
Logic for computer programming

Angelo Gargantini

Testing e veri�ca del software

AA 2015-16

Angelo Gargantini Logic for computer programming

Section 1

Propositional logic

Angelo Gargantini Logic for computer programming

Propositional logic

The aim of logic in computer science is to develop languages to
model the situations we encounter as computer science
professionals, in such a way that we can reason about them
formally. Reasoning about situations means constructing arguments
about them; we want to do this formally, so that the arguments are
valid and can be defended rigorously, or executed on a machine.
Consider the following argument:

Example 1.1

If the train arrives late and there are no taxis at the station, then
John is late for his meeting. John is not late for his meeting. The
train did arrive late. Therefore, there were taxis at the station.

Angelo Gargantini Logic for computer programming

Valid argument

Intuitively, the argument is valid, since if we put the �rst sentence
and the third sentence together, they tell us that if there are no
taxis, then John will be late. The second sentence tells us that he
was not late, so it must be the case that there were taxis.

Another example

Example 1.2 If it is raining and Jane does not have her umbrella
with her, then she will get wet. Jane is not wet. It is raining.
Therefore, Jane has her umbrella with her.

Angelo Gargantini Logic for computer programming

Propositions

Example 1.1 Example 1.2

the train is late it is raining

there are taxis at the station Jane has her umbrella with her

John is late for his meeting Jane gets wet.

The argument in each example could be stated without talking
about trains and rain, as follows:
If p and not q, then r. Not r. p. Therefore, q.

Angelo Gargantini Logic for computer programming

Section 2

Declarative sentences

Angelo Gargantini Logic for computer programming

Declarative sentences

The language we begin with is the language of propositional logic.
It is based on propositions, or declarative sentences which one can,
in principle, argue as being true or false.

1 The sum of the numbers 3 and 5 equals 8.

2 Jane reacted violently to Jack's accusations.

3 Every even natural number >2 is the sum of two prime
numbers.

4 All Martians like pepperoni on their pizza.

5 Albert Camus�etait un�ecrivain fran�cais.

6 Die W� urde des Menschen ist unantastbar.

Angelo Gargantini Logic for computer programming

NOT Declarative sentences

The kind of sentences we won't consider here are non-declarative
ones, like

Could you please pass me the salt?

Ready, steady, go!

May fortune come your way.

Angelo Gargantini Logic for computer programming

Atomic sentences

Our strategy is to consider certain declarative sentences as being
atomic, or indecomposable, like the sentence

`The number 5 is even.'

We assign certain distinct symbols p, q, r, . . ., or sometimes p1,
p2, p3, . . . to each of these atomic sentences and we can then
code up more complex sentences in a compositional way. For
example, given the atomic sentences

p: `I won the lottery last week.'

q: `I purchased a lottery ticket.'

r: `I won last week's sweepstakes.'

we can form more complex sentences according to the rules below:

Angelo Gargantini Logic for computer programming

Logical connectives

¬ The negation of p is denoted by ¬p and expresses `I
did not win the lottery last week,' or equivalently `It
is not true that I won the lottery last week.'∨
Given p and r at least one of them is true: `I won the
lottery last week, or I won last week's sweepstakes;'
we denote this by p

∨
r and call it the disjunction of

p and r.∧
Dually, the formula p

∧
r denotes the conjunction of

p and r: `Last week I won the lottery and the
sweepstakes.'

� `If I won the lottery last week, then I purchased a
lottery ticket.' expresses an implication between p
and q, suggesting that q is a logical consequence of p.
We write p � q for that . We call p the assumption
of p � q and q its conclusion.

Angelo Gargantini Logic for computer programming

Section 3

Natural deduction

Angelo Gargantini Logic for computer programming

Natural deduction

How do we go about constructing a calculus for reasoning
about propositions, so that we can establish the validity of
propositions

We would like to have a set of rules each of which allows us to
draw a conclusion given a certain arrangement of premises.

They allow us to infer formulas from other formulas. By
applying these rules in succession, we may infer a conclusion
from a set of premises

Suppose we have a set of formulas φ1, φ2, φ3, . . . , φn ,
which we will call premises, and another formula, ψ, which we
will call a conclusion.

By applying proof rules to the premises, we hope to get some
more formulas, to eventually obtain the conclusion.

We denote this intention using sequents.

Angelo Gargantini Logic for computer programming

Natural deduction

This intention we denote by

φ1,φ2, ...,φn`ψ

This expression is called a sequent;

Constructing such a proof is a creative exercise, a bit like
programming. It is not necessarily obvious which rules to
apply, and in what order, to obtain the desired conclusion.

However their correct application can be automatically
performed/checked (see theorem provers).

Additionally, our proof rules should be carefully chosen;
otherwise, we might be able to `prove' invalid patterns of
argumentation.

We present about �fteen rules of them in total; we will go
through them in turn and then summarise at the end of this
section.

Angelo Gargantini Logic for computer programming

The rules for conjunction

Our �rst rule is called the rule for conjunction (
∧
):

and-introduction.

It allows us to conclude φ
∧
ψ, given that we have already

concluded φ and ψ separately:

φ ψ

φ
∧
ψ

∧
i .

Above the line are the two premises of the rule.

Below the line goes the conclusion.

To the right of the line, we write the name of the rule;
∧
i is

read `and-introduction'.

Angelo Gargantini Logic for computer programming

and-elimination

φ
∧
ψ

φ

∧
e1.

φ
∧
ψ

ψ

∧
e2.(1.1)

The rule
∧
e1 says: if you have a proof of φ

∧
ψ, then by

applying this rule you can get a proof of φ.

Angelo Gargantini Logic for computer programming

Example Natural Deduction

example

Let's use these rules to prove that p
∧

q, r |= q
∧

r is valid.

We start by writing down the premises; then we leave a gap
and write the conclusion:

p
∧

q
r
...
q
∧

r

Complete proof

1 p
∧

q premise
2 r premise
3 q

∧
e2 1

4 q
∧

r
∧
i 3, 2

Angelo Gargantini Logic for computer programming

Double negation

¬¬φ

φ
¬¬e

φ

¬¬φ
¬¬i

The sentence `It is not true that it does not rain.' is just a
more contrived way of saying `It rains.'

Angelo Gargantini Logic for computer programming

Eliminating implication

Latin name modus ponens. We will usually call it by its
modern name, implies-elimination

φ φ→ ψ
ψ

→ e

Let us justify this rule by spelling out instances of some
declarative sentences p and q.

Suppose that p : It rained.
p � q : If it rained, then the street is wet.
so q is just `The street is wet.'
Now, if we know that it rained and if we know that the street is
wet in the case that it rained, then we may combine these two
pieces of information to conclude that the street is indeed wet.

Angelo Gargantini Logic for computer programming

modus tollens

Modus tollens

φ→ ψ ¬ψ

¬φ
MT

Again, let us see an example of this rule in the natural
language setting: `If Abraham Lincoln was Ethiopian, then he
was African. Abraham Lincoln was not African; therefore he
was not Ethiopian.'

Angelo Gargantini Logic for computer programming

Exercises

Individua le preposizioni, scrivi e dimostra i sequenti (usando le
regole sopra):

Se non c'è sole allora ho freddo. Non c'è sole. Ho freddo.
¬φ→ ψ, ¬φ `ψ
Se studio e sono fortunato, allora prendo 30. Ho studiato.
Sono fortunato. Prendo 30.
p∧q→ r, p, q `r
Se piove, allora se ho l'ombrello sto asciutto. Piove. Non sono
asciutto. Non avevo l'ombrello.
p→(q→ r), p, ¬r `¬q

Angelo Gargantini Logic for computer programming

Other rules

rule implies introduction

rules for disjunction

rules for negation

Contradictions are expressions of the form φ
∧
¬φ or ¬φ

∧
φ

, where φ is any formula.
Other contradictions can be derived from contradictions;
Any formula can be derived from a contradiction.

Angelo Gargantini Logic for computer programming

First-Order Logic (FOL)

Extends propositional logic by:

Types , other than boolean
e.g. int, BankCard, Bunny...

Functions (mathematical)
e.g. +, max, abs, bonacci,...

Constants are functions with no arguments
e.g. 0, 1,

Predicates (functions returning a boolean)
e.g. isEven, > , isPrime...

Quantiers
for all (∀), there exists (∃)

Angelo Gargantini Logic for computer programming

