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1 Introduction

In this chapter we tackle the problem of conformance testing between finite
state machines. The problem can be briefly described as follows [?]. Given a
finite state machine Mg which acts as specification and for which we know its
transition diagram, and another finite state machine M; which is the alleged
implementation and for which we can only observe its behavior, we want to test
whether M; correctly implements or conforms Mg. The problem of conformance
testing is also called fault detection, because we are interested in uncovering
where M fails to implement Mg, or machine verification in the circuits and
switching systems literature.

We assume that the reader is familar with the definitions given in Chap-
ter FSM(ref)chapter, that we briefly report here. A finite state mealy machine
(FSM) is a quintuple M = (I,0, S, 4, \) where I, O, and S are finite nonempty
sets of input symbols, ouput symbols, and states, respectively, § : S x [ — S is
the state transition function, X\ : S x I — O is the output function. When the
machine is a current state s in S and receives an input a in I, it moves to the
next state d(s, a) producing the output A(s,a). An FSM can be rapresented by
a state transition diagram as shown in Figure 1. We denote the number of states
n = |S| and the number of inputs p = |I|. An input sequence z is XXX TO
ADD. CONCATENATION among set of input sequences TO ADD.
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Fig. 1. Machine Ms (taken from [?])



The detection of faults in the implementation M| can be performed by the fol-
lowing experiment. Generate a test suite (as defined in Chapter GL(ref)chapter)
from the machine Mg. For every test case in the test suite separate the input
sequence from the output sequence. Apply the input sequence to M; and observe
the output sequence. Compare this actual output sequence with the expected
output sequence and if they differ, then a fault has been detected. As well known,
this procedure of testing, as it has been presented so far, can only be used to show
the presence of bugs, but never to show their absence'. The goal of this chapter is
to present some techniques and algorithms able to detect faults of a well defined
class, and to eventually prove, under some assumptions, that an implementation
conforms to its specification. This chapter presents methods leaning toward the
definition of ideal testing criteria as advocated in [?], i.e. test criteria that can
discover any fault in the implementation (under suitable assumptions). Although
this approach is rather theoretical, Section 8 presents the justifications for the
theoretical assumptions and the practical implications of the presented results.

Conformance is formally defined as equivalence or isomorphism (as defined
in Chapter FSM(ref)chapter): M; conforms to its specification Mg if and only
if their initial states are equivalent, i.e. they will produce the same output for
every input sequence. To prove this equivalence we look for an input sequence
that we can apply to M; to prove that is equivalent to its specification. Such
input sequence is called checking sequence.

Definition 1. (Checking sequence) A checking sequence for Mg is an input se-
quence that distinguishes the class of machines equivalent to Mg from all other
machines.

Although all the presented methods share the unique goal to verify that M;
correctly implements Mg, generating a checking sequence (or a set of sequences,
that concatenated act as an unique checking sequence), they differ for their cost
to produce test sequences, for the total size of the test suite (i.e. the total length
of the checking sequence), and for their fault detection capability. In fact, test
suites should be rather short to be applicable in practice. On the other hand
a test suite should cover the implementation as much as possible and detect
as many faults as possible. The methods we present in this chapter differ with
respect to the means and techniques they use to achieve these two opposite goals.
They differ also for the assumptions they make about the machines Mg and Mj.

2 Assumptions

Developing a technique for conformance testing without any assumption is im-
possible, because for every conformance test one can build a faulty machine that
would pass such test. We have to admit some assumptions abut the machines
we want to verify. Some assumptions are very natural and necessary, other are
convenient and very used in practice but can be relaxed. These first four as-
sumptions are necessary for every method we present in this chapter.

! Dijkstra, of course



1. Mg is reduced or minimal: the reason is that equivalent machines have the
same I/O behavior, and we cannot distinguish them by observing the out-
puts. If Mg if it is not minimal, we can minimize it and obtain an equivalent
reduced machine (an algorithm is presented in [?] and informally explained
in [?] as well as in Chapter FSM(ref)chapter). In a minimal machine there
are no equivalent states. Every minimal machine has separating sequences
(defined in Section FSM1(ref)sec:algorithms ). A separating sequence can
distiguish two states in Mg.

2. Mg is completely specified: the state transition function § and the output
function A are defined for every state in S and every input in [.

3. Mg is strongly connected: every state in the graph is reachable from ev-
ery other state in the machine via one or more state transitions. Note that
some methods require only that all states are reachable from the initial one,
allowing machines with deadlocks or state without any exiting transition.
However these methods must require a reset message (Assumption 7) that
can take the machine back to its initial state, otherwise a deadlock may stop
the test experiment. The reset message makes de facto the machine strongly
connected.

4. M; does not change during testing. Moreover it has the same sets of inputs
and outputs as Mg. This implies that M; can accept and respond to all
input symbols from the complete system vocabulary (if the input set of M
is a subset of the input set of Mg, we could redefine conformance).

The four properties listed above are requirements. Without them a conformance
test of the type to be discussed is not possible. Unlike the first four requirements,
the following assumptions are convenient but not essential. Throughout this
chapter we present methods that can successfully perform conformance testing
even when these assumptions do not hold.

5. Initial state: machines M and M, have an initial state, and My is in its
initial state before we conduct a conformance test experiment. If M7 is not
in its initial state we can apply an homing sequence (presented in Section
FSM1(ref)sec:intro-homing) and then start the conformance test. If the ma-
chine M does not conform to its specification and the homing sequence fails
to bring M7 to its initial state, this will be discovered during the conformance
test. We denote the initial state by s;.

6. Same number of states: My has the same number of states as Mg, hence
faults do not increase the number of states. Due to this assumption, the faults
in M; are of two kinds: output faults, i.e. a transition produces the wrong
output, and transfer faults, i.e. the implementation goes to a wrong state.
Although this assumption is very strong, we show in Section 7 that many
methods we present work well with modifications under the more general
assumption that the number of states of M; is bounded by an integer m,
which may be larger than the number of states n in Mg. Figure 2 shows two
faulty implementations of the specification machine Mg given in Figure 1.
Machine M7, contains only one output fault for the transition from sz to



s1 with the input b: the output produced by My, is 1 instead of 0. Machine
M7 has only transfer faults: every transition produces the right output but
moves the machine to a wrong final state.

a/0 b/1
5 51
b/1 b/1 a/0 a/0

a/1(_(S2) o (S3) )a/0  b/1( (S2) 7 (S3) )b/1

Fig. 2. Two faulty implementations of Mg

7. reset message: M and M, have a particular input reset (or simply r ) that
from any state of the machine causes a transition which ends into the initial
state and produces no output. Formally, forall s € S, §(s,reset) = s; and
A(s,reset) = —. This assumption is relaxed starting from Section 5.

8. status message: M7 and M have a particular input status and they respond
to a status message with an output message that uniquely identifies their
current state (we assume that they output the number of the state). The
machines do not change state. Formally forall s; € S, A(s;, status) = i and
0(si, status) = s; . This rather strong assumption is relaxed starting from
Section 4.

9. set message: the input set I of M, contains a particular set of inputs set(s;)
and when a set(s;) message is received in the initial system state, the
machines move to state s; without producing any output. Formally forall
s, t €8, d(s,set(t)) =t and A(s, set(t)) = —.

Given a machine with all the properties listed above, a simple conformance
test can be performed as described by the simple Algorithm 1 (Chapter 9 of [?]).
Therefore, the resulting checking sequence x is obtained concatenating the
sequence reset, set(s), a, and status, repeated for every sin S and every a in L
This algorithm verifies that M| correctly implements Mg and it is capable to
uncover any output or transfer error. Note that should the set of input signals I
to be tested include the set, reset, and status messages, the algorithm must test
also these messages. To test the status message we should apply it twice in every



Algorithm 1 Conformance testing with a set message
Forallse S,acl:

Apply a reset message to bring the M; to the initial state.

Apply a set(s) message to transfer M; to state s.

Apply input message a.

Verify that the output received conforms the specification Mg, i.e. is equal to
As(s,a)

5. Apply the status message and verify that the final state conforms the specification,
i.e. it is equal to ds(s,a)

W

state s; after the application of set(s;). The first application is to check that in
s; the status message correctly outputs 7 (if also set is faulty and sets the current
state to s; instead of s; and the status message in s; has the wrong output i,
we would discover this fault when testing s;). The second application of status
is to check that the first application of status did not change the state. Indeed,
if the first application of status in s; did change the state to s; and in s; status
is wrongly implemented and outputs ¢ instead of j, we would discover this fault
when testing s;. Once that we are sure that status is correctly implemented, we
can test set and reset applying them in every state and then applying status to
check that they take the machine to the correct state.

The length of the resulting checking sequence is exactly 4 - p-n where p = |I|
is the number of inputs and n = |S| is the number of states.

This methods exploits the set message, which may be not available. To avoid
the use of set and to possibly shorten the test suite, we can build a sequence that
traverses the machine and visits every state and every transition at least once
possibly without restarting from the initial state after every test. Such sequence
is called transition tour. Formally

Definition 2. An input sequence x = aias...a, that takes the machine to the
states s1,52,..., S, such that Vs € S 3j s; = s (x visits every state) and such
that ¥b € IVs € S 3j a; =bAsj = s (every input b is applied to each s), is
called transition tour

In the next Section we present some basic techniques for the generation and use
of transition tours for conformance testing and we show their limits.

3 State and Transition Coverage

A simple conformance test can be performed by generating a transition tour
and checking that every state in Mg is represented in M; by a status message
and to verify that each transition is correctly implemented. This methods is
called transition tour (T'T) method and it was originally proposed without using
any status message [?]. At best this checking sequence starts with a reset and
exercises every transition exactly once followed by a status message to check



that the state is correct. The length of such sequence is always greater than
14 2-p-n. The shortest transition tour that visits each transition exactly once
is called Euler tour. Since we assume that the machine is strongly connected
(Assumption 3), a sufficient condition for the existence of an Euler tour is that
the FSM is symmetric, i.e. every state is the start state and end state of the same
number of transitions. An Euler tour can be found in linear time in p = |I|. This
is a classical result of the graph theory and algorithms for generating an Euler
tour can be found in any introductory book about graphs (for example, see
Chapter 9 of [?]). In non symmetric FSMs searching the shortest tour is another
classical direct graph problem, known as the Chinese Postman Problem, that
can be solved in polynomial time. It was originally introduced by a Chinese
mathematician [?] and there exist several classical solutions [?] for it.

A conformance test using a transition tour achieves the so called transition
coverage. A test that covers only all the states is often called state coverage or
state tour method [?].

Ezample 1. For the machine in Fig. 1 the following checking sequence is a tran-
sition tour (it is, more precisely, an Euler tour).

input sequence|b status a status b status a status b status a status
output 1 2 1 2 1 3 0 3 0 1 0 1
end state 2 2 2 2 3 3 3 3 1 1 1 1

If the status message is unreliable and we have to test is too, we can apply
a status message twice in every state, the first one to test that the previous
message has taken the machine to the correct state and the second one to verify
that the first status message did not change the state of the machine.

Without the status message, the transition coverage does not guarantee the
detection of every fault. Indeed, simply generating tests covering all the edge of
Mg and test whether M| produces the same outputs is not enough, as demon-
strated by the following example.

Example 2. Consider the machines in Figure 2 as alleged equivalent machines to
Mg in Figure 1. The sequence ababab is an Euler tour. Applying this tour to My
we would discover the output fault of the transition from sz to s1: M1 produces
the output sequence 011100 instead of 011101. However, if we apply this Euler
tour to Mjo, we do not discover the faults: Mo produces the output sequence
011101, identical to the expected output sequence produced by Mg. However
Mo is a faulty implementation of Mg as demonstrated by another tour, namely
bababa. This demonstrates that transition coverage is not capable to detect all
the faults, in particular, to always detect transfer faults.

In the next section we learn how to not rely on a status message to determine
the current state during a test.



4 Using Separating Sequences instead of Status Messages

We assume now that the machines have no status message (but they still have
a reset message), and we wish to test whether Mg is equivalent to M; only
observing the external behavior. In the following we present some methods that
can be generalized as proposed in [?]. All these methods share the same tech-
inque to indentify a state: they replacing the use of the status message with
several kinds of sequences that we can generally call separating sequences [?]
and that are able to identify in some way the state to which they have been
applied. Remember that, since Mg is minimal, it does not contain two equiva-
lent states, i.e. for every pair of states s;, s; there exists an input sequence «
that we call separating sequence and that distinguishes them because produces
different outputs, i.e. A(s;, ) # A(sj, «). Separating sequences are studied in
Section FSM1(ref)sec:algorithms . Note that the subjects of state indetification
and verification studied in Chapters FSM2(ref)chapter and FSM3(ref)chapter
share with the methods presented in this section the same goal and several def-
initions.

4.1 W method

The W method [?] uses a particular set of separating sequences that is called
characterizing set and another set to visit each transition in the machine, that
is called transition cover set or P set for short, and is defined as follows.

Definition 3. ([transition cover set]Transition Cover Set) the transition cover
set of Mg is a set P of input sequences such that for each state s € S and each
input a € I there exists an input sequence x € P starting from the initial state
s1 and ending with the transition that applies a to state s. Formally Vs € S,Va €
1,3z € P such that x = a.a and §(s1,a) = s.

The transition cover set is called P set. The P set forces the machine to perform
every transition and then stop. The P set can be built by using a normal breadth-
first visit of the transition diagram of the machine Mg. One way of constructing
P is to build first a testing tree 1" of Mg as explained in Algorithm 2 and then
to take the input sequences obtained from all the partial paths of T [?]. A partial
path of T is a sequence of consecutive branches, starting from the root of 7" and
ending in a terminal or non terminal node. Since every branch in T is labeled
by an input symbol, the input sequence obtained from a partial path ¢ is the
sequence of input symbols on ¢. The empty input sequence ¢ is considered to
be part of the P set. Note that Algorithm 2 terminates because the number of
states is finite.

Example 3. The test tree for Mg of Figure 1 is shown in Figure 3

The W method uses P set to test every transition of M; and uses another set,
called characterizing set of Mg or W set, instead of the status message, to verify
that the end state of each transition is the one expected. The characterizing set
is defined as follows.



Algorithm 2 Building a test tree
1. label the root of the tree T with si, the initial state of M. This is the level 1 of T'
2. Suppose that we have alredy build the tree T up to the level k. Now we build the
k + 1th level.
(a) consider every node t at level k from left to right
(b) if the node ¢ is equal to another node in T at level j, with j < k, then ¢ is
terminated and must be considered a leaf of T'
(c) otherwise, let s; be the label of the node ¢. For every input z, if the machine
Ms goes from state s; to state s;, we attach to ¢ a branch with label  and a
succesor node with label s;

Fig. 3. A test tree for Mg of Figure 1



Definition 4. ([characterizing set|Characterizing Set) a characterizing set of
Mg is o set W of input sequences such that for every pair of distinct states s
and t in S, exists an input sequence x in W such that A\(s,x) # A(t, )

The characterizing set is briefly called W set or sometimes separating set. The
input sequences z in the W set are also called separating sequences. The W set
exists for every machine that is minimal (Assumption 1) and can be built as
shown in Section FSM1(ref)sec:algorithms . Note that the choice of a W set is
not unique and the fewer are the elements in W set the longer are the separating
sequences.

The W method consists in using the entire W set instead of the status
message to test that the end state of each transition is the one expected. Note
that because W may contain several sequences, we have to visit the same state
several times to apply all the separating sequences in the W set. The set of test
sequences is simply obtained concatenating the P and W sets and apply them
in order after a reset message to take back the machine to the initial state. In
this way each test sequence p;; is the concatenation of the i-th sequence of the
P set, with the the j-th sequence of the W set, with an initial reset input. Eeach
pi; starts from the initial state (using a reset message), then the i-th sequence
of the P set takes the machine to s;where we apply the j-th sequence of the W
set to observe the output.

Formally, given two sets of input sequences X and Y, we denote with X. Y
the set of input sequences obtained concatenating all the input sequences of X
with all the input sequences of Y. The set of input sequences produce by the W
method is equal to {reset}.P.W.

If we do not observe any fault, the implementation is proved to be correct
[?]- Indeed any output fault is detected by the application of a sequence of P,
while any transfer fault is detected by the application of W.

Ezample 4. For the machine in Fig. 1 a characterizing set W is {a,b} (equal to
the input set I). In fact we have:

For state s1 a/0 b/1

For state s3 a/1 b/1

For state s3 a/0 b/0

P = {e, a, b, bb, ba, bba, bbb}

The set of test sequences P.W is reported in the following table.

P € a b ba bb bba bbb
P.W ra| rb |raa] rab |rba|rbb|rbaa|rbab|rbb|rbbb|rbbaa]rbbab|rbbba|rbbbb
trans to test|s;: null{sy: @ / O|s1: b/1| s2: a/1 | s2:b/1| s3:a /0 | s3:b /0
output | 0] 1 |00] 11 [11[11|111]111]110]110]1100]1100|1100]1101

The total length of the checking sequence is 52.
CONSIDER FAULTY IMPL.



4.2 'Wp method

The partial W or Wp method proposed by [?] has the main advantage of reducing
the length of the test suite with respect to the W method. This is the first method
we present that splits the conformance test in two phases. During the first phase
we test that every state defined in Mg also exists in My, while during the second
phase we check that all the transitions (not already checked during the first
phase) are correctly implemented.

For the first phase, the Wp method uses a state cover set instead of a tran-
sition cover set. The state cover set or @ set, for short, covers only the states, is
smaller than the transition cover set, and it is defined as follows.

Definition 5. ([state cover set[State Cover Set) the state cover set is a set Q) of
input sequences such that for each s € S, there exists an input sequence q € )
that takes the machine to s, i.e. 3(s1,q) = s

The state cover set is briefly called @ set. Using a @) set we can take the machine
to every state. For the second phase, the Wp method uses an identification set
W; for state s; instead of an unique characterizing set W for all the states. W;
is a subset of W and is defined as follows.

Definition 6. ([identification set[Identification Set) an identification set of state
s; is a set W; of input sequences such that for each state sjin S (with i# j) there
exists an input sequence p of W; such that \(s;,p) # A(sj,p) and no subset of
W; has this property.

Note that the union of all the identification sets W; is a characterizing set W.

Phase 1 The input sequences for phase one consist in the concatenation of a @
set with a characterizing set (W set) after a reset. Formally, the set of input
sequences is {reset}.Q.W. In this way every state is checked in the implemen-
tation with the W set. Remember that we say that a state ¢; in M7 is similar
to state s; if it produces the same outputs on all the sequences in a W set. A
state ¢; in M7 can be similar to at most one state of Mg, because if we suppose
that g; is similar to states s; and s; then s; and s; produce the same output for
each sequence in the W set, that is against Definition 4.

If the test does not uncover any fault during the first phase, we can conclude
that every state in Mg has a similar state in the implementation and we say in
this case that M is similar to Mg. Note that is not sufficient to verify that it
is also equivalent. The equivalence proof is obtained by the next phase.

Phase 2 During the second phase we have to test all the transitions that were
not tested during the first phase. To this aim, Wp method uses the identifications
sets. The test sequences of Phase 2 consist of the sequences of a P set ending in
state s; that are not contained in the @ set used during pahse 1, concatenated
with all the sequences contained in the identification set W;. Formally if R =
P-Q and p; in R ends in s;, the set of sequences applied during the second phase



is {reset}.R.W; . If these tests do not uncover any fault, we have verified that
the machine M conforms its specification. A proof of correctness for the Wp
method is given in [?].

Ezample 5. The machine in Fig. 1 has the following state cover set: Q = {e, b,
bb}
During the first phase we generate the following test sequences:

state to test 1]1]2]2]3] 3
Q € b bb
QW ra|rb|rba|rbb|rbba|rbbbb
output O(1(11|11{110(1110
final state 112123 3 1

During the second phase, we first compute the identification sets.
W1 = {a,b} all the sequences in W are needed to identify s;

Wy = {a} distinguishes the state s, from all other states

W5 = {b} distinguishes the state s3 from all other states

R= P-Q ={ a, ba, bba, bbb}

R a ba | bba bbb
start state 1 2 3 1 1
R.Wi raa|rab|rbaa|rbbab|rbbba|rbbbb
output 00(01{111({1100|1100|1101
final state 112 2 1 1 2

The total length of the checking sequence is 44 (note that Wp method yields
a smaller test suite than the W method)

4.3 UIO methods

If a W; set contains only one sequence, this sequence is called state signature
[?] or unique input/output (UIO) sequence [?] , that is unique for the state s;.
UIO sequences are extensively studied in Chapter FSM3(ref)chapter for state
verification. Remember that applying an UIO sequence we can distinguish state
s; from any other state, because the output produced applying UIO sequence is
specific to s;. In this way a UIO sequence can determine the state of a machine
before its application. A UIO sequence has the opposite role of an homing se-
quence or a synchronizing sequence, presented in Chapter FSM1(ref)chapter: it
identifies the first state in the sequence instead of the last one. Note that not
every state of a FSM has UIOs and algorithms to check if a state has a UIO
sequence and to derive UIOs provided that they exist, can be found in Chapter
FSM3(ref)chapter. If an UIO sequence exists for every state s;, then UIOs can
be used to identify each state in the machine; in this case UIO sequences act as
status messages.



UIO sequences can be used instead of status messages in a transition tour,
visiting every transition from s; to s; and then checking the end state s; by
applying its UIOQ. The UIO method [?] applies first a transition cover set P and
then to the state s; its UIO sequence. This method can substitute the transition
coverage method when a status message is not present and it is often used in
practice. Some tools presented in Chapter TCS1(ref)chapter use this method.
Moreover, because this method requires the application of a single sequence of
inputs for each state, instead of a set of separate sequences as in W and Wp
methods, it can be easily optimized for the use without reset, using instead a
unique checking sequence similar to a transition tour. Such optimized version is
given in [?] and the problem of finding the shortest transition tour covering all
the transition and then applying an extra sequence, that is a UIO sequence in
this case, to their end state is called Rural Chinese Postman Problem.

Although used in practice, the UIO method does not guarantee to discover
every fault in the implementation [?] because the uniqueness of the UIO se-
quences may not hold in a faulty implementation. A faulty implementation may
contain a state s’ that has the same UIO as another state s (because of some
faults) and a faulty transition ending in s’ instead of s may be tested as correct.
Note that for this reason the Wp method uses the Wi sets only in the second
phase, while in the first phase it applies the complete W instead.

A modified version of the UIO method, called UIOv, that correctly generates
checking sequences, is given in [?]. The UIOv method builds the test suite in
three phases:

1. Uv process: visit every state in S and apply its UIO sequence to check that
the state is correct and the transitions to reach that state are correctly
implemented. To reach each state use the Q set. This corresponds with the
state verification phase of the UIO method. The input sequences consist
of the concatenation of Q with the UIO sequence of the final state of the
sequence in Q.

2. = Uv process: visit every every state and apply the input part of the UIO
sequences of all other states and check that the obtained output differs from
the output part of the UIO sequence applied. Skip UIO sequences that have
the input part equal to a prefix of the input part of the UIO sequence applied
in the phase 1. Indeed, in this case, we know already that the outputs differ,
because two states cannot have the same input and output part of their UIO
sequences. At the end of Uv and —Uv process we have verified that M is
similar to M.

3. transition phase: check that every transition not already verified in 1 and 2
produces the right output and ends in the right state by applying its UIO
sequence.

Note that the UIOv method can be considered as a special case of Wp method,
where the W set is the union of all the UIO sequences and phase 1 of the Wp
method includes both Uv process and —Uv process and phase 2 is the transition
phase.



Example 6. For the machine in Fig. 1 the UIO sequences are:
UIO, = ab distinguishes the state s; from all other states
UIO; = a distinguishes the state sy from all other states
UI0s = b distinguishes the state ss from all other states
1. Uv process

Q el b | bb
statetotest| 1 | 2 | 3
Q.UIO rab|rba|rbbb
output 01|11]110

2. =Uv process

state to test| 1 2 3
Q.-UIO rb|rbab|rbb|rbbab|rbba
output 1{111(11|1100|110
final state |2| 3 [ 3] 1 3

3. Transition test phase:

transition to test|s; : @ / O|sa: a / 1|s3: b /Olsg:a /0
input sequence raab rbaa rbbbab rbbab
output 001 111 11001 1100

4.4 Distinguishing Sequence method

In case we can find one sequence that can be used as UIO sequence for every
state, we call such sequence distinguishing sequence (DS) (defined in Chapter
FSM2(ref)chapter). In this situation we can apply the DS method presented in
[?] as modification of the method given in [?] and exploiting the reset message.
Note that this DS method can be viewed as a particular case of the W method
when the characterizing set W contains only a preset distinguishing sequence .
The test sequences are simply obtained combining a P set with z.

Ezxample 7. For the machine in Fig. 1 we can take the sequence x = ab as a
distinguishing sequence. In fact

)\MS(81,$) =01

)\MS(SQ,.%) =11

)\MS(S3,$) =00

P € a b ba bb bba bbb
P.x rab raab rbab | rbaab | rbbab | rbbaab | rbbbab
trans to test|s;: null{s1: @ / Ofs1: b/1|s2: a/1|s2: b/1|ss:a / O|ss: b /0
output 01 001 111 1111 | 1100 | 11000 11001




Cost and length

All the methods presented in Section 4 share the same considerations about
the maximal length of the checking sequence and the cost of producing it. For
the W method, the cost to compute the W set is O(pn?) and it contains no
more than n — 1 sequences of length no more than n (as shown in Chapter
FSM1(ref)chapter ). The cost to build the tree T set using the Algorithm 2 is
O(pn) and its maximum level is n. The generation of the P set, by visiting T,
takes time O(pn?) and produces up to pn sequences with the maximum length
n. Since we have to concatenate each transition from in the P set with each
transition in the W set, we obtain up to pn? sequences of length n + n, for a
total length of O(pn?) and a total cost of O(pn?). Wp method has the same cost
and same maximum length.

The UIO method and the method using a preset distinguishing sequence are
more expensive, because determining if a state has UIO sequences or a preset
distinguishing sequence was proved to be PSPACE hard (as shown in Sections
FSM3(ref)complexity and FSM2(ref)FSM2,,ds). N otethatinpracticeU IOsequencesaremorecommonthandistir
and adaptive distinguishing sequences have maximum length n?. Using adaptive
DS, we appy such sequences after every transition. Because there are pn transi-
tions, the total length for the checking sequence is again pn3.

5 Using Distinguishing Sequences without Reset

If the machine M has no reset message, the reset message can be substituted
by a homing sequence, already introduced in Section FSM1(ref)sec:intro-homing.
However this can lead to very long test suites and it is seldom used in practice.
On the other hand, methods like UIO and DS use a single input sequence to test
the final state of each transition and they can, therefore, be easily extended in
a way that they do not need to use the reset message to visit the next state to
be verified. Instead of the reset message we can use transfer sequences.

Definition 7. (Transfer Sequence) A transfer sequence 7(s;, s;) is a sequence
that takes the machine from state s; to s;

Such a transfer sequence exists for each pair of states, since Mg is strongly con-
nected. Moreover, if the machine has a distinguishing sequence z, this sequence
can be used as unreliable status message because it gives a different output for
each state. It is like a status message, except that it move the machine to an-
other state when applied. The method proposed by [?] exploits distinguishing
sequences to perform the conformance test. The methods has, as many meth-
ods presented in the previous section, two phases. It first builds a test sequence
that visits each state using transfer sequences instead of reset and then applies
its distinguishing sequence to test if M; is similar to Mg. It then builds a test
sequence to test each transition to guarantee that M; conforms with Mg.



Phase 1 Let t; be the final state when applying the distinguishing sequence x to
the machine from state s;, i.e. t; = §(s;,«) and 7; the transfer sequence from ¢;
to 8;41,1.€. : 7; = 7(t;, 8i+1)- For the machine in the initial state s, the following
test sequence checks the response to the distinguishing sequence in each state.

TTITTOL ... Ty T (1)

This sequence can be depicted as follows.
>

Starting from s; the first application of the distinguishing sequence = tests
s1 and takes the machine to t1, then the transfer sequence 7 takes the machine
to so and the second application of x tests this state and so on till the end of of
the state tour. At the end, if we observe the expected outputs, we have proved
that every state of Mg has a similar state in M.

Phase 2 In the second phase, we want to test every state transition. To test a
transition from s; to s; with input a we can take the machine to s;, apply a,
observe the output, and verify that the machine is in s; by applying =. Assuming
that the machine is in state ¢, to take the machine to s; we cannot use 7(¢,s;)
because faults may alter the final state of 7(¢, s;). Hence, we cannot go directly
from ¢ to s;. On the other hand, we have already verified by (??) that 7(¢;_1, s;)
takes the machine from s;_1to s;. We can build a test sequence that takes the
machine to s;_; , verifies that the machine is in s;_; applying x and moves to
s; using 7(t;—1, s;), then applies a, observes the right output, and verifies that
the final state is s; by applying again the distinguishing sequence :

T(t7 Si,1)$7'(ti,1 5 si)cwc (2)

(t,Si_l' = ‘ - ‘ - ‘

Therefore, the sequence (??) tests the transition with input a from state s;
to s; and moves the machine to ¢;. We repeat the same process for each state
transition to obtain a checking sequence. The size of the checking sequence is
polynomial in the size of the machine Mg and the length of x.

Exzample 8. A distinguishing sequence for the machine in Fig. 1 is = ab and the
corresponding responses from state s1, so, and s3 are: 01 11, and 00 respectively.
The distinguishing sequence, when applied in states si, s2, and s3 takes the
machine respectively to t; = s, to = s3 and t3 = s7. the transfer sequences are
T(tl, 82) = T(tg, 83) = T(t3, 81) = €.

The sequence (?7?) becomes



T(tl,SQ)xT(tg,S3)$T(t3,Sl) x
test sequence ab ab ab ab
output 01 11 00 01

The test sequence ends in state sg
The test sequences (??) can be concatenated to obtain:

trans totest | s3: b /0| s2:a/l |[s3:a /O0lsi: a/Ofsa: b/1|s1: b/1
T(t,1 s3)bx|T(t2, s2)ax| ax az bx bz
input sequence| bbab aab aab aab bab bab
end state 2 3 1 2 1 3
output 1001 111 000 001 100 111

The total length of the checking sequence is 27.

Adaptive DS Instead of using a unique preset distinguishing sequence for all
the states, we can use an adaptive distinguishing sequence as explained in the
following. An adaptive distinguishing sequence (ADS) is a decision tree that spec-
ifies how to choose the next input adaptively based on the observed output to
identify the initial state. Adaptive distinguishing sequences are studied in Section
FSM2(ref)FSM2,ds.InthatChapter, thereadercan findthede finition(FSM2(ref)def : defqaqs), analgorithmt

Example 9. An adaptive distinguishing sequence for the machine in Fig. 1 is
depicted in Figure 4. We apply the input a and if we observe the output 1 we
know that the machine was in the state so. If we observe the output 0, we have
to apply b and if we observe the output 1 the machine was in s; otherwise we
observe 0 and the machine was in sj3.

Using adaptive distinguishing sequence for our example, we obtain x; = ab,
X9 = a, x3 = b, and 7 = € and the sequence (??) becomes

T T(tl,Sg) T2 T(tQ,Sg) I3 T(tg,Sl) T
input sequence|ab a b ab ab

-
7

Fig. 4. Adaptive distinguishing sequence of machine in Fig. 1




Length and cost An adaptive distinguishing sequence has length O(n?), and
a transfer sequence cannot be longer than n . The sequence (??) is long O(n?).
Because there are pn transitions, and every sequence (??) has length O(n?),
the cost is again O(pn?) to find the complete checking sequence. Therefore, all
the methods presented in Section 4 and in this section, have the same cost.
The advance of the method presented in this section, is that it does not need a
reset message. A comparison among methods from a practical point of view is
presented in Section 8.

Minimizing the sequence length Note that there exist several techniques
to shorten the length of the checking sequence obtained by applying the distin-
guishing sequence method [?], but still resulting checking sequences have length
O(pn?).

6 Using Identifying Sequences instead of Distinguishing
Sequences

Not every finite state machine has distinguishing sequences. In case the machine
has no reset message, no status message, no UIO sequences, and no distinguishing
sequences, we cannot apply the methods proposed so far. We can still use the
Assumption 1 and exploit the existence of separating sequences (Definition 4),
that can distinguish a state from any other state in Mg. In this case, conformance
testing is still possible [?], although the resulting checking sequences may be
exponentially long.

- - - =

S~ _--—-V‘\S;/ %
.

b: in M;

Fig. 5. Using two separating sequences to identify the state

As usual, we first check that M7 is similar to M,. We display for each state
s; the responses to all the separating sequences in its separating set Z;. Suppose
that Z; has two separating sequences z; and z,. We want to apply the steps
shown (in square boxes) in Figure 5 (a) : take Mto s;, apply z1(step 1), take
the machine back again to s; (step 2) and then apply 2o (step 3). If we observe
the right output, we can say that the machine M; has a state ¢; similar to
s;. We can start from ¢ = 1 and proceed to verify all the states without using
neither reset nor a distinguishing sequence. The problem is that we do not know



how to bring back the machine M7 to s; in a verifiable way, because in a faulty
machine, as shown in Figure 5 (b), the transfer sequence 7(¢;,s;) (step 2) may
take the machine to another state s; where we could observe the expected output
applying the z; sequence, without being able to verify that s} is s; and without
able to apply again z;. We use now the Assumption 6 on page 4, namely that
M has only n states.

Theorem 1. Let s be a state, x be an input sequence, o the output sequence
produced applying © to s, and T a transfer sequence from t, = 6(s,x) back to
s. By applying the test sequence (x 7)™ to state s, the machine ends in a state
where applying again © we observe the same output o.

/0"
In Mg In M;

Fig. 6. Applying 2z; amd 2o

Proof. XXX DA RIVEDERE The scenario described in the theorem is shown
in Figure 6. Suppose that M is initially in state s. Applying = 7 the machine
should come back to s. However, due to some faults, the machine M; may go to
another state g; even if the output we observe is the one expected. Applying n
times x 7 , we check that the output is always the same. Let ¢, be the state of
M after the application of (x7)". The n applications of x 7 produce the same
output, but we are not sure that s, q;...q, are the same state yet. However the
n+1 states s,qi,...,q, cannot be all distinct, because M; has n states. Hence
Gn is equal to some ¢, with r < n and, therefore, it would produce the same
output if we apply z.

Example 10. Consider the machine in Figure 1 and take an alleged implemen-
tation M;. Apply the input @ (in this case 7 = €) and check that the output
is 0. We are not sure that M; is now in state s; as well. We can apply again
a and observe the output and so on. When we have applied aaa and observed
the output 000, M; may have traversed states s1, q1,92, and g3. Because M7 has
only 3 states, ¢s is equal to one of s1, ¢1,q2 and we are sure that if we applied
again a we would observe 0

We use Theorem 1 as follows. Assume that s; has the separating set Z; = {21, 22}.
We first apply (217(ti,s;))" and thanks to the theorem we end in a state that
would produce the same output as if we applied z;. We apply z, instead. If we
observe the specified output we can conclude that s; has a similar state in Mj.



We can generalize this method when the separating set Z; contains m sepa-
rating sequences. Suppose that the separating set for state s is Z; = {z1,..., 2m}.
Let 7; be the transfer sequence that takes the machine back to s after the appli-
cation of z;, i.e. 7; = 7(d(s,2;),s). We can define inductively the sequences 3,
as follows:

B =z
ﬂr (Br—lTr—l)nzr

By induction, one can prove that applying G,_1 after applying (8,_17-1)"
would produce the same output. Considering how (; are defined, this means
that applying z1, ..., z-—1 would produce the same output . For this reason we
apply z, after (8,_17-—1)". Therefore, one can prove that [3,, is an identifying
sequence of s;, in the following sense: if the implementation machine M; applying
Bm produces the same output as that produced by the specification machine
starting from s;, then M; has a state that is similar to s; and such state is the
state right before the application of the last z,, (regardless of which state M;
started from). We indicate the identifying sequence for state s; with I;.

Once we have computed the identifying sequence for every state, we can
apply a method similar to that explained in Section 5 to visit each state, verify
its response to the identifying sequence, and then transfer to the next state.
Let I; the identifying sequence of state s; and 7; the transfer sequence from
t; = 6(si, I;) to s;+1, applying the following test sequence:

Il T1 IQ...Il (3)

s O e O e O e ) e

we can verify that M7 is similar to Mg.

Once we have that M7 is similar to Mg we have to verify the transitions. To
do this we can use any I, as reliable reset. For example, we can take I; as reset
to the state ¢t; = 07(s1, 2m) and use t; as the initial state for all the transition
verification. if we want to reset the machine from the state s; to ¢; we can
apply 7(sg, s1)I1 and even if 7(sy, s1) fails to take the machine to s;, we are sure
that I, will take it to ¢;. Now we proceed as explained in Section 4. To test a
transition from s; to s; we apply a pseudo reset I; to ¢1, then a transfer along
tested transitions to s;, then we apply the input, observe the output, and apply
the identifying sequence I;.

Ezample 11. Consider the machine Mg in Fig. 1

I = aaa b
I> = aaa
I3 = bbb

The sequence (??) becomes



I |\m2| Ir |ms| I3 |31 Ih
input sequence|aaab| b |aaa| b |bbb| b |aaab

Length and cost The length of an identifying sequence grows exponentially
with the number of separating sequences of a state and the resulting checking
sequence is exponentially long. SPTEGA MEGLIO.

7 Additional states

The Assumption 6, that the implementation has the same number of states as
the specification, may not hold in general. The problem of testing each edge in a
finite state machine with arbitrary extra states, is similar to the classical problem
of traversing an unknown graph, that is called universal traversal problem [?].

Fig. 7. A faulty machine M; with K extra states

Assume that a faulty machine M; , depicted in Figure 7, is identical to Mg
except for the state s; on input a; where M; moves to extra states qi, ..., k.
Assume the worst case, that only the transition from state g on input ax 1 has
a wrong output or moves to a wrong next state. To be sure to test such transition,
the test sequence applied to state s; must include all possible input sequences of
length K+1, and thus it must have length |I |K+1. Such test sequence is also called
combination lock because in order to unlock the machine, it must reach the state
qr and apply the input ax 1. Valisveski [?] showed that also the lower bound on
the test sequence is multiplied by |I|*; i.e. it becomes Q2(|I/*"*|5]?) (discussed
also in Chapter BT2(ref)chapter Section 5). Note that such considerations hold
for every state machine M; with K extra state: to test all the transitions we
need to try all possible input combinations of length K-+1 from all the states of
M7, and thus the test sequence must have length at least |I]**[S].

Using similar considerations, many methods we have presented can be eas-
ily extended to deal with implementations that may add a bound number of
states. This extension, however, causes an exponential growth of the length of
the checking sequence.



In this section we present how the W method is extended to test a machine
with m states with m > |Sg| = n. The W method in this case use instead of W
another set of sequences called distinguishing set Y = (eUIUI?U...UI™ ™). W.
Hence we apply up to m-n inputs before applying W. The use of Y instead of W
has the goal to discover states that may be added in M;. If m = n then Y=W.
Each test sequence starts with a reset, then applies a sequence to test each
transition, then a applies a number of inputs till m-n, then applies a separating
sequence of W. The set of test sequences P.Y detects any output or transfer error
as long as the implementation has no more than m states. The proof is given in

7.

Ezxample 12. Consider the machine in Fig. 8 as faulty implementation with one
state more, namely s4. The original sequences generated with the W method
assuming that the machine has the same number of states are not capable to
discover the fault. If we use the W method with m = 4, we generate for bbb in
P, bin [ and b in W the sequence rbbbbb that is able to expose the fault.

Fig. 8. A faulty implementation of machine Mg with 4 states

8 Comparison and Practical Implications

A comparison among the methods presented in this chapter should include two
main factors: the cost and the length to produce and execute the test suites and
the fault detection capability. A theoretical study shows that W, Wp, UIOv, DS
and IS methods, under the given assumptions, have the same fault detection
capability. The TT method and the UIO method can discover any output fault,
while the ST method, covering only the states, may miss faults. The total length
of the test suite is greater for methods like W and Wp than for methods like
TT and UIO. The DS and IS methods without reset leads to even longer test
suites. it is interesting to compare the methods when the assumptions do not
hold. This kind of study can be found in [?,?]. Indeed, assumptions like the



equal number of states for implementation may be not true in practice. The
assumption of the existence of a reset message is more meaningful, but empirical
studies suggest to avoid the use of the methods using reset messages for the
following reason. As shown in Section 7, faults in extra states are more likely to be
discovered when using long test sequences. The use of reset function may prevent
the implementation to reach such extra states where the faults are present. For
this reason methods like UIO or DS method reset are better in practice than the
UIOv method or the DS method with reset.

Although the study presented in this chapter is rather theoretical, we can
draw some useful guidelines for practice testing for FSMs or for parts of mod-
els that behave like finite state machine and the reader should be aware that
many ideas presented in this chapter are the basics for tools and case studies
presented in Chapters TCS1(ref)chapter and TCS2(ref)chapter. A first practical
implication is that visiting each state in a FSM (like a statement coverage) using
a ST method, should not be considered enough. One should at least visit every
transition using a transition tour method, that can be considered as a branch
coverage. Transition coverage should be used in conjunction of a status message
to really check the end state of every transition. The presence of a status message
in digital circuits is often required by the tester because it is of great help to
uncover faults. If a status message may be not reliable, a double application of
it helps to discover when it fails to reveal the correct status. If a status message
is not available (very usual in software black box testing), one should use some
extra inputs to verify the states. Such inputs should be unique, like in Wp, UIO
and DS. If one suspects that the implementation has many more states than the
implementation, he/she should prefer long test sequences that can be obtained
simply adding some extra inputs after visiting the transition and before checking
the status identity. Such practical suggestions may be not guarantee to discover
any possible faults, but may dramatically increase the likelihood of success of
the testing activity

9 Summary

In this chapter we have presented the conformance testing for finite state ma-
chines. The methods we have presented assume the facts presented in Section
2, some of which, however may be relaxed. The first method in Section 3, the
Transition Tour (TT) method, exploits all the assumptions, including a status
message to check that the implementation is in the correct state. If a status
message is not available, but the machine has a reset message to go to its ini-
tial state, one can use one of the methods proposed in Section 4, namely the
W method, the Wp method, the unique input output (UIO) sequence method,
the UIOv method, and the method using distinguishing sequences (DS) with
reset. In Section 5 we have presented how distinguishing sequences can be used
without reset. If the machine has no DS, the identifying sequences (IS) method,
presented in Section 6, still works. The IS method exploits only the assumptions
that the number of states is finite and that separating sequences exist in mini-



mized specification machines. The problem of testing finite state machines with
extra states is discussed more in general in Section 7. Section 8 discusses some
practical implications of the methods presented and presents a brief comparison
among them.
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