Type Systems
and Semantics

“Ishmael: Surely all this is not without meaning.”
Herman Melville, Moby Dick

CHAPTER OUTLINE

3.1 TYPE SYSTEMS 51
3.2 SEMANTIC DOMAINS

AND STATE TRANSFORMATION 56
3.3 OPERATIONAL SEMANTICS 58
3.4 AXIOMATIC SEMANTICS 60
3.5 DENOTATIONAL SEMANTICS 71

3.6 EXAMPLE: SEMANTICS OF JAY
ASSIGNMENTS AND EXPRESSIONS 73

Type systems have become enormously important in language design because they can
be used to formalize the definition of a language’s data types and their proper usage in
programs. Type systems are often associated with syntax, especially for languages
whose programs are type checked at compile time. For these languages, a type system
is a definitional extension that imposes specific syntactic constraints (such as the re-
quirement that all variables referenced in a program be declared) that cannot be ex-
pressed in BNF or EBNF. For languages whose programs are type checked at run time,
a type system can be viewed as part of the language’s semantics. Thus, a language’s type
system stands at the bridge between syntax and semantics, and can be properly viewed
in either realm.

50

Chapter 3 Type Systems and Semantics

The definition of a programming language is complete only when its semantics, as
well as its syntax and type system, is fully defined. The semantics of a programming
language is a definition of the meaning of any program that is syntactically valid from
both the concrete syntax and the static type checking points of view.'

Program meaning can be defined in several different ways. A straightforward intui-
tive idea of program meaning is “whatever happens in a (real or model) computer when
the program is executed.” A precise characterization of this idea is called operational
semantics.” Another way to view program meaning is to start with a formal specification
of what the program is supposed to do, and then rigorously prove that the program does
that by using a systematic series of logical steps. This approach evokes the idea of
axiomatic semantics. A third way to view the semantics of a programming language is
to define the meaning of each type of statement that occurs in the (abstract) syntax as a
state-transforming mathematical function. Thus, the meaning of a program can be
expressed as a collection of functions operating on the program state. This approach is
called denotational semantics.

All three semantic definition methods have advantages and disadvantages. Opera-
tional semantics has the advantage of representing program meaning directly in the code
of areal (or simulated) machine. But this is also a potential weakness, since defining the
semantics of a programming language on the basis of any particular architecture,
whether it be real or abstract, confines the utility of that definition for compiler-writers
and programmers working with different architectures. Moreover, the virtual machine
on which instructions execute also needs a semantic description, which adds complexity
and can lead to circular definitions.

Axiomatic semantics is particularly useful in the exploration of formal properties of
programs. Programmers who must write provably correct programs from a precise set
of specifications are particularly well-served by this semantic style. Denotational se-
mantics is valuable because its functional style brings the semantic definition of a lan-
guage to a high level of mathematical precision. Through it, language designers obtain
a functional definition of the meaning of each language construct that is independent of
any particular machine architecture.

In this chapter, we introduce a formal approach to the definition of a language’s
type system. We also introduce the three models of semantic definition, paying special
attention to the denotational model. Denotational semantics is used in later chapters for
discussing various concepts in language design and for clarifying various semantic
issues. This model is particularly valuable because it also allows us to actively explore
these language design concepts in a laboratory setting.

1. Not too long ago, it was possible to write a syntactically correct program in a particular language that
would behave differently when run on different platforms (with the same input). This situation arose
because the definition of the language’s semantics was not precise enough to require that all of its compilers
translate a program to logically equivalent machine language versions. Language designers have realized in
recent years that a formal treatment of semantics is as important as the formal treatment of syntax in
ensuring that a particular program “means’ the same thing regardless of the platform on which it runs.
Modern languages are much better in this regard than older languages.

2. Technically, there are two kinds of operational semantics, called “traditional” and “structured” operational
semantics (sometimes called “natural semantics”). In this chapter, we discuss the latter.

60

Chapter 3 Type Systems and Semantics

3.4 AXIOMATIC SEMANTICS

While it is important to programmers and compiler-writers to understand what a pro-
gram does in all circumstances, it is also important for programmers to be able to con-
firm, or prove, that it does what it is supposed to do under all circumstances. That is, if
someone presents the programmer with a specification for what a program is supposed
to do, the programmer may need to be able to prove, beyond a reasonable doubt, that the
program and this specification are absolutely in agreement with each other. That is, the
program is “correct” in some convincing way. Axiomatic semantics provides a vehicle
for developing such proofs.

For instance, suppose we want to prove mathematically that the C/C++ function
Max in Figure 3.1 actually computes as its result the maximum of its two parameters: a
and b.

| Figure 3.1 A C/C++ Max Function int Max (int a, int b) {
int m;
if (a >=Db)
m=a;
else
m=b;
return m;
}

Calling this function one time will obtain an answer for a particular a and b, such as
8 and 13. But the parameters a and b define a wide range of integers, so calling it several
times with all the different values to prove its correctness would be an infeasible task.

Axiomatic semantics provides a vehicle for reasoning about programs and their
computations. This allows programmers to predict a program’s behavior in a more cir-
cumspect and convincing way than running the program several times using as test
cases different random choices of input values.

3.4.1 Fundamental Concepts

Axiomatic semantics is based on the notion of an assertion, which is a predicate that
describes the state of a program at any point during its execution. An assertion can de-
fine the meaning of a computation, like “the maximum of a and b,” without concern for
how that computation is accomplished. For instance, the code in Figure 3.1 is just one
way of algorithmically expressing the maximum computation; even for a function this

garganti
Rectangle

3.4 Axiomatic Semantics 61

simple, there are many minor variations. In any case, the following assertion Q de-
scribes the function Max declaratively, without regard for the underlying computational
process:

Q0 = m = max(a, b)

This predicate defines the meaning of the function Max(a, b) for any integer values
of a and b. To prove that the program in Figure 3.1 actually computes Max(a, b), we
need to show that the logical expression Q is somehow equivalent in meaning to that
program. Q is called a postcondition for the program Max.

Axiomatic semantics allows us to logically derive a series of predicates by reason-
ing about the behavior of each individual statement in the program, beginning with the
postcondition Q and the last statement and working backwards. The last predicate, say
P, that is derived in this series of steps is called the program’s precondition. The pre-
condition thus expresses what must be frue before program execution begins in order
for the postcondition to be satisfied.

In the case of Max, the postcondition Q is well-defined for all integer values of a
and b. This suggests the following precondition:

P = true

That is, for the program to be considered for correctness at all, no assumption or pre-
condition is needed.

One final consideration must be taken into account before we look at the details of
correctness proofs themselves. That is, for some initial values of the variables that sat-
isfy the program’s precondition P, executing the program may never reach its last state-
ment. This may occur either because the program enters an infinite loop or because it
may try to do a calculation that exceeds the capabilities of the machine on which it is
running. For example, if we try to compute n! for a large enough value of n,® the pro-
gram will raise an arithmetic overflow condition and halt, thus never reaching its final
goal. In general, we must be content to prove correctness of programs only partially—
that is, only for those selections of initial values of variables that allow the execution of
all its statements to be completed. This notion is called partial correctness.

These concerns notwithstanding, we can prove the (partial) correctness of a pro-
gram by placing its precondition in front of its first statement and its postcondition after
its last statement, and then systematically deriving a series of valid predicates as we
simulate the execution of each instruction in its turn. For any statement or series of state-
ments s, the following expression

{Pys{0}

represents the predicate that the statement s is partially correct with respect to the pre-
condition P and the postcondition Q. The expression {P}s{Q} is called a Hoare triple’
and reads “execution of statements s, beginning in a state that satisfies P, results in a
state that satisfies Q, provided that s halts.”

8. 30! exceeds the size of a 32-bit integer.

9. These forms are called Hoare triples since they were first characterized by C.A.R. Hoare in the original
proposal for axiomatizing the semantics of programming languages [Hoare 1969].

62 Chapter 3 Type Systems and Semantics

Table 3.1

Proof Rules for
Different Types of
Jay Statements

For our example program, we first write the following Hoare triple:

{true}
if (a >=b)
m=a;
else
m=b;

{m = max(a, b)}

To prove the validity of this Hoare triple, we derive intermediate Hoare triples
{P}s{Q} that are valid for individual statements s, beginning with the postcondition.
This process continues until we have successfully shown that the above Hoare triple is
true for all initial values of a and b for which the program halts. That is, if we can de-
rive Hoare triples that logically connect the individual lines in a program with each
other, we will effectively connect the program’s postcondition with its precondition.

How are these intermediate triples derived? That is done by formalizing what we
know about the behavior of each type of statement in the language. Programs in Jay-like
languages have four basic types of statements: assignments, conditionals, loops, and
blocks (sequences). Each statement type has a proof rule which defines the meaning of
that statement type in terms of the pre- and postconditions that it satisfies. The proof
rules for Jay-like languages are shown in Table 3.1.

Statement Type Proof Rule
1. Assignment frue
s = s.target = s.source; {Q[s.target\s.source]}s{Q}
2. Sequence (Block) {Pys;{R} {Ris{}
s=58;5, {Ps; 5,{Q}
3. Conditional {s.test A P}s.thenpar{Q} {—s.test A P}s.elsepart{Q)}
s = if (s.test) s.thenpart {P}s(G}
else s.e|sepc|rt
4. loop {s.test A P}s.body{P}
s = while (s.test) s.body {P}s{-s.test A P}
5. Rule of consequence POP {P{Q} Q@>5Q
{Ps{Q}
These proof rules are all of the form P remls.e , which is similar to the execution
conclusion

rules used in operational semantics. However, proof rules are to be read, “if the premise
is valid then the conclusion is valid.”

The Assignment proof rule has frue as its premise, guaranteeing that we can
always derive the conclusion; such a rule is called an axiom. The notation Q[a\b]
means “the state that results from replacing the value of b in Q by a.” For instance, if

3.4 Axiomatic Semantics 63

{0} ={x=1Ay=4}then {Q[1\x]} = {1 =1 Ay =4}. Applied to an assignment,
rule 1 suggests that the following Hoare triple is valid:

{a = max(a, b)}
m=a;
(m = max(a, b)}

That is, the replacement of m in the postcondition by a results in precondition of
{a = max(a, b)}. So the assignment rule allows us to reason backwards through a pro-
gram, deriving preconditions from postconditions in individual statements.

Proof rule 5 allows us to perform arithmetic and logical simplification in a predicate
during the proof process. In the above example, for instance, the assertion {a = b Aa =
max(a, b)} is implied by {a = b}, so that we can substitute it and form an equivalent
Hoare triple using rule 5 as follows:

a=b D a= max(a, b) {a = b Aa=max(a, b)}m = a;{m = max(a, b)}

{a=b}m = a;{m = max(a, b)}

This example also suggests that there may be several alternative preconditions that
can be derived from a given statement and postcondition, using the proof rules. That
precondition which is the least restrictive on the variables in play is called the weakest
precondition. For instance, the precondition {a = b} is the weakest precondition for
the statement m = a; and its postcondition {m = max(a, b)}. Finding weakest precon-
ditions is important because it enables simplification of the proof at various stages.

A strategy for proving the partial correctness of the rest of the program in Figure 3.1
works systematically from the postcondition backwards through the if, and then through
the assignment statements in the then and else parts toward the given precondition.

Next, using the rule 1 for assignments and our postcondition on the else part of the
if statement, we obtain:

{b = max(a, b)}
m=b;
{m = max(a, b)}

As before, we use a < b and rule 5 to show:

a<b Db = max(a, b) {a < b A b= max(a, b)}m = b;{m = max(a, b)}
{a < b}m = b;{m = max(a, b)}

Having proved both premises of rule 3 for a conditional, we can conclude:

{true}
if (a >=b)
m=a;
else
m=b;

{m = max(a, b)}

In Subsection 3.4.2, we prove the correctness of a program involving a loop.

64

Chapter 3 Type Systems and Semantics

3.4.2 Correctness of Factorial

Suppose we want to prove mathematically that the C/C++ function Factorial in Figure 3.2
actually computes as its result n!, for any integer n where n = 1. By n! we mean the
product1 X -+ - X n.

| Figure 3.2 A C/C++ Factorial Function int Factorial (int n) f

int f =1;

int i =1;

while (i < n) {
i=1+1;
f=1f*1;

}

return f;

So the precondition or input assertion Q for Factorial is 1 = n, while the postcon-
dition or output assertion is f = n!. In general in a program involving a loop, rule 4 of
Table 3.1 is used to break the code into three parts, as follows:

{Q}

initialization

{P}

while (test) {
loopBody

}

{—test A P}

finalization

{R}

where Q is our input assertion, R is our final or output assertion, and P is the loop in-
variant. An invariant is an assertion that remains true for every iteration of the loop. In
general, there is no algorithmic way to derive a loop invariant from the input-output as-
sertions for the program.'® Thus, it is important for proving program correctness that the
loop invariant be supplied for each loop.

For the Factorial function given in Figure 3.2, the loop invariant P is {1 =i A
i=nA(f=1i!)}. Thus, the Factorial program with its input-output assertions and loop
invariant can be rewritten as:

{1 =n}
f=1;
i=1;

{1=ini=nan(f=1i)}

10. Finding a loop invariant is often tricky, as is the whole correctness proof process itself. Interested
readers are encouraged to find additional sources (e.g., [Gries 1981]) that cover this very interesting topic
in more detail.

3.4 Axiomatic Semantics 65

while (1 < n) {
i=d+1;
f=f*i;
}
{iznal=ini=na(f=1il)}
{f=n!}

return f;

This effectively reduces the original problem of proving the correctness of the origi-
nal program to the three problems: (1) proving the initialization part; (2) proving the
premise of rule 4; and (3) proving the finalization part. These subproblems may be proved
in any convenient order.

The third part seems easiest, since it involves the empty statement (or the skip
statement in Jay). The proof can be achieved by repeated applications of rule 5:

iZnAl=ini=nan(f=i)D>E=nA(f=i)D(f=n!)

Since i = n and i = n, it follows that i = n. The second step involves a substitution
of one variable for another.

A strategy for proving the initialization part is to use rule 2 to break a Block, or se-
quence of statements, into its individual components:

{I=ini=nan(f=1)}

The intermediate assertion R" can be found from the application of rule 1 by back
substitution: {l =1 A1 =n A (f=1!)} . Again, applying rule 1 to R’ on the program
fragment:

{1 =n}
f=1;
{fI=1Al=na(f=1D}

we obtain: {1 =1 A 1=n A (1 =1!)}, which simplifies to 1 = n. Thus, we have
shown:

{l=nif=1{l=1lAl=naf=1!} {l=lal=naf=1} i=1{l=ini=naf=1il}
{fl=njf=Li=L{l=iAni=naf=il}

Thus, it only remains to show that P is a loop invariant; this means that we must
show the premise of rule 4, namely, that the loop body preserves the truth of the loop
invariant:

{s.test A P}s.body{P}
{P}s{-s.test A P}

, where s is a loop statement.

66

Chapter 3 Type Systems and Semantics

Specifically, we must show it for the given loop test, invariant P, and loop body:
{i<nal=ini=na(f=i)}

i=1d+1

f=fxi;
{1=ini=nan(f=1i)}

Again we employ the strategy of using rule 2 for sequences to obtain:
{i<nal=ini=na(f=il)}

i=1d+1
{R"}

f=f* i
{(1=ini=nan(f=1i)}
and then applying rule 1 on the assignment to f to find R’ by back substitution: 1 =i A

i=nA(fXi=1i). Werepeat this strategy using R" and rule 1 on the assignment to i
tofind: 1 =iAni=nA(fX G+ 1)=(@G+ 1!).If we can show that

i<nAal=sini=nan(f=iDDI=s=it1lai+t1l=na(fXGE+1)=(G+ 1)),
then our proof is complete by rule 5. Using the following rule from logic:
r2q9 por

pOgnr
and rule 5, we shall prove each term of the consequent separately. First, we must show:
i<nal=ini=na(f=i)DI=i+1,

This follows since 1 = i is a term in the antecedent. Next we must show:

i<nAal=ini=naA(f=i)Di+1=n,

Again, since i < n is in the antecedent and since we are dealing with integers, it
follows that i + 1 = n. Finally, we must show:

i<nAl=ini=aan(f=iDDFXG+ 1D =3G+ 1D,

Since 1 =i, we can safely divide both sides of f X (i + 1) = (i + 1)! by i + 1,
resulting in:

i<nAal=ini=na(f=i)D(=1,

which follows since the consequent appears as a term in the antecedent.
This concludes our proof of the (partial) correctness of the Factorial function given
in Figure 3.2.

3.4.3 Correctness of Fibonacci

Suppose we want to prove mathematically that the C/C++ function Fib in Figure 3.3
actually computes as its result the nth Fibonacci number in the series O, 1, 1, 2, 3, 5, 8,
13, 21, . . ., for any particular nonnegative value of n.

A strategy for proving the partial correctness of the rest of the program in Figure 3.3
works systematically from the postcondition backwards through the if, and then through
the assignment statements in the then and else parts toward the given precondition.

3.4 Axiomatic Semantics 67

| Figure 3.3 A C/C++ Fibonacci Function int Fib (int n) {
int fib0 = 0;
int fibl
int k =n;
while (k > 0) {
int temp = fib0;

I
— O

fib0 = fibl;
fibl = fib0 + temp;
k =k - 1;

}

return fib0;

Rule 2 allows us to break a Block, or sequence of statements, into its individual con-
stituents, and rules 3 and 4 allow us to reason through Conditional and Loop statements
to derive their preconditions from their postconditions. As noted above, rule 5 allows us
to cast off extraneous information along the way. Rule 5 is also useful when we want to
introduce additional information in a predicate to anticipate what may be needed later in
the process.

Now we can apply rule 1 two more times to derive a Hoare triple for each of the first
three statements in the program:

{n=0)
fib0 = 0;
{n=0Afib0 =0}
{n=0Afib0 =0}
fibl = 1;
{n=0Afib0 =0Afibl =1}
{n=0Afib0 =0Afibl =1}
k = n;
(n=0Afib0=0Afibl =1 A0=k=n}
Now rule 2 gives us the ability to simplify this. For instance, if s, and s, are the first
two statements in the above fragment, then:

(n=0}s5,{n=0Afib0=0} {n=0Afib0=0}s,{n=0Afib0=0Afibl =1}
{n=0}s,5,{n=0Afib0=0Afibl =1}

allows us to rewrite the first two of these three Hoare triples as follows:

{n=0}
fib0 = 0;
fibl = 1;

{n=0Afib0 =0Afibl =1}
Using rule 2 again allows us to establish the validity of the following Hoare triple:

{n=0}
fib0 = 0;

68

Chapter 3 Type Systems and Semantics

fibl = 1;
k =n;

(n=0Afib0 =0Afibl =1A0=k=n}

Next we consider the while loop. To deal with it, we need to discover an assertion
that is true just before every repetition of the loop, including the first. That is, we need
to find the loop’s invariant. Finding the loop’s invariant requires anticipation of what
should be true when the loop finally terminates. Here is an invariant for our while loop:

0<k=nAFib(0)=0AFib(1) =1 A
INV=3Yj€E(2,...,n—k+ 1}: Fib(j) = Fib(j — 1) + Fib(j — 2) A
fib0 = Fib(n — k) A fibl = Fib(n — k + 1)

This says that for every value of k in which the loop has already run, we will have
computed the Fibonacci numbers Fib(0), Fib(1), ..., Fib(n — k + 1), and the variables
fib0 and fib1 are identical to the Fibonacci numbers Fib(n — k) and Fib(n — k + 1)
respectively. In particular, just before the loop begins we have k = n (i.e., the loop will
have computed no numbers), the value of fib0 is Fib(0), or 0, and the value of fibl is
Fib(1), or 1.

Note that this invariant is implied by the postcondition we carefully derived for
the first three statements in the program. Thus, proof rule 5 allows the invariant to be
valid before the first iteration of the loop begins. Looking ahead, we anticipate that when
k = n — 1 the loop will have just computed Fib(2) and the value of fib0 will become
Fib(1) = 1. When k = n — 2, the loop will have computed Fib(2) and Fib(3), leaving
fib0 = Fib(2), and so forth.

This process continues until £ > 0 is no longer true (i.e., k = 0), and the invariant
asserts that the loop will have computed Fib(2), Fib(3), ..., and Fib(n + 1), leaving the

. P}s. P
value of fib0 = Fib(n). Using the proof rule s-test A Plsbody{P) in Table 3.1 for loop
{P}s{—s.test A P}

s, we relate the loop invariant with the precondition s.test A P. Thus, when the loop ter-
minates the test condition £ > 0 is no longer true, which forces the following Hoare
triple to be valid:

Fib(0) = 0 A Fib(1) = 1 Ak =0 A
Vi€ (2,...,n— 0+ 1}: Fib(j) = Fib(j — 1) + Fib(j — 2) A
fib0 = Fib(n — 0) A fibl = Fib(n — 0 + 1)

This logically implies the program’s postcondition, using proof rule 5 (the rule of
consequence) along with some fairly obvious simplifications:

{Fib(0) =0 A Fib(1) = 1 AVj € {2,...,n}: Fib(j) = Fib(j — 1)
+ Fib(j — 2) A ib0 = Fib(n)}
A final task is to show that the invariant /NV does remain valid for each repetition of

the statements inside the body of the loop. That is, we need to show that the following
(ugly!) Hoare triple is valid for every value of k > 0:

3.4 Axiomatic Semantics 69

0<k—1<nAFib0)=0AFib(1)=1A
INV={VYj€{2,...,n— (k— 1)}: Fib(j) = Fib(j — 1) + Fib(j — 2) A
fib0 = Fib(n — k) A fibl = Fib(n — (k — 1))

int temp = fib0;

fib0 = fibl;
fibl = fib0 + temp;
k =k - 1;

0=<k<nnaFib(0)=0AFib(1) =1 A
INV' ={VjE(2,...,n— k}: Fib(j) = Fib(j — 1) + Fib(j — 2) A
fib0 = Fib(n — k) A fibl = Fib(n — (k — 1))

To accomplish this, we use proof rule 5 to simplify intermediate expressions, and
substitute equivalent expressions using our knowledge of algebra. For instance, we use
the facts that the expression n — k + 1 in the above invariant INV is equivalent to
n — (k — 1), and k > 0 in the invariant is equivalent to k — 1 = 0.

Looking at the intermediate statements inside a single iteration of the loop, we see
that they maintain the validity of the invariant and make progress toward the final com-
putation of fib0 = Fib(n).

0=k—1<nAFib(0)=0AFib(1)=1Ah
INV=Vje{2,...,n— (k— 1)}: Fib(j) = Fib(j — 1) + Fib(j — 2) A
fib0 = Fib(n — k) A fibl = Fib(n — (k — 1))
int temp = fib0;
0=k—1<nAFib(0)=0AFib(1)=1An

Ivje2,....n—(k— 1)) Fib(j) = Fib(j — 1) + Fib(j — 2) A
fib0 = Fib(n — k) A fibl = Fib(n — (k — 1)) A temp = Fib(n — k)

£ib0 = fibl;
0=k—1<nAFib0)=0AFib(1)= 1A

) Vi€ {2,...,n— (k— 1)}: Fib(j) = Fib(j — 1) + Fib(j — 2) A

fib0 = Fib(n — (k — 1)) A fibl = Fib(n — (k — 1)) A temp = Fib(n — k)

fibl = fib0 + temp;
0=k—1<nAFib(0)=0AFib(1)=1An
2 Vie{2,...,n— (k— 1)}: Fib(j) = Fib(j — 1) + Fib(j — 2) A
fib0 = Fib(n — (k — 1)) A fibl = Fib(n — (k — 1)) + Fib(n — k) A temp = Fib(n — k)

70

Chapter 3 Type Systems and Semantics

0=k<naFib(0)=0AFib(1) =1 A
VjE(2,...,n— k}: Fib(j) = Fib(j — 1) + Fib(j — 2) A
fib0 = Fib(n — k) A fibl = Fib(n — (k — 1)) A temp = Fib(n — k)

To clarify the above, we have underlined that part of the invariant that changes after
each of these four statements is taken into account. The last line implies the transforma-
tion of the invariant to the following form; since temp is a variable to be reassigned at
the beginning of the next loop iteration, it can be dropped from the final assertion. Thus,
the invariant INV’ at the end of a single iteration is transformed as follows:

0=<k<naFib(0)=0AFib(1) =1 A
INV' =3V €(2,...,n—k}: Fib(j) = Fib(j — 1) + Fib(j — 2) A
fib0 = Fib(n — k) A fibl = Fib(n — (k — 1))

The key here is to notice that the values of fib0 and fibl are transformed so that
they represent the next adjacent pair of Fibonacci numbers following the pair that they
represented at the beginning of this sequence.

The indexing is a bit tricky, but readers should see that the three Fibonacci numbers
that influence a single iteration are Fib(n — k), Fib(n — (k — 1)), and Fib(n — (k — 2)),
in ascending order. For instance, when k = n, this group of statements begins with
fib0 = Fib(0) and fibl = Fib(1). This group of statements ends with k =n — 1,
fib0 = Fib(n — (n — 1)) = Fib(1), and fibl = Fib(n — ((n — 1) — 1)) = Fib(2).

3.4.4 Perspective

Axiomatic semantics and the corresponding techniques for proving the correctness of
imperative programs were developed in the late 1960s and early 1970s. At that time it
was the expectation that by now most programs would routinely be proven correct.
Clearly that has not happened.

Actually, the importance of correctness proofs in software design has been a sub-
ject of heated debate, especially in the early 1990s. Many software engineers reject the
notion of formal proof [DeMillo 1979], arguing that it is too complex and time-
consuming a process for most programmers to master. Instead they use elaborate testing
methods to convince themselves that the software runs correctly most of the time.

The counter argument was made by Dijkstra [1972] who stated that testing could
only prove the presence of bugs, never their absence. Consider a simple program that
inputs two 32-bit integers, computes some function, and outputs a 32-bit integer. There
are 2% possible inputs (approximately 10?°), so that even if one could test and verify (!)
100 million test cases per second, complete testing would take approximately 10° years.
And this is for one of the simplest programs one can imagine!

Is there a middle ground between complex and time-consuming proofs and totally
inadequate testing? We believe so.

First, properties of programs other than correctness can be routinely proved. These
include safety of programs where safety is a critical issue. Absence of deadlock in con-
current programs is also often formally proved.

3.5

3.5 Denotational Semantics 71

Second, the methods in object-oriented programs (as we shall see in Chapter 7) are
often quite small in size. Informal proofs of such methods are routinely possible, al-
though not often practiced. One reason for this is that many programmers, largely igno-
rant of formal program correctness, are not able to precisely state the input-output
assertions for the methods they write.

Third, programmers trained in program correctness can and do state input-output
assertions for the methods they write using formal English (or other natural language);
this leads to vastly improved documentation.

As an example where such formalism could (and should) have been used, consider
Sun’s javadoc documentation for the various String methods in JDK 1.1. The com-
ment for the method:

public String substring(int beginlndex, int endIndex);

states: “Returns a new string that is a substring of this string.” How imprecise! How
would an implementor carry out an informal proof given such a vague specification?
What are the range of valid values for beginIndex and endIndex? Is the minimum valid
value for beginIndex 0 or 1? A programmer interested in producing an informal proof
of an implementation of substring would at least require a more formal description of
this method; such a description is left as an exercise.

DENOTATIONAL SEMANTICS

The denotational semantics of a language defines the meanings of abstract language
elements as a collection of environment- and state-transforming functions. The environ-
ment of a program is the set of objects and types that are active at each step during its
execution. The state of a program is the set of all active objects and their current values.
These state-transforming functions depend on the assumption of some primitive types
and transformations.

While axiomatic semantics is valuable for clarifying the meaning of a program as
an abstract text, operational (or denotational) semantics addresses the meaning of a pro-
gram as an active object within a computational (or functional) environment. The use of
denotational semantics for defining meaning has both advantages and disadvantages. An
advantage is that we can use the functional denotations of program meaning as the basis
for specifying an interpreter for the language. However, this advantage raises an addi-
tional issue. That is, strictly speaking, the use of Java to implement the functional defi-
nition of, say, a Loop requires that we define the semantics of Java itself before using it
to implement the semantics of Jay. That is, there is some circularity in using the denota-
tional model as a basis for defining the meaning of a language.

Nevertheless, denotational semantics is widely used, and it allows us to define the
meaning of an abstract Jay program as a series of state transformations resulting from
the application of a series of functions M. These functions individually define the mean-
ing of every class of element that can occur in the program’s abstract syntax tree—
Program, Block, Conditional, Loop, Assignment, and so forth.

Let X represent the set of all program states o. Then a meaning function M is a map-
ping from a particular member of a given abstract class and current state in = to a new

Exercises 79

EXERCISES

3.1 Expand the static type checking function V for Declarations so that it defines the requirement that
the type of each variable be taken from a small set of available types, say {int, boolean}. Use the
same functional style and abstract syntax for Declarations that are discussed in this chapter.

3.2 Expand the Java method that implements the function V for Declarations so that it implements the
additional requirement stated in Question 3.1.

3.3 Argue that the Java method that implements the function V for Declarations is correct, in the
sense that it covers all the cases that the function itself covers.

3.4 Suppose o, = {{x, 1), (v, 2), (z 3}, 0, = {(, 5)}, and &, = {{w, 1)}. What are the results of the

following operations?

(a) o, U o,

() o, Ua,

(c) o, U o

(d PUa,

(e) o, ® 0,

f) 0,0,

(g) (o0 = (0, ®03) U0,y

3.5 Complete the operational semantics for the arithmetic, boolean, and logical operators of Jay by
writing an execution rule for each operator.

3.6 Derive the complete operational semantics for the following program segment, showing all exe-
cution rule applications and deriving the final state that includes the result (fib0, 3). Assume that
the initial state o = .

int fib0 = 0;
int fibl = 1;
int k = 4;

while (k > 0) {
int temp = fib0;

fib0 = fibl;
fibl = fib0 + temp;
k =k - 1;

}

3.7 Below is a Hoare triple that includes a Jay program segment to compute the product z of two in-
tegers x and y.

{y=0}

z =0;

n=y;

while (n>0) {
z =127+ X;
n=n-1;

}

{z = xy}

80

Chapter 3 Type Systems and Semantics

3.8

3.9

3.10

3.11

3.12

3.13

3.14

(a) What proof rules in Table 3.1 and additional knowledge about algebra can be used to infer that
the precondition in this Hoare triple is equivalent to the assertion {y =0 A 0 = x(y — y)}?

(b) Using the assignment proof rule, complete the following Hoare triple for the first two state-
ments in this program:

{y=0A0=x(y =y}

z=0;
n=y:
{y=0n 1

(c) Explain how the following can be an invariant for the while loop in this program.
{y=0An=0Az=x(y —n)}

That is, why is this assertion true before execution of the first statement in the loop, and why
must it be true before execution of every successive repetition of the loop?

(d) Show that this invariant holds for a single pass through the loop’s statements.

(e) Using the proof rule for loops, show how the invariant is resolved to an assertion that implies
the validity of the postcondition for the entire program.

Write a Jay program segment that computes the sum of a series of integers ay, . . ., a,_,, given that
n = 0. Write pre- and postconditions for this program, and then develop a proof of its correctness
using the proof rules in Table 3.1.

Write appropriate pre- and postconditions for the method substring(int,int) in the class
java.lang.String.

Write appropriate pre- and postconditions for the method index0f(String) in the class
java.lang.String.

Give a recursive C/C++ implementation of the function Fib in Figure 3.3. Prove the partial cor-
rectness of your recursive implementation for all values of n = 0.

A program has total correctness if it (completes its execution and) satisfies its postcondition for

all input values specified in its precondition.

(a) Experimentally determine the largest value of n for which the function Fib in Figure 3.3
delivers a result. What happens when it does not?

(b) Redefine the precondition for Fib so that its correctness proof becomes a proof of total
correctness.

(c) Revise its correctness proof so that it reflects this new precondition.

Consider the following sequence of C/C++ statements, which are syntactically valid but have no
reasonable semantic interpretation (assuming that i and j have been declared as int variables):

J=0;
i=23/];
for (i=1; i>-1; i++)
i
How are these situations handled when executed by your C/C++ system?

Give other kinds (beyond those kinds illustrated in the previous question) of C/C++ statements
that are syntactically valid but whose meaning cannot be reasonably defined in the semantics of a
programming language.

3.16

3.17

3.18

Exercises 81

(a) How does Java define the numerical idea of infinity? (You should look at the Java Language
Specification [Gosling 1996] for the details.)

(b) Looking at the specifications in the Java Language Definition, can you explain in plain
English the meaning of the statement i = 3/ j; for all possible values of j, including 0?

(c) (Optional) Can you write a functional definition for the meaning of division in Java using
these ideas? Start with the prototype function M : Division X £ — 3.

Consider the expression x + y/2 in the language C. How many different interpretations does this
expression have, depending on the types of x and y. Can you find a language in which this expression
can denote vector or matrix arithmetic, when x and y themselves denote vectors or matrices?

Show how the meaning of each of the following expressions and given states are derived from the
functions M and ApplyBinary given in this chapter. (You developed the abstract syntax for each of
these expression as an exercise in Chapter 2.)

(@ Mz+2%y, {(x,2), (3, —3), . T5))

(b) M2¥*x+3ly—4, {(x,2), {y, —3), z, 75)})

(©) M(1, {¢x,2),(y, =3),(z. 75)})

Show all steps in the derivation of the meaning of the following assignment statement when exe-
cuted in the given state, using this chapter’s definitions of the functions M and ApplyBinary.

M(z=2%x+3/ly—4, {{x, 6), {y, —12), (z, 75)})

