

Testing per FSM

Angelo Gargantini
Linguaggi di Programmazione per la

Sicurezza – Crema Unimi

Materiale

• Questi lucidi
• motres, capitolo 4

– motres4.pdf

Conformance testing problem

• Given:
– Complete information of specification machine A (states,

transition and output function)
– Implementation machine B, black box, only I/O is

observable

• Goal:
– Determine whether B is correct implementation of

(conforms to, is equivalent to) A by applying a test
sequence to B and observing the output.

Testing Hypothesis/Assumptions

An abstract model of
a specification

An abstract model of
an implementation

Conformance
relation

A specification An implementation

Conformance
relation

Hypothesis
Assumptions

Hypothesis
Assumptions

Test generation per FSMs
Our focus

Requisiti FSM (A) Test generation algorithm

FSM based
Test inputs

Test driver

Applicazione
FSM (B)
(Sw/system)

Test inputs

Observed behaviorOraclePass/fail

Application Test inputs

Test generation for application

Generated
data

Conformance testing assumption

• Specification A is strongly connected
– It must be possible to reach all states

• A is reduced (minimized)
– We can determine equivalence only to minimized

machine, since equivalent states are not distinguishable.

• B does not change during experiment and has the
same input alphabet as A

• B has no more states than A
– Assume, faults do not increase number of states, only:

• Wrong output on transition
• Wrong state in transition destination

Assumptions (2)

• Completely-specified:
– Rispondono ad ogni input in ogni stato

• Deterministic
• Initialized
• What if a FSM is not

– Minimized?
– Completely-specified?
– Deterministic?
– Strongly-connected?
– Initialized?

Assumptions (3)

• Assumptions about implementations
– A fault model is a hypothetical model of what types of

faults may occur in an implementation
– Usually based on mutations

• What if we cannot have fault models?
– There are an infinite number of faulty implementations

Fault Models (1)

• Fault models for FSM
– Output faults
– Transfer faults
– Additional or missing transitions
– Other faults (not considered)

• Additional or missing states
• Transfer faults with additional states

Fault model

q0

q1

a/1

b/0

b/1
a/1

Correct design

q0

q1

a/0

b/0

b/1
a/1

Operation error Transfer error

q0

q1

a/1

b/0

b/1 a/1

(Fault model)

q0

a/0
b/0

Missing state errorExtra state error

q0

q1

a/1

b/0

b/1

a/1q2

a/1

q0

q1

a/1

b/0

b/1
a/1

Correct design

Fault Models sull'intera FSM

• Output faults

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

s1

a / 0

s2

a / 0

b / 1

s3

a / 0

b / 0

b / 1

< A: specification > <B: implementation >

Fault Models (3)

• Transfer faults

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

s1
a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

< specification > < implementation >

Fault Model (4)

• Transfer faults with additional states

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

< specification > < implementation >

s4

Fault Models (5)

• Fault models for software
– Sequencing faults
– Arithmetic and manipulative faults
– Calling wrong functions
– Wrong specification of data type
– Wrong values
– Wrong number of variables
– Wrong operators
– ……

Status messages and Reset

• FSM has a reset capability if special
input r takes the machine from any
state to initial s1.

• If r input is defined for all states of B
then reset is reliable.

• Status message tells the current state
of machine without changing it.

• Reliable status message guarantees
that state will stay the same as before
message.

s

status/[state]

s1r/

r/ r/
r/

Metodi e loro capacità

• Con status message
– State cover method
– TT-method (transition tour)

• trova tutti i fault

• Senza status
– TT-method

• Garantisce di trovare tutti gli output fault
– DS-method (distinguishing sequences)
– W-method (characterizing sets)
– UIO-method (UIO sequences)

per questo spesso si aggiungono degli status
messages in sistemi embedded

Struttura del test di conformità

• Inizializzazione: move to some known state s1:
• usa reset

• verifica di similarità tra B e A
– B ha uno stato che “risponde” come quello di A

• usa status message , DS, UIO o altro
• fallo per ogni stato di A

• verifica delle transizioni: per ogni transizione
verifica δ(si, a)=sj :

• applica la sequenza che muove la macchina a si
• applica a (e controlla l'output)
• verifica lo stato finale che sia sj

State cover

State cover: A test set T is considered adequate
with respect to the state cover criterion for an
FSM M if the execution of M against each
element of T causes each state in M to be
visited at least once.

Transition cover: A test set T is considered
adequate with respect to the branch/transition
cover criterion for an FSM M if the execution of
M against each element of T causes each
transition in M to be taken at least once

Con status esempio

• Considera il CDPlayer
– Aggiungi l'output

• Se premi play e non c'è il CD fa beep
• Se premi play e c'è il CD si illumina una luce
• ...

– Assumi di avere uno status
– Copertura di tutti gli stati
– Copertura di tutte le transizioni

Senza Status message

• Con lo status message:
– State cover non trova comunque tutti gli errori

• Se ho una transizione sbagliata e non la copro non me
ne accorgo

– Transition cover scopre ogni errore

• Cosa succede se non c'è status?
• Se non c'è status devo capire in quale stato mi trovo

semplicemente osservando solo gli output

Transition coverage

Esempio di errori non trovati senza status message

Consider the following machines, a correct one (A) and one with a
transfer error (B’).

t=abba covers all the transitions
but does not reveal the error.
Both machines generate the
same output which is 0111.A

B'

TT-method (1)
• Il metodo che ottiene il transition coverage è il

Transition Tour method
• A transition tour of a FSM

– A path starting at the initial state, traverses every
transition at least once, and returns to the initial state

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

TT-method (2)

• From a transition tour, we identify a test suite
consisting of an input sequence and its expected
output sequence
– The input sequence ababab and
– Its expected output sequence 011100

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

Come calcolare un transition tour

• problema classico dell'attaversamento dei grafi
• il tuor più corto si chiama “Euleriano”
• per macchine simmeriche (tanti archi uscenti

quanti entranti è semplice)
– vedi corso di algoritmi
– intuitivamente, su ogni nodo percorri le transizioni che

finiscono sullo stesso nodo e poi percorri le transizioni in
uscita che non hai ancora percorso

• noi: TT anche non euleriano

TT-method (3)

• Transition tours can find all output faults

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

s1

a / 1

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

< specification >
Input sequence: ababab

Expected output sequence: 011100

< implementation >
Input sequence: ababab

Observed output sequence: 111100

TT-method (5)

• Transition tours trova alcuni difetti:

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

s1a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

< specification >
Input sequence: ababab

Expected output sequence: 011100

< implementation >
Input sequence: ababab

Observed output sequence: 010001

TT-method (4)

• Transition tours potrebbe anche non trovarli:

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

s1a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

< specification >
Input sequence: bababa

Expected output sequence: 111000

< implementation >
Input sequence: bababa

Observed output sequence: 111000

TT method

Consider the following machines, a correct one (M2) and one with a
transfer error (M2’).

There are 12 branch pairs,
such as (tr1, tr2), (tr1,
tr3), tr6, tr5).

Consider the test set:
{bb, baab, aabb, aaba,
abbaab}. Does it cover all
branches? Does it reveal
the error?

TT e state coverage

Consider the following machines, a correct one (M3) and one with a
transfer error (M3’).

Consider T={t1: aab, t2: abaab}.
T1 causes each state to be
entered but loop not traversed.
T2 causes each loop to be
traversed once.

Is the error revealed by T?

Detecting Output Faults and Transfer
Faults

• DS-method, W-method, and UIO-method
• The main idea

– Generate a test suite such that, for every transition (s, i,
o, s’),

• Step 1: Puts the implementation into state s (Setup)
• Step 2: Applies input i and check whether the actual

output is o (Output fault)
• Step 3: Determines whether the target state of the

implementation is s’ (Transfer fault)

DS-method (1)

• An input sequence is a distinguishing
sequence if
– After applying the input sequence, we can determine the

source state by observing the output sequence

DS-method (2)

• Show that a is not a distinguishing sequence

S30aS3

S21aS2

S10aS1

Final
state

Outpu
t

seq

Input
seq

Initial
state

s1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

DS-method (3)

• Show that ab is a distinguishing sequence

S100abS3

S311abS2

S201abS1

Final
state

Outpu
t

seq

Input
seq

Initial
states1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

Come calcolare una DS

• Un po' troppo complicato ...
– non vi verrà richiesto: però dovrete dire se una sequenza

è una DS oppure no

DS-method (4)

• For every transition (s, i, o, s’)
– Step 1: Put the implementation into state s (Setup)
– Step 2: Apply input i and check whether the actual

output is o (Output fault)
– Step 3: Determine whether the target state of the

implementation is s’ using a distinguishing sequence
(Transfer fault)

DS-method (5)

s1

t1: a / 0

s2

t3: a / 1

t2: b / 1

s3

t5: a / 0

t6: b / 0

t4: b / 1

t1: reset/null a/0 a/0 b/1
t2: reset/null b/1 a/1 b/1
t3: reset/null b/1 a/1 a/1 b/1
t4: reset/null b/1 b/1 a/0 b/0
t5: reset/null b/1 b/1 a/0 a/0 b/0
t6: reset/null b/1 b/1 b/0 a/0 b/1

Setup Output Transfer

• A test suite

DS-method (6)

• Comparisons
– Very few FSMs possess a distinguishing sequence
– Even if an FSM has a distinguishing sequence, the

sequence is too long
– Example: there is no DS

• A DS cannot start with a (s1, s2)
• A DS cannot start with b (s2, s3)

s1

t1: a / 0

s2

t3: b / 1

t2: a / 0

s3

t5: a / 1

t6: b / 0

t4: b / 1

Skip da qui in poi !!!

W-method (1)

• A set of input sequences is a characterizing set
if
– After applying all input sequences in the set, we can

determine the source state by observing the output
sequences

Step 2: Construction of W. What is W?

Let M=(X, Y, Q, q1, δ, O) be a minimal and complete FSM.

Given states qi and qj in Q, W contains a string s such that:

O(qi, s)≠O(qj, s)

W is a finite set of input sequences that distinguish the behavior of
any pair of states in M. Each input sequence in W is of finite length.

Example of W

W={baaa,aa,aaa}

O(baaa,q1)=1101

O(baaa,q2)=1100

Thus baaa distinguishes state q1 from q2 as O(baaa,q1) ≠ O(baaa,q2)

Steps in the construction of W- skip!!

Step 1: Construct a sequence of k-equivalence partitions of Q denoted
as P1, P2, …Pm, m>0.

Step 2: Traverse the k-equivalence partitions in reverse order to obtain
distinguishing sequence for each pair of states.

What is a k-equivalence partition of Q?

A k-equivalence partition of Q, denoted as Pk, is a collection of n finite
sets Σk1, Σk2 … Σkn such that

∪n
i=1 Σki =Q

States in Σki are k-equivalent.

If state v is in Σki and v in Σkj for i≠j, then u and v are k-distinguishable.

How to construct a k-equivalence partition?

Given an FSM M, construct a 1-equivalence partition, start with a
tabular representation of M.

q5

q4

q1

q5

q4

b

q211q5

q311q4

q510q3

q110q2

q110q1

aba

Next stateOutputCurrent
state

Construct 1-equivalence partition

Group states identical in their Output entries. This gives us 1-partition
P1 consisting of Σ1={q1, q2, q3} and Σ2 ={q4, q5}.

2

1

Σ

q5

q4

q1

q5

q4

b

q211q5

q311q4

q510q3

q110q2

q110q1

aba

Next stateOutputCurrent
state

Construct 2-equivalence partition: Rewrite P1 table

Rewrite P1 table. Remove the output columns. Replace a state entry qi
by qij where j is the group number in which lies state qi.

2

1

Σ

q52

q42

q11

q52

q42

b

q21q5

q31q4

q52q3

q11q2

q11q1

a

Next stateCurrent
state

Group number

P1 Table

Construct 2-equivalence partition: Construct P2 table

Group all entries with identical second subscripts under the next state
column. This gives us the P2 table. Note the change in second
subscripts.

2

3

1

Σ

q53

q43

q11

q53

q43

b

q21q5

q32q4

q53q3

q11q2

q11q1

a

Next stateCurrent
state

P2 Table

Construct 3-equivalence partition: Construct P3 table

Group all entries with identical second subscripts under the next state
column. This gives us the P3 table. Note the change in second
subscripts.

q43q32q43

2

4

1

Σ

q54

q11

q54

q43

b

q21q5

q54q3

q11q2

q11q1

a

Next stateCurrent
state

P3 Table

Construct 4-equivalence partition: Construct P4 table

Continuing with regrouping and relabeling, we finally arrive at P4
table.

q55q11q22

q44q33q44

3

5

1

Σ

q55

q11

q44

b

q22q5

q55q3

q11q1

a

Next stateCurrent
state

P4 Table

k-equivalence partition: Convergence of the process

The process is guaranteed to converge.

When the process converges, and the machine is minimal, each state
will be in a separate group.

The next step is to obtain the distinguishing strings for each state.

Finding the distinguishing sequences: Example

Let us find a distinguishing sequence for states q1 and q2.

Find tables Pi and Pi+1 such that (q1, q2) are in the same group in Pi
and different groups in Pi+1. We get P3 and P4.

Initialize z=ε. Find the input symbol that distinguishes q1 and q2 in
table P3. This symbol is b. We update z to z.b. Hence z now becomes
b.

Finding the distinguishing sequences: Example (contd.)

The next states for q1 and q2 on b are, respectively, q4 and q5.

We move to the P2 table and find the input symbol that distinguishes
q4 and q5. Let us select a as the distinguishing symbol. Update z
which now becomes ba.

The next states for states q4 and q5 on symbol a are, respectively,
q3 and q2. These two states are distinguished in P1 by a and b. Let
us select a. We update z to baa.

Finding the distinguishing sequences: Example (contd.)

The next states for q3 and q2 on a are, respectively, q1 and q5.

Moving to the original state transition table we obtain a as the
distinguishing symbol for q1 and q5

We update z to baaa. This is the farthest we can go backwards
through the various tables. baaa is the desired distinguishing
sequence for states q1 and q2. Check that o(q1,baaa)≠o(q2,baaa).

Finding the distinguishing sequences: Example (contd.)

Using the procedure analogous to the one used for q1 and q2, we can
find the distinguishing sequence for each pair of states. This leads us
to the following characterization set for our FSM.

W={a, aa, aaa, baaa}

calcolo di W

• anche in questo caso non vi è richiesto, però è
richiesto che sappiate dire se un dato insieme W è
corretto o no: vedi prossime slides

W-method (2)

• Show that {a,b} is a characterizing set

S30aS3

S21aS2

S10aS1

Final
state

Outpu
t

seq

Input
seq

Initial
state

S20bS3

S21bS2

S31bS1

Final
state

Outpu
t

seq

Input
seq

Initial
state

s1

t1: a / 0

s2

t3: a / 1

t2: b / 1

s3

t5: a / 0

t6: b / 0

t4: b / 1

a
distingue
tra S2 e
{S1,S3}

b
distingue
tra S3 e
{S1,S2}

W-method (3)

s1

t1: a / 0

s2

t3: a / 1

t2: b / 1

s3

t5: a / 0

t6: b / 0

t4: b / 1

t1: reset/null a/0 a/0
t1: reset/null a/0 b/1
t2: reset/null b/1 a/1
t2: reset/null b/1 b/1
t3: reset/null b/1 a/1 a/1
t3: reset/null b/1 a/1 b/1
t4: reset/null b/1 b/1 a/0
t4: reset/null b/1 b/1 b/0
t5: reset/null b/1 b/1 a/0 a/0
t5: reset/null b/1 b/1 a/0 b/0
t6: reset/null b/1 b/1 b/0 a/0
t6: reset/null b/1 b/1 b/0 b/1

• A test suite

W-method (4)

• Comparisons
– Although every FSM has a characterizing set, the set

may have too many elements
– Both distinguishing sequences and characterizing sets

impose too strong requirements
• We are just interested in determining whether the

target state is a specific state
– State identification versus state verification

UIO-method (1)

• Let s be a state.
• An input sequence is a UIO sequence for s if

– After applying the input sequence, we can determine the
source state is s or not by observing the output
sequence

UIO-method (2)

• Show that a is a UIO sequence for s2
• Show that b is a UIO sequence for s3

S30aS3

S21aS2

S10aS1

Final
state

Outpu
t

seq

Input
seq

Initial
state

S20bS3

S21bS2

S31bS1

Final
state

Outpu
t

seq

Input
seq

Initial
state

s1

t1: a / 0

s2

t3: a / 1

t2: b / 1

s3

t5: a / 0

t6: b / 0

t4: b / 1

UIO-method (3)

• Show that ab is a UIO sequence for s1

S100abS3

S311abS2

S201abS1

Final
state

Outpu
t

seq

Input
seq

Initial
states1

a / 0

s2

a / 1

b / 1

s3

a / 0

b / 0

b / 1

UIO-method (4)

s1

t1: a / 0

s2

t3: a / 1

t2: b / 1

s3

t5: a / 0

t6: b / 0

t4: b / 1

t1: reset/null a/0 a/0 b/1
t2: reset/null b/1 a/1
t3: reset/null b/1 a/1 a/1
t4: reset/null b/1 b/1 b/0
t5: reset/null b/1 b/1 a/0 b/0
t6: reset/null b/1 b/1 b/0 a/0 b/1

• A test suite

UIO-method (5)

• Comparisons
– Many FSMs have UIO sequences
– UIO sequences are usually short
– However, fault detection capability is not powerful

