
2. Background on JML

The Java Modeling Language (JML) [Leavens et al., 2006a, 2008] is a language for
writing formal specifications about Java programs. Its authors classify it as a be-
havioural interface specification language [Hatcliff et al., 2009], i.e., a language for
specifying the functional behaviour of the interfaces of program modules (such as,
in an object-oriented setting, methods and classes). Using a metaphor proposed
by Meyer [1992], one can also call it a design by contract language: its specifica-
tions can naturally be understood as “legal contracts” between the clients and the
implementers of each module, where the responsibility for overall correctness is
split between the contracting parties. Some other examples for this general type
of specification language are Larch [Guttag et al., 1993], Eiffel [Meyer, 2000],
SPARK [Barnes, 2003], Spec# [Barnett et al., 2005] and OCL [OCL 2006]. In
the area of design-by-contract style specification for Java, JML can today be
considered the de facto standard, and it is supported by a large number of tools
(refer to Burdy et al. [2005] for a slightly outdated overview of JML tools).

The KeY tool accepts JML as one of its input formats, and translates it into its
verification logic JavaDL. Alternatively, specifications can be written in JavaDL
directly, but using JML usually means better readability and less verbosity, and
requires less special knowledge. The present chapter serves as an introduction
to the parts of JML relevant for this thesis, and, by this example, to the basics
of design-by-contract style specification for object-oriented software in general.
Particular emphasis is placed on the difficult issue of data abstraction in specifica-
tions. i.e., the question how classes and interfaces can be specified in an abstract
way, without referring to the concrete data structures used in any particular im-
plementation of the specified functionality. These issues motivate the extensions
to JML proposed in Chapter 3, and the changes in the definition of JavaDL in
Chapter 5, compared to the traditional definition of this logic as given by Beckert
[2001]; Beckert et al. [2007]. Just as the definition of JML [Leavens et al., 2008]
is written in natural language rather than in some formal notation, both the
present chapter and Chapter 3 have a less formal nature than later chapters of
this thesis. Formalisations of parts of JML are explored by Leavens et al. [2006b]
and by Bruns [2009].

Outline We start with a look at JML’s expression sub-language in Section 2.1.
Section 2.2 then introduces what is arguably JML’s most elementary specification

13

2. Background on JML

feature, namely basicmethod contracts consisting of pre- and postconditions, mod-
ifies clauses, and sometimes diverges clauses. Besides method contracts, a second
main feature of design by contract specification for object-oriented software in
general and of JML in particular is that of object invariants, which are the topic of
Section 2.3. In Section 2.4 we take a look at the interplay between subtyping and
inheritance on one hand and JML specifications on the other hand. Section 2.5
deals with the question of data abstraction in specifications, and presents JML’s
answers to this question, namely ghost fields, model fields, data groups, and pure
methods with depends clauses. We conclude in Section 2.6.

2.1. Expressions

JML is a specification language dedicated to specifying Java programs. As such,
it aims to provide a flat learning curve for experienced Java programmers new to
formal specification, and strives to be as close to the Java language as possible. Its
expressions are mostly just Java expressions, which for pre- and postconditions
and invariants are of type boolean. The only restriction compared to Java
expressions is that JML expressions must not have side-effects on the program
state, in order to give them a logical, rather than imperative, character. This
means that Java expressions like i++ or calls to state-changing methods are not
legal JML expressions.

On the other hand, JML features a number of extensions over the expressions
allowed in Java. Two important such extensions are the universal quantifier
\forall and the existential quantifier \exists. An expression (\forall T x;

b1; b2), where T is a type, where x is a variable identifier bound in b1 and b2, and
where b1 and b2 are boolean expressions, means that for all instances x of type
T for which the expression b1 holds, expression b2 must also hold. Analogously,
an expression (\exists T x; b1; b2) means that there is an instance of type
T such that both b1 and b2 hold. One can also write (\forall T x; b) and
(\exists T x; b) to abbreviate the expressions (\forall T x; true; b) and
(\exists T x; true; b), respectively.

Some other extensions are only available in method postconditions. Here,
the method’s return value, if applicable, can be referred to using the keyword
\result. The value that an expression e had in the pre-state before method
execution (but after assigning values to its formal parameters) can be denoted
as \old(e). For an expression e of a reference type, \fresh(e) is a boolean

expression which is true if and only if the object to which e evaluates was not
yet created in the pre-state.

JML also features a meta-type \TYPE whose instances are the types themselves,
and a few operators for this type. Firstly, for every type T, \type(T) is an ex-

14

2.1. Expressions

pression of type \TYPE evaluating to T. Also, for every expression e, \typeof(e)
is an expression of type \TYPE which evaluates to the dynamic type of the value of
e. Thus, for example, “\typeof(3+4) == \type(Object)” is a JML expression
that always evaluates to false.

A problem with using Java expressions directly for specification is that in
Java, expressions do not have a defined value in every state; sometimes, trying to
evaluate an expression instead results in an exception being thrown. For example,
evaluating the expression x/y in a state where the sub-expression y has the value
0 will trigger an exception of type java.lang.ArithmeticException. Because
of this, Java’s boolean expressions used in JML to formulate, for example, pre-
and postconditions and invariants, are essentially three-valued formulas, which in
every state evaluate to either “true”, “false”, or “undefined” (if an exception is
thrown).

In specifications, we may nevertheless want to stay within the world of classical
two-valued logic, which is generally easier to handle in verification tools. A
common approach to achieve this, which used to be employed by JML, is known as
underspecification [Gries and Schneider, 1995]. Here, we use fixed, but unknown
(“underspecified”) regular values instead of a dedicated “undefined” value. This
works largely well, because “good” specifications avoid cases of undefinedness
anyway. For example, specifications may use Java’s short-cut evaluation of the
operators || and && to avoid throwing exceptions: in “y == 0 || x/y == 3”,
the value (or lack thereof) of x/0 is irrelevant, because the subexpression x/y is
never evaluated in a state where y has the value 0.

However, if the person writing the specification makes a mistake, specifications
can be insufficiently guarded against undefinedness, and in these cases simple
underspecification can lead to unexpected results. For example, the expression
“x/y == 3 || y == 0” throws an exception in Java if y has the value 0, but
evaluates to true with underspecification. Another example is “x/0 == x/0”,
which always throws an exception in Java, but which is always true if underspec-
ification is used: the value of x/0 may be unknown, but it is the same on both
sides of the equality operator.

After these discrepancies between the underspecification semantics of JML and
the semantics of Java had been criticised by Chalin [2007a], JML switched to
an approach called strong validity [Chalin, 2007b]. Here, a top-level pre- or
postcondition or invariant evaluates to true if it logically evaluates to true and if
it would not throw an exception in Java; it evaluates to false otherwise. In other
words, Java’s three-valued semantics is used, but at the top level of a specification
expression, the value “undefined” is converted into the value “false”. For example,
a top-level expression “x/0 == x/0“ and its negation “!(x/0 == x/0)” both
always evaluate to false: in both cases, the subexpression x/0 is “undefined”,
making the overall expression “undefined” also, which is then converted into the

15

2. Background on JML

value “false”. Short-circuit evaluation is respected, so “true || x/0 == x/0”
is always true, while “x/0 == x/0 || true” is always false. Note that even
though—in contrast to the underspecification approach—a third truth value is
involved, this does not imply that a verification system supporting JML must
necessarily use many-valued logic; see for example the work by Darvas et al.
[2008].

2.2. Method Contracts

JML specifications can be written directly into Java source code files, where they
appear as comments that start with the character “@” to distinguish them from
other, non-JML comments. A first example for a Java class annotated with JML
is shown in Figure 2.1.

Those comments that precede method declarations in Figure 2.1 specify method
contracts (sometimes called just contracts, or specification cases in JML) for
the respective method. As a first approximation, we can see method contracts
as lists consisting of an arbitrary number of preconditions and postconditions
for the method. A method can be annotated with multiple contracts, sepa-
rated by the also keyword. For example, method get in line 27 has two con-
tracts, one starting with “public normal_behaviour” and one starting with
“public exceptional_behaviour”.

As demonstrated by these occurrences of the keyword public, Java’s visibil-
ity system extends also to JML specifications. Specification elements, such as
contracts, may refer only to fields and methods of higher (more public) visibil-
ity than the specification element itself. However, a field or method may be
marked as spec_protected or spec_public (as in lines 2 and 4 of Figure 2.1)
to increase its visibility in JML specifications, without changing it on the level
of Java. Beyond this syntactical requirement, visibilities do not carry semanti-
cal meaning. They may however influence the behaviour of a modular verifier
(Chapter 6).

The elements of method contracts that we consider in this section are pre- and
postconditions (Subsection 2.2.1), modifies clauses (Subsection 2.2.2), and di-
verges clauses (Subsection 2.2.3). Another element occurring as a part of method
contracts, the depends clause, is introduced later in Section 2.5.

2.2.1. Pre- and Postconditions

Method preconditions are declared with the keyword requires, followed by a
boolean JML expression. Postconditions are declared with the keyword ensures.
Their meaning is that if all the preconditions of a contract hold before method ex-
ecution and if the method terminates normally—i.e., it terminates not by throw-

16

2.2. Method Contracts

Java + JML

1 public class ArrayList {

2 private /*@spec_public nullable@*/ Object[] array

3 = new Object[10];

4 private /*@spec_public@*/ int size = 0;

5
6 /*@ private invariant array != null;

7 @ private invariant 0 <= size && size <= array.length;

8 @ private invariant (\forall int i; 0 <= i && i < size;

9 @ array[i] != null);

10 @ private invariant \typeof(array) == \type(Object[]);

11 @*/

12
13 /*@ public normal_behaviour

14 @ ensures \result == size;

15 @*/

16 public /*@pure@*/ int size() {

17 return size;

18 }

19
20 /*@ public normal_behaviour

21 @ requires 0 <= index && index < size;

22 @ ensures \result == array[index];

23 @ also public exceptional_behaviour

24 @ requires index < 0 || size <= index;

25 @ signals_only IndexOutOfBoundsException;

26 @*/

27 public /*@pure@*/ Object get(int index) {

28 if(index < 0 || size <= index) {

29 throw new IndexOutOfBoundsException();

30 } else {

31 return array[index];

32 }

33 }

34
35 /*@ public normal_behaviour

36 @ assignable array, array[*];

37 @ ensures size == \old(size) + 1 && array[size - 1] == o;

38 @ ensures (\forall int i; 0 <= i && i < size - 1;

39 @ array[i] == \old(array[i]));

40 @*/

41 public void add(Object o) {...}

42 }

Java + JML

Figure 2.1.: Java class ArrayList with JML specifications

17

2. Background on JML

ing an exception—then all the postconditions declared with ensures must hold
afterwards. For example, lines 21 and 22 of Figure 2.1 state that if the method
get is called with an argument index that lies between 0 and size, and if the
method terminates normally, then its return value is the object contained in the
array array at position index.

Postconditions for the case of exceptional termination (i.e., termination by
throwing an exception) are specified using clauses of the form “signals(E e) b”,
where E is some subtype of class java.lang.Exception, where e is a variable
identifier bound in b, and where b is a boolean JML expression. The meaning
of such a signals clause is the following: if the method terminates by throwing
an exception e of type E (and if the preconditions held on method entry), then b

must evaluate to true in the post-state.
The keyword normal_behaviour at the beginning of a contract is essen-

tially “syntactic sugar” for a postcondition “signals(Exception e) false”: it
means that the method must not throw any exception if the contract’s precondi-
tions hold. Conversely, the keyword exceptional_behaviour is syntactic sugar
for “ensures false”, meaning that the method must not terminate normally.
Another abbreviation are clauses of the form “signals_only E1, . . . ,En”, which
can be spelled out as

signals(Exception e) e instanceof E1 || ... || e instanceof En;

For example, the second contract of method get in Figure 2.1 states that if
the method is called in a state where the argument index is out of bounds,
then the method may terminate only by throwing an exception of the type
java.lang.IndexOutOfBoundsException (or of a subtype). Like requires and
ensures clauses, multiple signals clauses are connected by conjunction, so if a
method terminates by throwing an exception of type E, then all signals clauses
about E or about any of its supertypes apply.

Note that JML specifications can only talk about the method’s post-state in
case of normal termination, or in case of termination by throwing an object whose
type is a subtype of java.lang.Exception. The possibility that an object could
be thrown that is of some other subtype of java.lang.Throwable, in particular
a subtype of java.lang.Error, is silently ignored. The rationale behind this is
that such events typically represent “external” problems, which are not directly
caused by the program itself. Two examples are java.lang.OutOfMemoryError

and java.lang.UnknownError. As we consider these errors to be out of the
program’s control, we do not demand that the program guarantees that they do
not occur, or that any conditions hold afterwards if they do occur.

Yet another abbreviation supported by JML is the keyword non_null. Affixing
this e.g. to a method parameter x or to a method return type means to add to all
contracts of the method an implicit precondition “requires x != null” or an

18

2.2. Method Contracts

implicit postcondition “\result != null”, respectively. Moreover, as proposed
by Chalin and Rioux [2006], non_null has become the default in JML: now the
non_null modifier is always implicitly present, unless something is explicitly
labelled as nullable. Thus, both contracts of method get in Figure 2.1 have
an invisible postcondition “\result != null”, and the contract of method add

has an invisible precondition “o != null”.

2.2.2. Modifies Clauses

If a method contract is to be useful for modular verification, where method calls
are dealt with only by looking at the called method’s contract instead of its
implementation, it must constrain what part of the state may be changed by the
method in addition to just how it is changed. This act of constraining is often
referred to as framing , the part of the state that may be changed as the frame of
the method, and the whole issue of framing as the frame problem [Borgida et al.,
1995].

In principle, framing can be done with a postcondition that just lists all the
unchanged memory locations, and uses something like the \old operator to state
that their current values are the same as their values in the pre-state. However,
doing so is at best cumbersome due to the typically high number of unchanged
locations, and at worst impossible if, in a modular setting, the program context is
not entirely available. One solution to this problem is to allow universal quantifi-
cation over memory locations. Another common solution, which is employed in
JML, is to extend method contracts with modifies clauses [Guttag et al., 1993].
A modifies clause is a list of the (typically few) locations that may be modified,
implying that all the others may not be modified.

In JML, modifies clauses are also called assignable clauses . This difference in
nomenclature hints at a subtle semantical difference: when defining the precise
meaning of modifies clauses, there is a choice on whether temporary modifications
to locations not in the modifies clause are to be allowed or not. If, as above,
modifies clauses are viewed as being essentially postconditions that frame the
overall effect of the method, then any temporary modification that is undone
before method termination can have no effect on the validity of the modifies
clause. However, as the name assignable clause suggests, JML imposes a stricter
policy: a method satisfies its assignable clause only if every single assignment
executed during its execution is covered by the assignable clause. In a concurrent
setting, this interpretation is advantageous, because then, modifies clauses also
constrain the intermediate states of execution, which allows them to be used
for reasoning about non-interference between threads. On the other hand, for
sequential programs the classical, more semantic, interpretation is completely
sufficient, and in this thesis we stick with it.

19

2. Background on JML

Modifies clauses are declared in JML with the keyword assignable. The
expression after this keyword is not a normal expression, but a list of so-called
“store ref expressions” denoting sets of memory locations. The overall modifies
clause evaluates to the union of these individual sets. The store ref expression o.f,
where f is some field defined for the type of expression o, denotes the singleton
location set consisting of the field f of the object which is the value of o (and
not, as in a normal expression, the value of this location). Similarly, the store ref
expression a[i] denotes the singleton set containing the ith component of array
a. A range of array components, or all components of an array, can be denoted
as a[i..j] or a[*], respectively. By o.* we can refer to the set of all fields
of a single object o. There are also the keywords \nothing and \everything,
standing for the border cases of an empty set of locations and the set of all
locations in the program, respectively.

We see an example for a modifies clause in line 36 of Figure 2.1. If the con-
tract’s precondition holds when calling method add (i.e., if the method’s argu-
ment is different from null), then the method may modify only the field array

of the receiver object this, and the array components of the array pointed to by
this.array. Note that modifies clauses are always evaluated in the pre-state, so
the modifies clause refers to the array which is pointed to by this.array at the
beginning of the execution, which may be a different one than at the end of the
method. Another important thing to note is that modifies clauses only constrain
changes to locations on the heap (i.e., object fields and array components), but
never changes to local variables: these variables are internal to a method, and any
changes to them can be neither relevant nor visible to any of the method’s callers
anyway. Modifies clauses also never constrain the allocation of new objects, or
assignments to locations belonging to newly allocated objects. Thus, method add

is free to allocate a new array object and assign to its components (e.g., if the old
array is filled up completely), even though these locations are not (and cannot
be) mentioned in the modifies clause.

Specifying that a method has no side effects is an important border case of
modifies clauses. Such methods are called pure, and JML has a special key-
word pure which can be attached to method declarations in order to desig-
nate a method as pure. Examples for pure methods are size and get in Fig-
ure 2.1. The meaning of the pure modifier is essentially the same as adding
an implicit assignable \nothing to all contracts of the method (and using
diverges false for all contracts, see Subsection 2.2.3 below). It also deter-
mines whether a method may be used in specifications or not.

As JML’s modifies clauses implicitly allow the allocation and initialisation of
new objects, its pure methods are free to create, modify and even return a newly
allocated object. This definition of purity is known as weak purity , as opposed
to strong purity , where pure methods must not have an effect on the heap at

20

2.3. Object Invariants

all. The more liberal approach of weak purity is useful in practice: for exam-
ple, imagine a method that is to return a pair of integers, which it can do by
creating, initialising and returning an object of a class Pair, while being oth-
erwise free from side effects. However, weak purity complicates the semantics
of expressions. It is for example debatable whether the specification expression
newObject() == newObject(), where the weakly pure method newObject cre-
ates and returns a fresh object, should be considered as always true (because the
entire expression is evaluated in the same state and so both method calls return
the same object), or as always false (because, as in Java, the post-state of the first
method call is the pre-state of the second, and so the second call will allocate a
different object), or neither. It can also be argued that such an expression should
not be permitted in specifications at all [Darvas and Leino, 2007; Darvas, 2009].

2.2.3. Diverges Clauses

JML allows one to specify when a method must terminate (either normally or
by throwing an exception) using so-called diverges clauses. A diverges clause
is declared in a contract using the keyword diverges, followed by a boolean

expression. The meaning of a diverges clause diverges b is that the method
may refrain from terminating (may “diverge”) only if b held in the pre-state.
In contrast to other clauses in contracts, the default used in case of a missing
diverges clause is not the most liberal possibility, but rather the most strict
one, namely “diverges false”, which says that the method must terminate
under all circumstances (provided that the contract’s preconditions held in the
pre-state). Leavens et al. [2008] do not define how multiple diverges clauses
are to be understood; however, the natural way seems to be combining them
disjunctively, i.e., multiple diverges clauses allow the method to diverge if at
least one of the conditions holds in the pre-state.

2.3. Object Invariants

An object invariant (sometimes called class invariant or just invariant) is a con-
sistency property on the data of the objects of some class that we want to hold
“always” during program execution. Where method contracts constrain the be-
haviour of individual methods, object invariants are intended to constrain the be-
haviour of a class as a whole. The concept of object invariants goes back to Hoare
[1972]. In JML, object invariants are declared with the keyword invariant. Ex-
amples are the invariants of class ArrayList in lines 6–10 of Figure 2.1: for the
objects of this class, we want the array this.array to always be different from
null; we want the value of the location this.size to always be between 0 and
the array’s length; we want the array components between these bounds to be

21

2. Background on JML

different from null; and finally, we want the dynamic type of the array to al-
ways be exactly Object[], not a subtype: otherwise, method add might trigger a
java.lang.ArrayStoreException, because the type of its argument might not
be compatible with the type of the array.

Like method parameters and return values, field declarations of a reference type
can be annotated with non_null and nullable to specify whether null values
are allowed or not. For a non_null field f, an object invariant “this.f != null”
is implicitly added to the specification. And like before, non_null is the default
that is used when neither annotation is given explicitly. Thus, the invariant in
line 6 of Figure 2.1 would not be necessary if we had not used nullable for the
declaration in line 2. The reason for the use of nullable is that on variables
of a reference array type, the effect of non_null goes beyond demanding that
the pointer to the array is not null: it also demands that all components of the
array be different from null. But since this is too strict for the example, where
some of the array components should be allowed to be null, we use nullable

to suppress the default, and spell out the appropriate invariants explicitly.

Above we stated that, in a correct program, invariants hold “always”. As
the quotation marks suggest, this is not entirely the truth: as soon as invariants
mention more than one field, requiring them to hold absolutely always is too strict
for practical purposes. For example, imagine a class that declares a field x of type
int and a field negative of type boolean, where we want negative to be true
exactly when x is negative. We can specify this in a natural way with an invariant
“negative == (x<0)”. Since the two fields cannot be updated both at the same
time, this invariant must sometimes get violated when the value of x changes, at
least for the short moment before a subsequent assignment to negative.

Another complication with invariants is that—in contrast to method contracts,
which confine a single method (or, at most, a hierarchy of overriding methods,
Section 2.4)—they are effectively global properties: for an invariant to hold any-
thing near to “always” for some object o, it must be respected not only by all
methods called on o, or even only by all methods defined for the class of o.
Rather, it must be respected by all methods in the entire program. This may
be surprising at first, because object invariants (as introduced above) are usu-
ally intended as constraints on a single class or on its objects, not on the entire
program. One might hope that methods outside the class of o have no way of vi-
olating an invariant on o. But—unless special measures are taken—this is wrong.
For example, the invariant could mention public fields, which can be assigned to
anywhere in the program; or, more subtly, it could depend on other objects that
can be manipulated directly, circumventing o. In Figure 2.1, if a method outside
ArrayList were to obtain a reference to the array object referenced by the field
array of some ArrayList object, it could modify this array directly, and thereby
break the invariant in line 8.

22

2.4. Subtyping and Inheritance

Because of these issues, the exact semantics of object invariants is much less
straightforward than it appears on first sight, and getting it “right” is a target
of active research (see for example the work of Poetzsch-Heffter [1997]; Barnett
et al. [2004]; Leino and Müller [2004]; Roth [2006]; Müller et al. [2006]). JML’s
current answer, as defined by Leavens et al. [2008], is its visible state semantics.
Essentially (we omit static methods, static invariants, and finalisers for the
sake of simplicity), this requires an invariant to hold for an object o in all states
that are visible for o. A state is called visible for an object o if it occurs either (i)
at the end of a constructor call on o, or (ii) at the beginning or at the end of a
method call on o, or (iii) whenever neither such call is in progress. In other words,
the invariants of o must hold always, except in situations where a method or
constructor call on o is currently in progress, and where also we are neither in the
post-state of a constructor call on o nor in pre- or post-state of a method call on o.

Returning to the above example, the visible state semantics solves the problem
that the fields which the invariant “negative == (x < 0)” depends on cannot be
updated simultaneously, because it permits a method to temporarily violate the
invariant for its this object, as long as no other methods are called on this before
the invariant is re-established. In cases where such a method call is necessary, one
can annotate the called method with the keyword helper. It is then exempt from
the visible state semantics, i.e., the receiver object’s invariants do not have to hold
in its pre- or post-state. The disadvantage of doing so is that helper methods
may not rely on the invariant for satisfying their contracts. In contrast, non-
helper methods are only required to satisfy their contracts for pre-states where
the receiver’s invariants hold. For example, method get in Figure 2.1 relies on
the value of array being different from null as guaranteed by the invariant, and
would not satisfy its normal_behaviour contract if it were a helper method.

2.4. Subtyping and Inheritance

A core element of object-orientation is the dynamic dispatch of method calls,
where the method implementation to be executed is determined at run-time based
on the dynamic type of the receiver object. Ideally, the caller does not have to
know what this dynamic type is, because the objects of any subtypes of the
receiver’s static type can be used as if they were objects of the static type itself.
This principle, which demands that subtypes conform to the behaviour of their
supertypes when accessed using methods declared in a supertype, is known as
behavioural subtyping [Liskov and Wing, 1994].

In formal specification, behavioural subtyping typically means that a method
which overrides another method has a precondition that is implied by the over-
ridden method’s precondition, and, conversely, a postcondition that implies the

23

2. Background on JML

overridden method’s postcondition. If all subtypes are behavioural subtypes, then
this enables modular reasoning about a dynamically bound method call using only
the contract found in the static type of the receiver: if the precondition of this
contract holds, then this implies that the precondition of any overriding method
must also hold; and the postcondition found in the static type is guaranteed to
also be established by any overriding method. For this reason, JML globally en-
forces behavioural subtyping, even though this limits the programmers’ freedom
to (mis-)use the subtyping mechanism of Java.

Behavioural subtyping is enforced in JML by inheriting method contracts to all
subclasses: a method must always satisfy the contracts declared for any methods
that it overrides. Subclasses are free to introduce additional contracts. We can
see multiple contracts for the same method as syntactic sugar for a single, larger
contract [Raghavan and Leavens, 2000]. With this view, adding contracts for an
overriding method corresponds to weakening the precondition and strengthening
the postcondition of the overall method contract, as above.

Object invariants, too, are inherited, and additional invariants may be intro-
duced in subclasses. Note that the interplay between invariants and inheritance
is not unproblematic for modular verification. For example, according to the vis-
ible state semantics, when calling a method on an object, the invariants of this
object have to hold. In this situation, the invariant acts as a precondition for
the method call. Adding invariants in a subtype corresponds to strengthening
this precondition, which violates the principle that a behavioural subtype may
only weaken method preconditions. Approaches for the modular verification of
programs with invariants have to face these issues, in addition to those hinted at
in Section 2.3 above. We return to this subject in Chapter 3.

2.5. Data Abstraction

Abstraction, i.e, the process of simplifying away unnecessary details while keeping
something’s essence, is a fundamental concept in computer science. In software
development, abstraction is crucial because software systems are usually too com-
plex to be conceived or understood by a human mind in their entirety at any point
in time. Abstraction allows us to focus on some aspects of a system, while (tem-
porarily) blocking out others. For abstraction from program structures, we can
distinguish between control abstraction, which abstracts from control flow, and
data abstraction, which abstracts from data structures.

A module interface is an example of abstraction: it provides a simplified outside
view on the module’s behaviour, freeing its clients from having to consider its
internals and protecting them from being affected by changes to the internals,
as long as the interface itself is not changed. This is known as the principle of

24

2.5. Data Abstraction

information hiding [Parnas, 1972]. Design by contract specifications can be a part
of such interfaces; in particular, a method contract can be seen as a description of
the externally visible behaviour of a method, abstracting from how this behaviour
is achieved. However, if such contracts are formulated directly over the internal
data structures used in the method’s implementation, then this abstraction is
brittle, and the principle of information hiding is violated. For example, the
contracts in Figure 2.1 are unsatisfactory in this regard, because they expose
the internal data structures of ArrayList with the help of the spec_public

modifier. If these internals are changed, then the specification is also affected.
What is missing is some form of data abstraction in the specifications.

Where abstraction is the process of going from a detailed to a simple model, the
notion of refinement refers to the other way round, i.e., going from an abstraction
to a more detailed model. This process is common during software development,
as the program being developed evolves from a vague idea to a running imple-
mentation. Various formalisations for such a refinement process exist, where the
program is first specified formally on an abstract level using some form of “ab-
stract variables”; where these are then refined into a representation on “concrete”
variables in one or multiple refinement steps; and where the correctness of these
steps is verified formally. Such techniques are for example described by Hoare
[1972]; Morgan [1990]; Abrial [1996]; Hallerstede [2009].

Even without a formal concept of refinement, the phenomenon of refinement
still occurs frequently in object-oriented software development. A typical case is
adding new subclasses for existing classes or interfaces. For example, instead of
providing class ArrayList in Figure 2.1 directly, we might have started with a
Java interface List, which would then be implemented by ArrayList. We might
also want to add other classes that use different implementation techniques than
an array, such as a class LinkedList. In order to specify the abstract List in-
terface independently of such future refinements, we again need data abstraction
in specifications. And unlike the situation above, where we only aimed at spec-
ifying ArrayList itself in an abstract way, here using spec_public is not even
an (albeit unsatisfactory) option: in a Java interface such as List, there are not
yet any internal data structures which could be exposed to the outside world.

For data abstraction, JML features ghost fields (Subsection 2.5.1), as well as
model fields and data groups (Subsection 2.5.2). Also, pure methods can be used
for data abstraction in specifications, especially when combined with depends
clauses (Subsection 2.5.3).

2.5.1. Ghost Fields

Ghost fields and ghost variables are fields and local variables that are declared,
read and written solely in specifications. They are not visible to a regular com-

25

2. Background on JML

piler, and do not exist in the compiled program. Still, their semantics is exactly
the same as that of ordinary fields and variables. In JML, ghost fields and vari-
ables are declared with the keyword ghost, and they are assigned to using the
keyword set. An example is given in Figure 2.2, where the class ArrayList

of Figure 2.1 is split up into a Java interface List and into a separate class
ArrayList which implements the interface using an array. The behaviour of the
interface is specified abstractly using a ghost field contents. The declaration of
contents in line 2 uses the JML keyword instance; without it, a ghost field
declaration in an interface creates a static field. This mirrors the behaviour of
Java itself, where interfaces are not allowed to contain non-static fields at all,
and where thus all field declarations in interfaces are assumed static by default.

Abstract specifications can often be formulated naturally using basic mathe-
matical concepts such as sets or relations. For example, the desired behaviour of
the List interface is similar to the behaviour of a finite mathematical sequence.
Specification languages usually provide some form of mathematical vocabulary to
facilitate writing such specifications. JML is no exception, but—in pursuit of its
goal to stay as close to Java as possible—it does not introduce the mathematical
notions into the language directly as additional primitive types. Rather, it comes
with a library of so-called model classes, which try to sneak the mathematical
concepts in through the back door by modelling them as ordinary Java classes.
One such class, JMLObjectSequence, is used in Figure 2.2 as the type of the ghost
field contents. The intuition behind this is to think of contents as a sequence
of Java objects, and verification tools may attempt to map model classes like
JMLObjectSequence directly to the mathematical concepts that they represent
[Leavens et al., 2005; Darvas and Müller, 2007a]. Still, the elements of model
classes are first and foremost Java objects. This implies, for example, that the
equals method should be used for comparing two such elements instead of the
regular equality operator “==”, as in line 31. Otherwise, the references to the
objects are compared, which is rarely intended.

The specification of the List interface in Figure 2.2 has the same structure as
the public specification of ArrayList in Figure 2.1. Instead of size and array,
it uses calls to pure methods on the contents object, where method int_size

returns the length of the sequence, and where method get retrieves an element
out of the sequence.

The implementing class ArrayList in Figure 2.2 works exactly as in Figure 2.1.
However, for satisfying its inherited contracts, which talk about the ghost field
contents instead of the concrete data, all changes to the list must be applied to
the sequence stored in the ghost field, too. The constructor initialises the ghost
field to an empty sequence, and the add method appends its argument to the
end of the sequence. Note that the expressions occurring in set statements are
no exception to the rule that JML expressions must not have side effects; set

26

2.5. Data Abstraction

Java + JML

1 public interface List {

2 //@ public ghost instance JMLObjectSequence contents;

3
4 /*@ public normal_behaviour

5 @ ensures \result == contents.int_size();

6 @*/

7 public /*@pure@*/ int size();

8
9 /*@ public normal_behaviour

10 @ requires 0 <= index && index < contents.int_size();

11 @ ensures \result == contents.get(index);

12 @ also ...

13 @*/

14 public /*@pure@*/ Object get(int index);

15
16 /*@ public normal_behaviour

17 @ assignable \everything; //imprecise

18 @ ensures contents.int_size() == \old(contents.int_size())+1;

19 @ ensures ...

20 @*/

21 public void add(Object o);

22 }

23
24 public class ArrayList implements List {

25 private /*@nullable@*/ Object[] array = new Object[10];

26 private int size = 0;

27
28 public ArrayList() {/*@set contents = new JMLObjectSequence();@*/}

29
30 /*@ /*first four invariants as in Figure 2.1*/

31 @ private invariant contents.equals(

32 @ JMLObjectSequence.convertFrom(array, size));

33 @*/

34
35 public int size() {...}

36 public Object get(int index) {...}

37 public void add(Object o) {

38 ...

39 //@ set contents = contents.insertBack(o);

40 }

41 }

Java + JML

Figure 2.2.: Java interface List specified using ghost fields, and class
ArrayList implementing the interface

27

2. Background on JML

statements only modify the ghost field on the left hand side of the assignment.
This fits with the use of class JMLObjectSequence, because the objects of this
class are immutable in the sense that all their methods are pure. A method like
insertBack, which is used in line 39 of Figure 2.2, returns a new object that
incorporates the changes, instead of changing the original object itself.

The connection which is maintained between the abstract and the concrete
representation of the data is recorded as an additional object invariant, which
we can see in line 31 of Figure 2.2. It uses the convertFrom method of the
class JMLObjectSequence as a convenient way to construct a sequence out of the
first size elements of the array. The correctness of the methods size and get

depends on this invariant, because the inherited contracts are formulated using
the ghost field, while the methods read and return the actual data just as in
Figure 2.1. The invariant bridges this gap. Invariants in such a role are known
as gluing invariants in other contexts [Hallerstede, 2009].

An open problem in Figure 2.2 is the modifies clause of method add in line 17.
Obviously, any implementation of add has to modify contents. However, it
needs the license to modify more than just contents, namely, the concrete data
structures used to implement the list. In order to specify this, we would need to
enumerate the concrete data structures of all subclasses of List in the modifies
clause of add within the interface. But this is not an option, because it would
contradict the idea behind using an interface and an abstract specification in the
first place. The specification in Figure 2.2 circumvents the problem by resorting
to a trivial modifies clause of \everything. This makes the contract satisfiable
by overriding methods in subclasses, but it also makes the contract effectively
useless for modular reasoning about calls to add, because such a call must then
be assumed to have an unknown effect on the entire program state. This shows
that in the presence of data abstraction, framing becomes a difficult problem,
which ghost fields alone cannot solve. One possible solution is to use data groups.
These are connected to the concept of model fields, and the two notions are
discussed together in Subsection 2.5.2 below.

2.5.2. Model Fields and Data Groups

Like ghost fields, model fields [Leino and Nelson, 2002; Cheon et al., 2005] are
declared just as Java fields, but inside specifications. Reading a model field is
done using the same notation as for reading a regular Java field or a ghost field,
too. But at this point the similarity ends; despite being called “fields”, model
fields are in many ways more closely related to pure methods than to Java fields.
Where a Java field or a ghost field represents an independent memory location
(one per object), which has its own state that can be manipulated by assigning
to the field, both pure methods and model fields depend on the state of memory

28

2.5. Data Abstraction

locations, instead of being locations themselves. Just like the value returned by
a pure method is determined by a method body, the value of a model field is
determined by a represents clause (also known as an abstraction function). In
JML, model fields are declared with the keyword model, and represents clauses
with the keyword represents. A variation of the List and ArrayList types
from Figure 2.2, where the specification uses a model field and a represents clause
instead of a ghost field and set assignments, is shown in Figure 2.3.

The List interface in Figure 2.3 is unchanged over Figure 2.2, except that
the keyword ghost is replaced by model, and except that the modifies clause of
add now uses contents instead of \everything. Ignoring the modifies clause
for the moment, we notice the represents clause for contents in line 26. The
symbol = separates the model field to be defined and its defining expression.
Here, the defining expression again uses the convertFrom method to construct a
JMLObjectSequence from the array. Where in Figure 2.2 this relation between
contents and the array was an object invariant, which was maintained by ex-
plicit set assignments (and which was sometimes broken in intermediate states,
in accordance with the visible state semantics), here contents by definition ad-
justs itself immediately and automatically whenever the right hand side of the
represents clause changes. This again mirrors the behaviour of (pure) methods,
whose return value also immediately changes whenever a location is modified on
which the return value of the method depends.

Represents clauses that use the = symbol are said to be in functional form.
There is also a relational form of represents clauses, which allows us to define
abstraction relations instead of only abstraction functions. The JML keyword
for relational represents clauses is \such_that. It is followed by a boolean

expression which describes the possible values of the model field. The functional
form can be reduced to the relational form. For example, the represents clause
in line 26 of Figure 2.3 can equivalently be written as

private represents contents

\such_that contents == JMLObjectSequence.convertFrom(array,size);

In Subsection 2.5.1, we observed that objects of model classes should usually
be compared with the equals method. Yet, here using “==” (either explicitly
as above, or hidden in the functional form of the represents clause) works as
intended. The represents clause—unlike the invariant in Figure 2.2—holds by
definition, and never needs to be actively established by the program. This gives
us the freedom to assume the stronger proposition that the objects are even iden-
tical, instead of just being equal with respect to equals. Note that the remark on
weak purity of pure methods in Subsection 2.2.2 directly extends to model fields,
too. In fact, contents is only weakly pure, because—as defined by the represents
clause—it allocates and returns a fresh object of type JMLObjectSequence.

29

2. Background on JML

Java + JML

1 public interface List {

2 //@ public model instance JMLObjectSequence contents;

3
4 //@ ...

5 public /*@pure@*/ int size();

6
7 //@ ...

8 public /*@pure@*/ Object get(int index);

9
10 /*@ public normal_behaviour

11 @ assignable contents;

12 @ ensures ...

13 @*/

14 public void add(Object o);

15 }

16
17 public class ArrayList implements List {

18 private /*@nullable@*/ Object[] array = new Object[10];

19 //@ in contents;

20 //@ maps array[*] \into contents;

21
22 private int size = 0; //@ in contents;

23
24 //@ /*four invariants as in Figure 2.1*/

25
26 /*@ private represents contents

27 @ = JMLObjectSequence.convertFrom(array, size);

28 @*/

29
30 public int size() {...}

31 public Object get(int index) {...}

32 public void add(Object o) {...}

33 }

Java + JML

Figure 2.3.: Java interface List specified using model fields and data groups,
and class ArrayList implementing the interface

Another intricacy that we observe “along the way”, without being overly con-
cerned with it here, is the question of what happens if the value of the model field
cannot be chosen in every state such that the represents clause is satisfied. An
extreme case is a represents clause “represents x \such_that false”, which
is obviously impossible to satisfy in any state at all. More subtly, a represents

30

2.5. Data Abstraction

clause “represents x \such_that y == 3”, where y is a Java field, is also
problematic, because a satisfying value for x can be found only in states where y
happens to contain the value 3. There is no “official” answer for how to under-
stand such represents clauses in the JML documentation [Leavens et al., 2008].
The simplest approach is to just consider represents clauses to be assumptions
that hold in all states by definition, to accept the fact that then an inconsistent
represents clause makes the entire specification trivially satisfied, and to consider
the person writing the represents clause responsible for avoiding such a situation.
Other, more involved solutions are explored by Breunesse and Poll [2003], Leino
and Müller [2006] and Leino [2008].

In line 11 of Figure 2.3, the model field contents is used in the modifies clause
of method add. Without further explanation, this would seem to be nonsensical.
After all, the model field is not a location that the program could assign to, and
thus this.contents should not be considered a legal store-ref expression. The
foundation for allowing the use of model fields in modifies clauses is the concept
of data groups [Leino, 1998]. A data group is a name referring to a set of memory
locations. In JML, model fields always have two faces: in addition to their regular
meaning, they are also data groups. In every state, a model field can be evaluated
both to a value, as we have seen before, and to a set of locations. When used in
a normal expression, a model field stands for its value, whereas at the top level
of a modifies clause, it stands for its set of locations. Thus, the modifies clause
in line 11 of Figure 2.3 refers to the locations in the data group interpretation of
contents, and it allows the add method to modify these locations.

Like the value of a model field is defined via a represents clause, its data group
interpretation is defined by declaring locations to be part of the data group
with the keyword in. As an example, the JML annotations in lines 19 and 22
of Figure 2.3 make the locations this.array and this.size part of the data
group of this.contents. The in annotation must be placed directly after the
declaration of the field to be added. This kind of inclusion, where a field of
an object becomes part of a data group of the same object, is known as static
inclusion. In addition, there are dynamic inclusions , where a field of an object
becomes part of the data group of some other object. These are declared using
the keywords maps and \into. For example, adding the location this.contents

in line 19 of Figure 2.3 is not enough; the components of the array pointed to by
this.contents must be included as well, which is achieved by the annotation in
line 20. Dynamic data group inclusions make data groups depend on the state: if
the array field is changed, then the locations denoted by contents also change,
because array[*] afterwards denotes a different set of locations than before.

In situations where only the data group aspect of a model field is desired,
the regular value can simply be ignored. The type of such a model field, which
is used only as a data group, does not matter. For documenting the inten-

31

2. Background on JML

tion that only the data group is relevant, it is however customary to use the
type JMLDataGroup, which is another member of JML’s model class library
(which also contains JMLObjectSequence). We can use such a model field to
resolve the problem with the modifies clause for add in Figure 2.2, without
switching from ghost fields to model fields completely: we declare a model field
“model JMLDataGroup footprint” in addition to the ghost field contents, and
use footprint in the modifies clause of the add method. The ArrayList class
then needs to declare the data group inclusions for footprint as for contents
in Figure 2.3, but no represents clause is necessary.

2.5.3. Pure Methods and Depends Clauses

As we have seen in Subsection 2.5.2, model fields are in many ways similar to
pure methods. This correctly suggests that like model fields, we can also use
pure methods to achieve data abstraction in specifications. Using pure methods
has the appeal that, unlike model fields, methods are a native concept of the
programming language, and the necessary methods may already be present in the
program anyway. An example for this is again the List interface from Figures 2.2
and 2.3, which can also be specified using its own pure methods size and get as
shown in Figure 2.4.

The calls to methods of class JMLObjectSequence have been replaced by calls
to size and get in Figure 2.4. The fact that these pure methods are now them-
selves the basic building blocks of the specification is emphasised by their self-
referential postconditions in lines 6 and 13, which are trivially satisfied by any
implementation. The modifies clause of add is as problematic here as it is in the
approach based on ghost fields, because like ghost fields, pure methods do not
provide a means to abstract over sets of locations. This is solved in Figure 2.4
with the help of a model field footprint that is used only in its role as a data
group.

For modular reasoning about specifications that use pure methods, it is usually
necessary to limit the dependencies of these pure methods, that is, the memory
locations that may influence the result of a method invocation. An example is
the code in Figure 2.5. The precondition of m tells us that before the call to m,
the list is not empty. We expect that the list is still not empty in line 9, and that
thus the precondition of the first contract of method get is satisfied. However,
without looking into all implementations of size (thereby sacrificing modularity
of reasoning) and concluding that they do not depend on x, we cannot be sure that
the intervening change to x does not affect the result of size. This demonstrates
a general problem when using pure methods in specifications [Leavens et al., 2007,
Challenge 3]: without further measures, any change to the heap can affect the
value returned by a pure method in an unknown way.

32

2.5. Data Abstraction

Java + JML

1 public interface List {

2 //@ public model instance JMLDataGroup footprint;

3
4 /*@ public normal_behaviour

5 @ accessible footprint;

6 @ ensures \result == size();

7 @*/

8 public /*@pure@*/ int size();

9
10 /*@ public normal_behaviour

11 @ requires 0 <= index && index < size();

12 @ accessible footprint;

13 @ ensures \result == get(index);

14 @ also ...

15 @*/

16 public /*@pure@*/ Object get(int index);

17
18 /*@ public normal_behaviour

19 @ assignable footprint;

20 @ ensures size() == \old(size()) + 1;

21 @ ensures get(size() - 1) == o;

22 @ ensures ...

23 @*/

24 public void add(Object o) {...}

25 }

26
27 public class ArrayList implements List {

28 private /*@nullable@*/ Object[] array = new Object[10];

29 //@ in footprint;

30 //@ maps array[*] into footprint;

31
32 private int size = 0; //@ in footprint;

33
34 //@ /*four invariants as in Figure 2.1*/

35
36 public int size() {...}

37 public Object get(int index) {...}

38 public void add(Object o) {...}

39 }

Java + JML

Figure 2.4.: Java interface List specified using pure methods and data groups,
and class ArrayList implementing the interface

33

2. Background on JML

Java + JML

1 public class Client {

2 public int x;

3
4 /*@ normal_behaviour

5 @ requires 0 < list.size();

6 @*/

7 void m(List list) {

8 x++;

9 Object o = list.get(0);

10 ...

11 }

12 }

Java + JML

Figure 2.5.: Client code that uses the List interface of Figure 2.4

JML provides a (partial) solution to this problem, namely depends clauses ,
also known as accessible clauses. Depends clauses are a dual concept to modifies
clauses. Where a modifies clause is used to specify which locations a method
may modify (which locations a method may write to), a depends clause is used
to specify which locations a method’s result may depend on (which locations a
method may read from). In JML, depends clauses are declared within method
contracts using the keyword accessible. Lines 5 and 12 of Figure 2.4 give
depends clauses for size and get. These use the already introduced data group
footprint, because the locations to be read by size and get are the same as
those that are to be modified by add. The method bodies in class ArrayList

(which are still those shown in Figure 2.1) satisfy these depends clauses.

In the example shown in Figure 2.5, the depends clause of size reduces the
problem of determining that the change to this.x does not affect the result of
list.size() to the problem of determining that this.x is not an element of
the data group list.footprint. This would be easy if only static data group
inclusions were permitted: then, we could conclude from the lack of an in clause
next to the declaration of x in line 2 of Figure 2.5 that x is not part of any
data group. In the presence of dynamic data group inclusions, it is more difficult,
because there could always be a maps ... \into clause in some subclass of List
that effectively puts this.x into list.footprint for some program states. We
return to this problem in Chapter 3.

Note that even though we have not considered these dependency issues in
Subsections 2.5.1 and 2.5.2, they are nevertheless present in all variations of the
specification of List. In the previous approaches, the dependencies of the pure

34

2.6. Conclusion

methods declared in JMLObjectSequence are relevant, as well as the contents of
the involved data group.

As an aside, the usefulness of depends clauses goes well beyond reasoning about
pure methods in the context of data abstraction. For example, a second (related)
application of depends clauses is in the specification of object immutability [Haack
et al., 2007]: an immutable object is an object that does not change, so all its
methods must be pure. Additionally, one typically expects the return values
of these pure methods to remain the same from state to state. This can be
specified with depends clauses which express that the methods do not depend on
any mutable state outside of the immutable object. Also, the problem of secure
information flow [Sabelfeld and Myers, 2003] is in its basic form just a minor
generalisation of the verification of depends clauses, where one is interested not
only in the dependencies of the method return value, but in the dependencies of
any number of locations.

2.6. Conclusion

In this chapter, we have reviewed the basic concepts of design by contract speci-
fication for object-oriented programs, on the example of the Java Modeling Lan-
guage (JML). The main components of such specifications are method contracts
and object invariants. Both contracts and invariants are inherited to subclasses,
enforcing behavioural subtyping and facilitating modular reasoning about pro-
gram correctness. To allow for information hiding in specifications, and for re-
finement in the sense of adding new subclasses to existing classes and interfaces
without having to change the supertype’s specification, data abstraction mech-
anisms are necessary. In this area, JML offers ghost fields, model fields, data
groups, and the use of pure methods together with depends clauses.

By far not all features of JML have been covered in this chapter. Omitted
features include simple in-code assertions, loop invariants, static object invari-
ants, history constraints, model programs, and others. Also note that JML is
constantly evolving. This chapter is based on the state described in the newest
version of the reference manual available at the time of writing [Leavens et al.,
2008].

We have touched on a few problems with the current state of JML that we in-
vestigate more deeply in Chapter 3, concerning the semantics of object invariants
and the mechanism of data groups.

35

