, or for all $k \ge 1$ we have $\pi^k \models b$.
 - It is called 'Release' because its definition determines that b must remain true up to and including the moment when a becomes true (if there is one); a 'releases' b.
 - ▶ Release R is the dual of U; that is, a R b is equivalent to ¬(¬a U ¬b).

► Until: a is true until b become true, a U b

•	•	•	•	•	•	•	•	•	•
а	а	а	а	а	b				
•	► Relea	ase: a	release	s b: a	Rb	•	•	•	•
b	b	b	b	b	b	b			
						а			

aggiungere grafica per weak until

Quando una formula è valida per una macchina M (e non solo per un path) ?

Definition

Suppose M =(S, \to ,L) is a model, s \in S ,and ϕ an LTL formula. We write M ,s $\models \phi$ if, for every execution path π of M starting at s, we have $\pi \models \phi$

Example

Figura 3.3 e figura 3.5, alcune formule

Safety properties:

- something is always true $G\phi$
- something bad never happens $G \neg \phi$,
- Liveness properties:
 - something will happen $F\phi$
 - ▶ something good keeps happening $(GF\psi \text{ or } G(\phi \rightarrow F\psi))$
- Esempi piu' complessi 3.2

We say that two LTL formulas φ and ψ are semantically equivalent, or simply equivalent, writing $\varphi \equiv \psi$, if for all models M and all paths π in M: $\pi \models \varphi$ iff $\pi \models \psi$.

solite equivalenze di and, or, not

A weak until binary operator, denoted W, with semantics similar to that of the until operator but the stop condition is not required to occur (similar to release).

• $\phi W \psi \equiv (\phi U \psi) \lor G \phi$

Both U and R can be defined in terms of the weak until:

 $\blacktriangleright\,$ Until and Weak until: ϕ U $\psi\equiv\phi$ W $\psi\wedge$ F ψ

Also R can be defined in terms of W

 $\begin{array}{l} \bullet \ \phi \ W \ \psi \equiv (\phi \ U \ \psi) \lor G \ \phi \equiv \phi \ U \ (\psi \lor G \ \phi) \equiv \psi \ R \ (\psi \lor \phi) \ \phi \ U \\ \psi \equiv F \psi \land (\phi \ W \ \psi) \ \phi \ R \ \psi \equiv \psi \ W \ (\psi \land \phi) \end{array}$

A weak until binary operator, denoted W, with semantics similar to that of the until operator but the stop condition is not required to occur (similar to release).

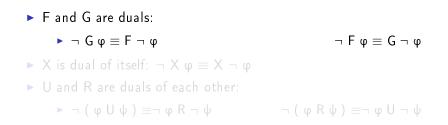
• $\phi \lor \psi \equiv (\phi \lor \psi) \lor G \phi$

Both U and R can be defined in terms of the weak until:

 $\blacktriangleright\,$ Until and Weak until: ϕ U $\psi\equiv\phi$ W $\psi\wedge$ F ψ

Also R can be defined in terms of W

 $\begin{array}{l} \bullet \ \phi \ W \ \psi \equiv (\phi \ U \ \psi) \lor G \ \phi \equiv \phi \ U \ (\psi \lor G \ \phi) \equiv \psi \ R \ (\psi \lor \phi) \ \phi \ U \\ \psi \equiv F \psi \land \ (\phi \ W \ \psi) \ \phi \ R \ \psi \equiv \psi \ W \ (\psi \land \phi) \end{array}$



▶ < ∃ ▶

F and G are duals:
¬ G φ ≡ F ¬ φ ¬ F φ ≡ G ¬ φ
X is dual of itself: ¬ X φ ≡ X ¬ φ
U and R are duals of each other:
¬ (φ U ψ) ≡ ¬ φ R ¬ ψ ¬ (φ R ψ) ≡ ¬ φ U ¬ ψ

▶ < ∃ ▶</p>

F and G are duals:

$$\blacktriangleright \neg G \phi \equiv F \neg \phi \qquad \neg F \phi \equiv G \neg \phi$$

• X is dual of itself: $\neg X \phi \equiv X \neg \phi$

U and R are duals of each other:

$$\blacktriangleright \neg (\phi \cup \psi) \equiv \neg \phi \land \neg \psi \qquad \neg (\phi \land \psi) \equiv \neg \phi \cup \neg \psi$$

- \blacktriangleright It's also the case that F distributes over \lor and G over \land , i.e.,
 - $\label{eq:F} F(\ \phi \lor \psi \) \equiv F \ \phi \lor F \ \psi \qquad \qquad G(\ \phi \land \psi \) \equiv G \ \phi \land G \ \psi$
- But F does not distribute over \land and G does not over \lor .
- F and G can be written as follows using U

- \blacktriangleright It's also the case that F distributes over \lor and G over \land , i.e.,
 - $\label{eq:F} \mathsf{F}(\ \phi \lor \psi \) \equiv \mathsf{F} \ \phi \lor \mathsf{F} \ \psi \qquad \qquad \mathsf{G}(\ \phi \land \psi \) \equiv \mathsf{G} \ \phi \land \mathsf{G} \ \psi$
- But F does not distribute over \land and G does not over \lor .
- F and G can be written as follows using U

 \blacktriangleright It's also the case that F distributes over \lor and G over \land , i.e.,

$$\blacktriangleright \ \mathsf{F}(\ \phi \lor \psi \) \equiv \mathsf{F} \ \phi \lor \mathsf{F} \ \psi \qquad \qquad \mathsf{G}(\ \phi \land \psi \) \equiv \mathsf{G} \ \phi \land \mathsf{G} \ \psi$$

- ▶ But F does not distribute over ∧ and G does not over ∨.
- F and G can be written as follows using U

Non tutti i connettivi sono necessari. Basterebbero di meno, ma per facilità nelle scritture delle formule li usiamo tutti. Esistono dei pattern pratici per la specifica mediante LTL di proprietà comuni:

http://patterns.projects.cis.ksu.edu/documentation/
patterns/ltl.shtml

Alcune volte gli operatori si indicano così: G anche [] \Box , F anche $<>\Diamond$

Absence – P is false:	
Globally	G (!P)
Before R	F R -> (!P U R)
After Q	G (Q -> G (!P))
Between Q and R	G ((Q & !R & F R) -> (!P U R))

Existence P becomes true :	
Globally	F (P)
(*) Before R	!R W (P & !R)
After Q	G (!Q) F (Q & F P))
(*) Between Q and R	G (Q & !R -> (!R W (P & !R)))
(*) After Q until R	G (Q & !R -> (!R U (P & !R)))

æ

< 一型

Universality P is true :	
Globally	G (P)
Before R	F R -> (P U R)
After Q	G (Q -> G (P))
Between Q and R	G ((Q & !R & F R) -> (P U R))
(*) After Q until R	G (Q & !R -> (P W R))

æ

< 一型

- Precedence S precedes P
- Response S responds to P :
- Precedence Chain ...

mutual exclusion

When concurrent processes share a resource (such as a file on a disk or a database entry), it may be necessary to ensure that they do not have access to it at the same time. Several processes simultaneously editing the same file would not be desirable

a process to access a critical resource must be in critical section

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter its critical section, it will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Safety Only one process is in its critical section at any time. Liveness: Whenever any process requests to enter its critical section, it will eventually be permitted to do so.

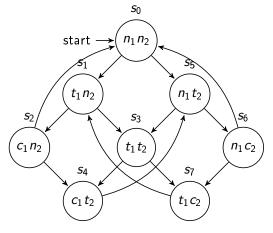
Non-blocking: A process can always request to enter its critical section.

Safety Only one process is in its critical section at any time. Liveness: Whenever any process requests to enter its critical section, it will eventually be permitted to do so. Non-blocking: A process can always request to enter its critical section.

Safety Only one process is in its critical section at any time. Liveness: Whenever any process requests to enter its critical section, it will eventually be permitted to do so. Non-blocking: A process can always request to enter its critical section.

Safety Only one process is in its critical section at any time. Liveness: Whenever any process requests to enter its critical section, it will eventually be permitted to do so. Non-blocking: A process can always request to enter its critical section.

mutual exclusion first model



Every process can be in state: {non critical (n), trying to enter (t), critical state (c)}.

æ

Safety $G \neg (c1 \land c2)$. OK Liveness: $G (t1 \rightarrow Fc1)$. This is FALSE on-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Safety G \neg (c1 \wedge c2). OK Liveness: G (t1 \rightarrow F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Safety G \neg (c1 \wedge c2). OK Liveness: G (t1 \rightarrow F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL No strict sequencing: trovo un path in cui non c'è strict sequencing

Safety G ¬ (c1 ∧ c2). OK
Liveness: G (t1 → F c1). This is FALSE
Non-blocking: ... non riesco ad esprimerla in LTL
No strict sequencing: trovo un path in cui non c'è strict sequencing

Safety G \neg (c1 \land c2). OK Liveness: G (t1 \rightarrow F c1). This is FALSE Non-blocking: ... non riesco ad esprimerla in LTL No strict sequencing: trovo un path in cui non c'è strict sequencing Ricorda la definizione:

Definition

Suppose M is a model, $s\in S$,and ϕ an LTL formula. We write M ,s $\models \phi$ if, for every execution path π of M starting at s, we have $\pi\models \phi$

- ▶ Qundi M,s \models **F***a* vuol dire per ogni path a partire da s*a* accade
- Come faccio a dire che non sempre accade in futuro ma può accadere?

Outline

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

æ

Cenni su come

- come scaricarlo http://nusmv.fbk.eu/
- come installarlo
- come eseguirlo
- usare il plugin nuseen (sviluppato da Unibg)

A system can be ready or busy. When arrives a request, it becomes busy (but it may become busy even without any request). Figura

- MODULE
- VAR
- ASSIGN (machine)
- LTLSPEC (property)

vedi lucidi per NuSMV

æ

< 一型

COMPUTATION TREE LOGIC - CTL La CTL è una logica con connettivi che ci permette di specificare proprietà temporali.

Essendo una logica branching-time, i suoi modelli sono rappresentabili mediante una struttura ad albero in cui il futuro non è deterministico: esistono differenti computazioni o paths nel futuro e uno di questi sarà il percorso realizzato.

Cosa è un modello per una logica proposizionale ???

- Un assegnamento di un valore di verità ad ogni proposizione
- che rende vera la formula

► a ∨ b ∧ c: trova un modello

- La logica è costruita su di un insieme di formule atomiche AP {p, q, r, ...} che rappresentano descrizioni atomiche del sistema
- > Definiamo in maniera induttiva le formule CTL:

$$\phi ::= \top |\bot| \mathbf{p} \in \mathbf{AP} |\neg \phi| \phi \land \phi | \phi \lor \phi | \phi \to \phi |$$

▶ $\top, \bot, \neg, \land, \lor, \rightarrow$ sono connettivi logici classici

Operatori temporali:

$$\phi ::= \begin{array}{cc} AX\phi | EX\phi & AF\phi | EF\phi \\ |A[\phi U\phi]| E[\phi U\phi] & AG\phi | EG\phi| \end{array}$$

▶ $\top, \bot, \neg, \land, \lor, \rightarrow$ sono connettivi logici classici

AX, EX, AG, EG, AU, EU, AF e EF sono connettivi temporali

- In particolare: A sta per "along All paths" (inevitably) E sta per "along at least (there Exists) one path" (possibly)
- ▶ X, F, G e U sono gli operatori della logica temporale lineare
 - Nota Bene: AU e EU sono operatori binari e i simboli X, F, G e U non possono occorrere se non preceduti da A o E e viceversa.

- Convenzione sull' ordinamento: gli operatori unary (AG, EG, AF, EF, AX, EX) legano con priorità più elevata, seguono gli operatori binary A, V, e dopo ancora —>, AU ed EU.
- Esempi di formule CTL ben-formate

- EF E(r U q)
- A[p U EF r]
- ▶ EF EG p —> AF r

Esempi di formule CTL non ben-formate

- ▶ EFGr
- ► A!G!p
- ► F[r U q]
- ► EF(rUq)
- ► AEF r
- ► A[(r U q) /\ (p U r)]

< /i>

э

Definition

Let $M = (S, \rightarrow, L)$ be a model for CTL, s in S, φ a CTL formula. The relation $M, s \models \varphi$ is defined by structural induction on φ .

- If ϕ is atomic, satisfaction is determined by L.
- If the top-level connective of φ is a boolean connective (∧ , ∨ , ¬, etc.) then the satisfaction question is answered by the usual truth-table definition and further recursion down φ.
- If the top level connective is an operator beginning A, then satisfaction holds if all paths from s satisfy the 'LTL formula' resulting from removing the A symbol.
- Similarly, if the top level connective begins with E, then satisfaction holds if some path from s satisfy the 'LTL formula' resulting from removing the E.

▲ 同 ▶ ▲ 国 ▶ ▲

Non temporal formula are treated as usual

1. $M, s \models \top$ 2. $M, s \not\models \bot$ 3. $M, s \models p \text{ iff } p \in L(s)$ 4. $M, s \models \neg \varphi \text{ iff } \pi M, s \not\models \varphi$ 5. $M, s \models \varphi 1 \land \varphi 2 \text{ iff } M, s \models \varphi 1 \text{ and } M, s \models \varphi 2$ 6. $M, s \models \varphi 1 \lor \varphi 2 \text{ iff } M, s \models \varphi 1 \text{ or } M, s \models \varphi 2$ 7. $M, s \models \varphi 1 \rightarrow \varphi 2 \text{ iff } M, s \models \varphi 2 \text{ whenever } M, s \models \varphi 1$

Validità di una formula CTL (time)

- 8. $M, s \models AX \phi$ iff forall s_1 such that $s \rightarrow s_1$ we have $M, s_1 \models \phi$
- 9. $M, s \models$ EX φ iff some s_1 such that $s \rightarrow s_1$ we have $M, s_1 \models \varphi$
- 10. $M, s \models AG \varphi$ iff, for all paths $s \rightarrow s_1 \rightarrow s_2 \dots$ and all s_i along the path, we have $M, s \models \varphi$
- 11. $M, s \models \mathsf{EG} \varphi$ iff, there is a path $s \to s_1 \to s_2 \ldots$ and all s_i along the path, we have $M, s \models \varphi$
 - AX: 'in every next state.'
 - EX: 'in some next state.'
 - AG: for All computation paths beginning in s the property φ holds Globally
 - EG: there Exists a path beginning in s such that φ holds Globally along the path.

- 12. $M, s \models AF \varphi$ iff, for all paths $s \rightarrow s_1 \rightarrow s_2 \dots$ there exists some s_i along the path, we have $M, s \models \varphi$
- 13. $M, s \models \mathsf{EF} \varphi$ iff, there is a path $s \to s_1 \to s_2 \dots$ and for some s_i along the path, we have $M, s \models \varphi$
 - AF: for All computation paths beginning in s there will be some Future state where φ holds.
 - EF: there Exists a computation path beginning in s such that φ holds in some Future state;

- 11. $M, s \models A[\phi_1 U \phi_2]$ iff, for all paths $s \to s_1 \to s_2 \dots$, that path satisfies $\phi_1 U \phi_2$ i.e., there is some s_i along the path, such that $M, s \models \phi_2$, and, for each j < i, we have $M, s \models \phi_1$.
- 12. $M, s \models E[\phi_1 U \phi_2]$ iff, there exists a path $s \to s_1 \to s_2 \dots$, that path satisfies $\phi_1 U \phi_2$.
 - A U All computation paths beginning in s satisfy that φ1 Until φ2 holds on it.
 - E U there Exists a computation path beginning in s such that φ1 Until φ2 holds on it.

Figura 3.3 e computation tree 3.5

æ

< 一型

Esistono dei pattern pratici per la specifica mediante CTL di proprietà comuni:

http://patterns.projects.cis.ksu.edu/documentation/
patterns/ctl.shtml

Absence – P is false:	
Globally	AG(!P)
Before R	A[(!P AG(!R)) W R]
After Q	$AG(Q \rightarrow AG(!P))$

Many of the mappings use the weak until operator (W) which is related to the strong until operator (U) by the following equivalences:

 $\begin{array}{l} A[x \ W \ y] = \ !E[!y \ U \ (!x \ \& \ !y)] \\ E[x \ U \ y] = \ !A[!y \ W \ (!x \ \& \ !y)] \end{array}$

Existence P becomes true :	
Globally	AF(P)
(*) Before R	A[!RW (P& !R)]
After Q	A[!Q W (Q & AF(P))]
(*) Between Q and R	AG(Q & !R -> A[!R W (P & !R)])
(*) After Q until R	AG(Q & !R -> A[!R U (P & !R)])

æ

< 一型

Universality P is true :	
Globally	AG(P)
(*) Before R	A[(P AG(!R)) W R]
After Q	$AG(Q \rightarrow AG(P))$
(*) Between Q and R	AG(Q & !R -> A[(P AG(!R)) W R])
(*) After Q until R	AG(Q & !R -> A[P W R])

æ

< 一型

- It is possible to get to a state where started holds, but ready doesn't: EF (started ∧ ¬ready). To express impossibility, we simply negate the formula.
- ► For any state, if a request (of some resource) occurs, then it will eventually be acknowledged: AG (requested → AF acknowledged).
- A certain process is enabled infinitely often on every computation path: AG (AF enabled).
- From any state it is possible to get to a restart state: AG (EF restart).
- Altri esempi

- It is possible to get to a state where started holds, but ready doesn't: EF (started ∧ ¬ready). To express impossibility, we simply negate the formula.
- ► For any state, if a request (of some resource) occurs, then it will eventually be acknowledged: AG (requested → AF acknowledged).
- A certain process is enabled infinitely often on every computation path: AG (AF enabled).
- From any state it is possible to get to a restart state: AG (EF restart).
- Altri esempi

- It is possible to get to a state where started holds, but ready doesn't: EF (started ∧ ¬ready). To express impossibility, we simply negate the formula.
- ► For any state, if a request (of some resource) occurs, then it will eventually be acknowledged: AG (requested → AF acknowledged).
- A certain process is enabled infinitely often on every computation path: AG (AF enabled).
- From any state it is possible to get to a restart state: AG (EF restart).

Altri esempi

- It is possible to get to a state where started holds, but ready doesn't: EF (started ∧ ¬ready). To express impossibility, we simply negate the formula.
- ► For any state, if a request (of some resource) occurs, then it will eventually be acknowledged: AG (requested → AF acknowledged).
- A certain process is enabled infinitely often on every computation path: AG (AF enabled).
- From any state it is possible to get to a restart state: AG (EF restart).
- Altri esempi

- It is possible to get to a state where started holds, but ready doesn't: EF (started ∧ ¬ready). To express impossibility, we simply negate the formula.
- ► For any state, if a request (of some resource) occurs, then it will eventually be acknowledged: AG (requested → AF acknowledged).
- A certain process is enabled infinitely often on every computation path: AG (AF enabled).
- From any state it is possible to get to a restart state: AG (EF restart).
- Altri esempi

Important equivalences between CTL formulas

 We have already noticed that A is a universal quantifier on paths and E is the corresponding existential quantifier.
 Moreover, G and F are also universal and existential quantifiers, ranging over the states along a particular path.

$$\blacktriangleright \ \neg \ AF \ \phi \equiv EG \ \neg \phi$$

► ¬ EF
$$\phi \equiv AG \neg \phi$$

► ¬ AX
$$\varphi \equiv EX \neg \varphi$$
.

- We also have the equivalences AF φ ≡ A[⊤U φ] EF φ ≡ E[⊤U φ] which are similar to the corresponding equivalences in LTL.
- Adequate sets of CTL connectives: not all the connectives are necessary

CTL* and the expressive powers of LTL and CTL

- CTL allows explicit quantification over paths, and in this respect it is more expressive than LTL, as we have seen.
- ► However, it does not allow one to select a range of paths by describing them with a formula, as LTL does. In that respect, LTL is more expressive. For example, in LTL we can say 'all paths which have a p along them also have a q along them,' by writing F p → F q. It is not possible to write this in CTL because of the constraint that every F has an associated A or E.
- CTL* is a logic which combines the expressive powers of LTL and CTL, by dropping the CTL constraint that every temporal operator (X, U, F, G) has to be associated with a unique path quantifier (A, E).
- Past operators in LTL can be added.

• We want to solve this problem $M, s \models \phi$

- model checking
- by a labelling algorithm:
 - \blacktriangleright INPUT: a CTL model M = (S, \rightarrow , L) and a CTL formula ϕ .
 - OUTPUT: the set of states of M which satisfy φ.
- 1. First, change ϕ in terms of the connectives AF, EU, EX, \wedge , \neg and \perp using the equivalences given earlier.
- 2. Next, label the states of M in which ϕ holds

Labeling algorithm

Case analysis over $\psi.$ If ψ is

- \blacktriangleright \perp : then no states are labelled with \perp
- p: then label every s such that $p \in L(s)$
- $\psi 1 \wedge \psi 2$:
 - do labelling with ψ1 and with ψ2
 - \blacktriangleright label s with $\psi 1 \land \psi 2$ if s is already labelled both with $\psi 1$ and with $\psi 2$
- ► ¬ψ :
 - do labelling with ψ
 - label s with $\neg \psi 1$ if s is not labelled with ψ .

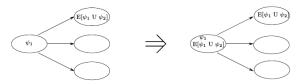
► AFψ:

- do labeling with ψ
- If any state s is labelled with ψ , label it with AF ψ .
- \blacktriangleright Repeat: label any state with AF ψ if all successor states are labelled with AF ψ , until there is no change. See picture

Labeling algorithm - E U

► E[ψ1 U ψ2]

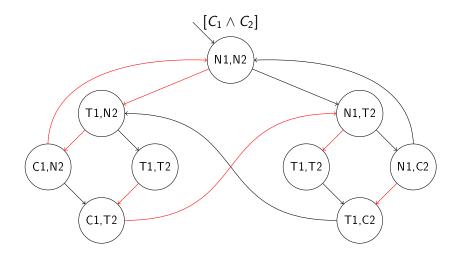
- do labeling for $\psi 1$ and $\psi 2$
- If any state s is labelled with $\psi 2$, label it with E[$\psi 1 \cup \psi 2$]
- Repeat: label any state with $E[\psi 1 \cup \psi 2]$ if it is labelled with $\psi 1$ and at least one of its successors is labelled with $E[\psi 1 \cup \psi 2]$, until there is no change.



► EX ψ :

- \blacktriangleright do labeling for ψ
- \blacktriangleright label any state with EX ψ if one of its successors is labelled with ψ

- The complexity of this algorithm is O(f · V · (V + E)), where f is the number of connectives in the formula, V is the number of states and E is the number of transitions; the algorithm is linear in the size of the formula and quadratic in the size of the model.
- Some improvements
 - Handling EG directly
- LTL is treated differently (skip)



・ロト ・四ト ・ヨト ・ヨト

æ

The 'state explosion' problem Although the labelling algorithm (with the clever way of handling EG) is linear in the size of the model, unfortunately the size of the model is itself more often than not exponential in the number of variables and the number of components of the system which execute in parallel. This means that, for example, adding a boolean variable to your program will double the complexity of verifying a property of it. The tendency of state spaces to become very large is known as the state explosion problem. A lot of research has gone into finding ways of overcoming it, including the use of:

efficient data structure BDDs

....