
Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Veri�ca formale di proprietà mediante model
checking

Angelo Gargantini

June 1, 2016

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Outline

TESTO DI RIFERIMENTO: M.R.A. Ruth, M.D. Ryan Logic in
Computer Science Modelling and Reasoning about systems -
Capitolo 3 - allegato a questi appunti

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Motivation

I There is a great advantage in being able to verify the
correctness of computer systems, whether they are hardware,
software, or a combination. This is most obvious in the case of
safety-critical systems, but also applies to those that are
commercially critical, such as mass-produced chips, mission
critical, etc.

I Formal veri�cation methods have quite recently become usable
by industry and there is a growing demand for professionals
able to apply them.

I We study a fully automatic way to perform formal veri�cation

I not rule-based
I called model checking

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Formal veri�cation by model checking

I Le tecniche di veri�ca formale sono generalmente viste come la
somma di tre componenti:

I Un framework in cui modellare il sistema che vogliamo
analizzare

I Un linguaggio di speci�ca delle proprietà da veri�care
I Un metodo per veri�care che il sistema soddis� le proprietà

speci�cate.

I Solitamente il Model Checking si basa sull'utilizzo di una
logica temporale. Quindi, le tre componenti possono essere
costituite come segue:

I Si costruisce un modello M che descrive il comportamento del
sistema

I Si codi�ca la proprietà da veri�care in una formula temporale φ
I Si chiede al model checker di veri�care che M |= φ

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Formal veri�cation by model checking

I Le tecniche di veri�ca formale sono generalmente viste come la
somma di tre componenti:

I Un framework in cui modellare il sistema che vogliamo
analizzare

I Un linguaggio di speci�ca delle proprietà da veri�care
I Un metodo per veri�care che il sistema soddis� le proprietà

speci�cate.

I Solitamente il Model Checking si basa sull'utilizzo di una
logica temporale. Quindi, le tre componenti possono essere
costituite come segue:

I Si costruisce un modello M che descrive il comportamento del
sistema

I Si codi�ca la proprietà da veri�care in una formula temporale φ
I Si chiede al model checker di veri�care che M |= φ

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Logiche temporali

I Esistono diverse logiche temporali che possono essere divise in
due clasi fondamentali:

I le linear-time logics (LTL) e le branching-time logics (CTL).

I LTL considera il tempo come un insieme di cammini, dove
cammino é una sequenza di istanti di tempo

I CTL rappresenta il tempo come un albero, con radice l'istante
corrente

I Un'altra classi�cazione divide tra tempo continuo e discreto.
Noi studieremo solo logiche discrete e senza metrica.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

LTL sintassi

I La logica è costruita su di un insieme di formule atomiche AP
{p, q, r, ...} che rappresentano descrizioni atomiche del
sistema

I De�niamo in maniera ricorsiva le formule LTL:

I (1) come la logica proposizionale

φ ::= >|⊥|p ∈ AP| ¬φ|φ ∧ φ|φ ∨ φ|φ→ φ|

I >,⊥,¬,∧,∨,→ sono connettivi logici classici

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

LTL sintassi - (2) operatori temporali

φ ::=
>|⊥|p ∈ AP| ¬φ|φ ∧ φ|φ ∨ φ|φ→ φ|
Xφ|Fφ|Gφ| φUφ|φWφ|φRφ

I X, F, G, U,W, R sono connettivi temporali

I In particolare:
I X means `neXt state,'
I F means `some Future state,' and
I G means `all future states (Globally).'

I The next three, U, R and W are called `Until,' `Release' and
`Weak-until' respectively.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Precedenza degli operatori

Convention 3.2 The unary connectives (consisting of ¬ and the
temporal connectives X, F and G) bind most tightly. Next in the
order come U, R and W; then come ∧ and ∨; and after that comes
→.

I alcuni esempi di LTL con e senza parentesi

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Semantica per LTL

I The kinds of systems we are interested in verifying using LTL
may be modelled as transition systems. A transition system
models a system by means of states (static structure) and
transitions (dynamic structure).

A transition system M = (S, →, L) is

I a set of states S endowed

I with a transition relation → (a binary relation on S), such that
every s ∈ S has some s' ∈ S with s → s', and

I a labelling function L : S → P (Atoms)

I transition system sono i nostri modelli.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Labelling function

I a labelling function L : S → P (Atoms)

P (Atoms) è il powerset � l'insieme delle parti � di Atoms

I L is that it is just an assignment of truth values to all the
propositional atoms, as it was the case for propositional logic
(we called that a valution)

I The di�erence now is that we have more than one state, so
this assignment depends on which state s the system is in:
L(s) contains all atoms which are true in state s.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Graphical representation

I all the information about a (�nite) transition system M can be
expressed using directed graphs whose nodes (which we call states)
contain all propositional atoms that are true in that state.

Example: M has only three states s0, s1, and s2. The only
possible transitions are s0 → s1, s0 → s2, s1 → s0, s1 → s2 and s2
→ s2; and if L(s0) = {p, q}, L(s1) = {q, r} and L(s2) = {r}:

p, qstart

s0

q, r

s1

r

s2

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

No deadlock

I The requirement in De�nition that for every s ∈ S there is at
least one s' ∈ S such that s → s' means that no state of the
system can `deadlock.'

I This is a technical convenience, and in fact it does not
represent any real restriction on the systems we can model. If
a system did deadlock, we could always add an extra state sd
representing deadlock,

I un esempio di deadlock

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Path

I A path in a model M = (S, →, L) is an in�nite sequence of
states s1, s2 , s3 , . . . in S such that, for each i ≥ 1, si →
si+1.

I We write the path as s1 → s2 →

I We write πi for the su�x starting at si , e.g., π
3 is s3 → s4 →

. . . .

I Esempio

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Validità di una formula LTL su un path (prop)

De�nition

Let M = (S, →, L) be a model and π = s1 → . . . be a path in
M. Whether π satis�es an LTL formula is de�ned by the
satisfaction relation |= as follows:

1. π|= >
2. π6|=⊥
3. π|=p i� p ∈ L(s1)

4. π|=¬φ i� π 6|=φ
5. π|=φ1 ∧ φ2 i� π |=φ1 and π |=φ2
6. π|=φ1 ∨ φ2 i� π |=φ1 or π |=φ2
7. π|=φ1 → φ2 i� π |=φ2 whenever π |=φ1

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Validità di una formula LTL in un path (time)

De�nition

Let M = (S, →, L) be a model and π = s1 → . . . be a path in M.
Whether π satis�es an LTL formula is de�ned by the satisfaction
relation |= as follows:

8. π|=X φ i� π2 |=φ
9. π|=G φ i�, for all i ≥ 1, πi |=φ
10. π|=F φ i� there is some i ≥ 1 such that πi |= φ

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Validità di una formula LTL (time 2)

11. (Until) π|=a U b i� there is some i ≥ 1 such that πi |= b and
for all j = 1, . . . , i − 1 we have πj |= a

12. (Weak Until) π|=a W b i� either there is some i ≥ 1 such
that πi |=b and for all j = 1, . . . , i − 1 we have πj |= a; or
for all k ≥ 1 we have πk |=a

I U, which stands for `Until,' is the most commonly encountered
one of these. The formula a U b holds on a path if it is the
case that a holds continuously until b holds. Moreover, a U b
actually demands that b does hold in some future state.

I Weak-until is just like U, except that aW b does not require
that b is eventually satis�ed along the path in question, which
is required by a U b.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Validità di una formula LTL (time 3)

13. (Release) π|=a R b i� either there is some i ≥ 1 such that
πi |= a and for all j = 1, . . . , i we have πj |=b, or for all k ≥
1 we have πk |=b.

I It is called `Release' because its de�nition determines that b
must remain true up to and including the moment when a
becomes true (if there is one); a `releases' b.

I Release R is the dual of U; that is, a R b is equivalent to ¬(¬a
U ¬b).

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Rappresentazione gra�ca

I Until: a is true until b become true, a U b

a a a a a b

I Release: a releases b: a R b

b b b b b b b
a

aggiungere gra�ca per weak until

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Formula valida

I Quando una formula è valida per una macchina M (e non solo
per un path) ?

De�nition

Suppose M =(S, → ,L) is a model, s ∈ S ,and φ an LTL formula.
We write M ,s |=φ if, for every execution path π of M starting at s,
we have π |= φ

Example

Figura 3.3 e �gura 3.5, alcune formule

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Practical Pattern of speci�cations

I Safety properties:

I something is always true Gφ
I something bad never happens G¬φ,

I Liveness properties:

I something will happen Fφ
I something good keeps happening (GFψ or G (φ→ Fψ))

I Esempi piu' complessi - 3.2

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Important equivalences between LTL formulas

We say that two LTL formulas φ and ψ are semantically equivalent,
or simply equivalent, writing φ ≡ ψ, if for all models M and all
paths π in M: π |=φ i� π |=ψ.
I solite equivalenze di and, or, not

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Until e weak until

A weak until binary operator, denoted W, with semantics similar to
that of the until operator but the stop condition is not required to
occur (similar to release).

I φ W ψ ≡ (φ U ψ) ∨ G φ

Both U and R can be de�ned in terms of the weak until:

I Until and Weak until: φ U ψ ≡ φ W ψ ∧ F ψ

Also R can be de�ned in terms of W

I φ W ψ ≡ (φ U ψ) ∨ G φ ≡ φ U (ψ ∨ G φ) ≡ ψ R (ψ ∨ φ) φ U
ψ ≡ Fψ ∧ (φ W ψ) φ R ψ ≡ ψ W (ψ ∧ φ)

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Until e weak until

A weak until binary operator, denoted W, with semantics similar to
that of the until operator but the stop condition is not required to
occur (similar to release).

I φ W ψ ≡ (φ U ψ) ∨ G φ

Both U and R can be de�ned in terms of the weak until:

I Until and Weak until: φ U ψ ≡ φ W ψ ∧ F ψ

Also R can be de�ned in terms of W

I φ W ψ ≡ (φ U ψ) ∨ G φ ≡ φ U (ψ ∨ G φ) ≡ ψ R (ψ ∨ φ) φ U
ψ ≡ Fψ ∧ (φ W ψ) φ R ψ ≡ ψ W (ψ ∧ φ)

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

F and G duality

I F and G are duals:

I ¬ G φ ≡ F ¬ φ ¬ F φ ≡ G ¬ φ

I X is dual of itself: ¬ X φ ≡ X ¬ φ

I U and R are duals of each other:

I ¬ (φ U ψ) ≡¬ φ R ¬ ψ ¬ (φ R ψ) ≡¬ φ U ¬ ψ

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

F and G duality

I F and G are duals:

I ¬ G φ ≡ F ¬ φ ¬ F φ ≡ G ¬ φ

I X is dual of itself: ¬ X φ ≡ X ¬ φ

I U and R are duals of each other:

I ¬ (φ U ψ) ≡¬ φ R ¬ ψ ¬ (φ R ψ) ≡¬ φ U ¬ ψ

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

F and G duality

I F and G are duals:

I ¬ G φ ≡ F ¬ φ ¬ F φ ≡ G ¬ φ

I X is dual of itself: ¬ X φ ≡ X ¬ φ

I U and R are duals of each other:

I ¬ (φ U ψ) ≡¬ φ R ¬ ψ ¬ (φ R ψ) ≡¬ φ U ¬ ψ

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Distributive

I It's also the case that F distributes over ∨ and G over ∧ , i.e.,

I F(φ ∨ ψ) ≡ F φ ∨ F ψ G(φ ∧ ψ) ≡ G φ ∧ G ψ

I But F does not distribute over ∧ and G does not over ∨.
I F and G can be written as follows using U

I F φ ≡ >U φ G φ ≡⊥ R φ

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Distributive

I It's also the case that F distributes over ∨ and G over ∧ , i.e.,

I F(φ ∨ ψ) ≡ F φ ∨ F ψ G(φ ∧ ψ) ≡ G φ ∧ G ψ

I But F does not distribute over ∧ and G does not over ∨.
I F and G can be written as follows using U

I F φ ≡ >U φ G φ ≡⊥ R φ

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Distributive

I It's also the case that F distributes over ∨ and G over ∧ , i.e.,

I F(φ ∨ ψ) ≡ F φ ∨ F ψ G(φ ∧ ψ) ≡ G φ ∧ G ψ

I But F does not distribute over ∧ and G does not over ∨.
I F and G can be written as follows using U

I F φ ≡ >U φ G φ ≡⊥ R φ

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Adequate sets of connectives for LTL

Non tutti i connettivi sono necessari. Basterebbero di meno, ma
per facilità nelle scritture delle formule li usiamo tutti.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Pattern of LTL properties

Esistono dei pattern pratici per la speci�ca mediante LTL di
proprietà comuni:
http://patterns.projects.cis.ksu.edu/documentation/

patterns/ltl.shtml

Alcune volte gli operatori si indicano così: G anche [] �, F anche
<>♦
Absence � P is false:

Globally G (!P)

Before R F R -> (!P U R)

After Q G (Q -> G (!P))

Between Q and R G ((Q & !R & F R) -> (!P U R))

Angelo Gargantini model checking

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Pattern (Existence)

Existence P becomes true :

Globally F (P)

(*) Before R !R W (P & !R)

After Q G (!Q) | F (Q & F P))

(*) Between Q and R G (Q & !R -> (!R W (P & !R)))

(*) After Q until R G (Q & !R -> (!R U (P & !R)))

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Pattern (Universality)

Universality P is true :

Globally G (P)

Before R F R -> (P U R)

After Q G (Q -> G (P))

Between Q and R G ((Q & !R & F R) -> (P U R))

(*) After Q until R G (Q & !R -> (P W R))

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Altri Pattern

I Precedence S precedes P

I Response S responds to P :

I Precedence Chain ...

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

Example: mutual exclusion

mutual exclusion

When concurrent processes share a resource (such as a �le on a
disk or a database entry), it may be necessary to ensure that they
do not have access to it at the same time. Several processes
simultaneously editing the same �le would not be desirable

a process to access a critical resource must be in critical section

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter its critical
section, it will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical
section.

No strict sequencing: Processes need not enter their critical section
in strict sequence.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter its critical
section, it will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical
section.

No strict sequencing: Processes need not enter their critical section
in strict sequence.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter its critical
section, it will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical
section.

No strict sequencing: Processes need not enter their critical section
in strict sequence.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter its critical
section, it will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical
section.

No strict sequencing: Processes need not enter their critical section
in strict sequence.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

mutual exclusion desired properties

Safety Only one process is in its critical section at any time.

Liveness: Whenever any process requests to enter its critical
section, it will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical
section.

No strict sequencing: Processes need not enter their critical section
in strict sequence.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

mutual exclusion �rst model

n1n2start

s0

t1n2

s1

c1n2

s2

t1t2

s3

c1t2

s4

n1t2

s5

n1c2

s6

t1c2

s7

Every process can be in
state: {non critical (n),

trying to enter (t), critical
state (c)}.Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

mutual exclusion properties

Safety G ¬ (c1 ∧ c2). OK

Liveness: G (t1 → F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

mutual exclusion properties

Safety G ¬ (c1 ∧ c2). OK

Liveness: G (t1 → F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

mutual exclusion properties

Safety G ¬ (c1 ∧ c2). OK

Liveness: G (t1 → F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

mutual exclusion properties

Safety G ¬ (c1 ∧ c2). OK

Liveness: G (t1 → F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

mutual exclusion properties

Safety G ¬ (c1 ∧ c2). OK

Liveness: G (t1 → F c1). This is FALSE

Non-blocking: ... non riesco ad esprimerla in LTL

No strict sequencing: trovo un path in cui non c'è strict sequencing

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

Limiti LTL

Ricorda la de�nizione:

De�nition

Suppose M is a model, s ∈ S ,and φ an LTL formula. We write M ,s
|=φ if, for every execution path π of M starting at s, we have π |= φ

I Qundi M,s |=Fa vuol dire per ogni path a partire da s a accade

I Come faccio a dire che non sempre accade in futuro ma può
accadere?

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

Outline

1 Motivation

2 Linear-time temporal logic

3 Model checking: Systems, tools, properties
NuSMV model checker

4 Branching-time temporal logic

5 Model-checking algorithms

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

The NuSMV model checker

Cenni su come

I come scaricarlo http://nusmv.fbk.eu/

I come installarlo

I come eseguirlo

I usare il plugin nuseen (sviluppato da Unibg)

Angelo Gargantini model checking

http://nusmv.fbk.eu/

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

primo esempio

A system can be ready or busy. When arrives a request, it becomes
busy (but it may become busy even without any request).
Figura

I MODULE

I VAR

I ASSIGN (machine)

I LTLSPEC (property)

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

NuSMV model checker

Esempi SMV

I vedi lucidi per NuSMV

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

CTL

COMPUTATION TREE LOGIC - CTL La CTL è una logica con
connettivi che ci permette di speci�care proprietà temporali.

I Essendo una logica branching-time, i suoi modelli sono
rappresentabili mediante una struttura ad albero in cui il
futuro non è deterministico: esistono di�erenti computazioni o
paths nel futuro e uno di questi sarà il percorso realizzato.

Cosa è un modello per una logica proposizionale ???

I Un assegnamento di un valore di verità ad ogni proposizione

I che rende vera la formula

I a ∨ b ∧ c : trova un modello

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

CTL sintassi

I La logica è costruita su di un insieme di formule atomiche AP
{p, q, r, ...} che rappresentano descrizioni atomiche del
sistema

I De�niamo in maniera induttiva le formule CTL:

φ ::= >|⊥|p ∈ AP|¬φ|φ ∧ φ|φ ∨ φ|φ→ φ|

I >,⊥,¬,∧,∨,→ sono connettivi logici classici

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

CTL sintassi

I Operatori temporali:

φ ::=
AXφ|EXφ AFφ|EFφ

|A[φUφ]|E [φUφ] AGφ|EGφ|

I >,⊥,¬,∧,∨,→ sono connettivi logici classici

I AX, EX, AG, EG, AU, EU, AF e EF sono connettivi temporali

I In particolare: A sta per "along All paths" (inevitably) E sta
per "along at least (there Exists) one path" (possibly)

I X, F, G e U sono gli operatori della logica temporale lineare

I Nota Bene: AU e EU sono operatori binari e i simboli X, F, G e
U non possono occorrere se non preceduti da A o E e viceversa.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Priorità degli operatori

I Convenzione sull' ordinamento: gli operatori unary (AG, EG,
AF, EF, AX, EX) legano con priorità più elevata, seguono gli
operatori binary A, V, e dopo ancora �>, AU ed EU.

I Esempi di formule CTL ben-formate

I AG (q �> EG r)
I EF E(r U q)
I A[p U EF r]
I EF EG p �> AF r

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Attenzione

I Esempi di formule CTL non ben-formate

I EF G r
I A!G!p
I F[r U q]
I EF(r U q)
I AEF r
I A[(r U q) /\ (p U r)]

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Semantica per CTL (brief)

De�nition

Let M = (S, →, L) be a model for CTL, s in S, φ a CTL formula.
The relation M, s |= ϕ is de�ned by structural induction on φ.

I If φ is atomic, satisfaction is determined by L.
I If the top-level connective of φ is a boolean connective (∧ , ∨

, ¬ , etc.) then the satisfaction question is answered by the
usual truth-table de�nition and further recursion down φ.

I If the top level connective is an operator beginning A, then
satisfaction holds if all paths from s satisfy the `LTL formula'
resulting from removing the A symbol.

I Similarly, if the top level connective begins with E, then
satisfaction holds if some path from s satisfy the `LTL formula'
resulting from removing the E.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Semantic of CTL

Non temporal formula are treated as usual

1. M, s |= >
2. M, s 6|=⊥
3. M, s |=p i� p ∈ L(s)

4. M, s |=¬φ i� π M, s 6|=φ
5. M, s |=φ1 ∧ φ2 i� M, s |=φ1 and M, s |=φ2
6. M, s |=φ1 ∨ φ2 i� M, s |=φ1 or M, s |=φ2
7. M, s |=φ1 → φ2 i� M, s |=φ2 whenever M, s |=φ1

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Validità di una formula CTL (time)

8. M, s |=AX φ i� forall s1such that s → s1 we have M, s1 |=φ
9. M, s |=EX φ i� some s1such that s → s1 we have M, s1 |=φ
10. M, s |=AG φ i�, for all paths s → s1 → s2 . . . and all si along

the path, we have M, s |=φ
11. M, s |=EG φ i�, there is a path s → s1 → s2 . . . and all si

along the path, we have M, s |=φ

I AX: `in every next state.'

I EX: `in some next state.'

I AG: for All computation paths beginning in s the property φ
holds Globally

I EG: there Exists a path beginning in s such that φ holds
Globally along the path.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Validità di una formula CTL (time 2)

12. M, s |=AF φ i�, for all paths s → s1 → s2 . . . there exists
some si along the path, we have M, s |=φ

13. M, s |=EF φ i�, there is a path s → s1 → s2 . . . and for some
si along the path, we have M, s |=φ

I AF: for All computation paths beginning in s there will be
some Future state where φ holds.

I EF: there Exists a computation path beginning in s such that
φ holds in some Future state;

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Validità di una formula CTL (time 3)

11. M, s |= A[φ1Uφ2] i�, for all paths s → s1 → s2 . . . , that path
satis�es φ1Uφ2i.e., there is some si along the path, such that
M, s |= φ2, and, for each j < i, we have M, s |= φ1.

12. M, s |= E [φ1Uφ2] i�, there exists a path s → s1 → s2 . . . ,
that path satis�es φ1Uφ2.

I A U All computation paths beginning in s satisfy that φ1 Until
φ2 holds on it.

I E U there Exists a computation path beginning in s such that
φ1 Until φ2 holds on it.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Esempio

Figura 3.3 e computation tree 3.5

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Pattern of CTL properties

Esistono dei pattern pratici per la speci�ca mediante CTL di
proprietà comuni:
http://patterns.projects.cis.ksu.edu/documentation/

patterns/ctl.shtml

Absence � P is false:

Globally AG(!P)

Before R A[(!P | AG(!R)) W R]

After Q AG(Q -> AG(!P))
Many of the mappings use the weak until operator (W) which is
related to the strong until operator (U) by the following
equivalences:
A[x W y] = !E[!y U (!x & !y)]
E[x U y] = !A[!y W (!x & !y)]

Angelo Gargantini model checking

http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ctl.shtml

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Pattern (Existence)

Existence P becomes true :

Globally AF(P)

(*) Before R A[!R W (P & !R)]

After Q A[!Q W (Q & AF(P))]

(*) Between Q and R AG(Q & !R -> A[!R W (P & !R)])

(*) After Q until R AG(Q & !R -> A[!R U (P & !R)])

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Pattern (Universality)

Universality P is true :

Globally AG(P)

(*) Before R A[(P | AG(!R)) W R]

After Q AG(Q -> AG(P))

(*) Between Q and R AG(Q & !R -> A[(P | AG(!R)) W R])

(*) After Q until R AG(Q & !R -> A[P W R])

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Practical patterns of speci�cations

I It is possible to get to a state where started holds, but ready
doesn't: EF (started ∧ ¬ready). To express impossibility,
we simply negate the formula.

I For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged: AG (requested → AF
acknowledged).

I A certain process is enabled in�nitely often on every
computation path: AG (AF enabled).

I From any state it is possible to get to a restart state: AG (EF
restart).

I Altri esempi

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Practical patterns of speci�cations

I It is possible to get to a state where started holds, but ready
doesn't: EF (started ∧ ¬ready). To express impossibility,
we simply negate the formula.

I For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged: AG (requested → AF
acknowledged).

I A certain process is enabled in�nitely often on every
computation path: AG (AF enabled).

I From any state it is possible to get to a restart state: AG (EF
restart).

I Altri esempi

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Practical patterns of speci�cations

I It is possible to get to a state where started holds, but ready
doesn't: EF (started ∧ ¬ready). To express impossibility,
we simply negate the formula.

I For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged: AG (requested → AF
acknowledged).

I A certain process is enabled in�nitely often on every
computation path: AG (AF enabled).

I From any state it is possible to get to a restart state: AG (EF
restart).

I Altri esempi

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Practical patterns of speci�cations

I It is possible to get to a state where started holds, but ready
doesn't: EF (started ∧ ¬ready). To express impossibility,
we simply negate the formula.

I For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged: AG (requested → AF
acknowledged).

I A certain process is enabled in�nitely often on every
computation path: AG (AF enabled).

I From any state it is possible to get to a restart state: AG (EF
restart).

I Altri esempi

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Practical patterns of speci�cations

I It is possible to get to a state where started holds, but ready
doesn't: EF (started ∧ ¬ready). To express impossibility,
we simply negate the formula.

I For any state, if a request (of some resource) occurs, then it
will eventually be acknowledged: AG (requested → AF
acknowledged).

I A certain process is enabled in�nitely often on every
computation path: AG (AF enabled).

I From any state it is possible to get to a restart state: AG (EF
restart).

I Altri esempi

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Important equivalences between CTL formulas

I We have already noticed that A is a universal quanti�er on
paths and E is the corresponding existential quanti�er.
Moreover, G and F are also universal and existential
quanti�ers, ranging over the states along a particular path.

I ¬ AF φ ≡ EG ¬φ

I ¬ EF φ ≡ AG ¬φ

I ¬ AX φ ≡ EX ¬φ.

I We also have the equivalences AF φ ≡ A[>U φ] EF φ ≡ E[
>U φ] which are similar to the corresponding equivalences in
LTL.

I Adequate sets of CTL connectives: not all the connectives are
necessary

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

CTL* and the expressive powers of LTL and CTL

I CTL allows explicit quanti�cation over paths, and in this
respect it is more expressive than LTL, as we have seen.

I However, it does not allow one to select a range of paths by
describing them with a formula, as LTL does. In that respect,
LTL is more expressive. For example, in LTL we can say `all
paths which have a p along them also have a q along them,'
by writing F p → F q . It is not possible to write this in CTL
because of the constraint that every F has an associated A or
E.

I CTL* is a logic which combines the expressive powers of LTL
and CTL, by dropping the CTL constraint that every temporal
operator (X, U, F, G) has to be associated with a unique path
quanti�er (A, E).

I Past operators in LTL can be added.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Model checking algorithm

I We want to solve this problem M, s
???

|= φ

I model checking

I by a labelling algorithm:

I INPUT: a CTL model M = (S, →, L) and a CTL formula φ .
I OUTPUT: the set of states of M which satisfy φ.

1. First, change φ in terms of the connectives AF, EU, EX, ∧ , ¬
and ⊥ using the equivalences given earlier.

2. Next, label the states of M in which φ holds

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Labeling algorithm

Case analysis over ψ. If ψ is

I ⊥: then no states are labelled with ⊥
I p: then label every s such that p ∈ L(s)

I ψ1 ∧ ψ2:
I do labelling with ψ1 and with ψ2
I label s with ψ1 ∧ ψ2 if s is already labelled both with ψ1 and

with ψ2

I ¬ψ :

I do labelling with ψ
I label s with ¬ψ1 if s is not labelled with ψ.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Labeling algorithm - AF

I AF ψ :

I do labeling with ψ
I If any state s is labelled with ψ , label it with AF ψ.
I Repeat: label any state with AF ψ if all successor states are

labelled with AF ψ , until there is no change. See picture

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Labeling algorithm - E U

I E[ψ1 U ψ2]

I do labeling for ψ1 and ψ2
I If any state s is labelled with ψ2, label it with E[ψ1 U ψ2]
I Repeat: label any state with E[ψ1 U ψ2] if it is labelled with
ψ1 and at least one of its successors is labelled with E[ψ1 U
ψ2], until there is no change.

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Labeling algorithm - EX

I EX ψ :

I do labeling for ψ
I label any state with EXψ if one of its successors is labelled

with ψ

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Complessità

I The complexity of this algorithm is O(f · V · (V + E)), where f
is the number of connectives in the formula, V is the number
of states and E is the number of transitions; the algorithm is
linear in the size of the formula and quadratic in the size of the
model.

I Some improvements

I Handling EG directly

I LTL is treated di�erently (skip)

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

Esempio

N1,N2

[C1 ∧ C2]

T1,N2 N1,T2

C1,N2 T1,T2 T1,T2 N1,C2

C1,T2 T1,C2

Angelo Gargantini model checking

Motivation
Linear-time temporal logic

Model checking: Systems, tools, properties
Branching-time temporal logic

Model-checking algorithms

State Explosion problem

The `state explosion' problem Although the labelling algorithm
(with the clever way of handling EG) is linear in the size of the
model, unfortunately the size of the model is itself more often than
not exponential in the number of variables and the number of
components of the system which execute in parallel. This means
that, for example, adding a boolean variable to your program will
double the complexity of verifying a property of it. The tendency of
state spaces to become very large is known as the state explosion
problem. A lot of research has gone into �nding ways of
overcoming it, including the use of:

I e�cient data structure BDDs

I

Angelo Gargantini model checking

	Motivation
	Linear-time temporal logic
	Model checking: Systems, tools, properties
	NuSMV model checker

	Branching-time temporal logic
	Model-checking algorithms

