Scope, Function Calls and
Storage Management

Angelo Gargantini

capitolo 7 del
Mitchell

Topics

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

@ Block-structured languages and stack storage

@ In-line Blocks

e activation records

e storage for local, global variables
@ First-order functions

e parameter passing

e tail recursion and iteration
@ Higher-order functions

e deviations from stack discipline
e language expressiveness == implementation complexity

Block-Structured Languages

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

® Nested blocks, local variables

e Example
([{intx=2;
outer Gint y =3,
block @z@@;
}
.)

\

new variables declared in nested blocks

Inner
block

local variable

global variable

e Storage management
— Enter block: allocate space for variables
— Exits block: some or all space may be deallocated

Examples

PR A O e N P T T e T P R DT e T P R T T P DR TR T

Blocks in common languages

C {..}
e Algol begin ... end
e ML let ... In ... end

€ Two forms of blocks
e In-line blocks
e Blocks associated with functions or procedures

@ Topic: block-based memory management,
access to local variables, parameters,global vars

Simplified Machine Model

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

Registers Code Data

\

> Stack

_
Program
Counter ™
B
Environment ~— Heap
Pointer
| — ~

Interested in Memory Mgmt Only

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

®Registers, Code segment, Program counter
e |Ignore registers
e Details of instruction set will not matter

€ Data Segment
e Stack contains data related to block entry/exit
e Heap contains data of varying lifetime

e Environment pointer points to current stack position
— Block entry: add new activation record to stack
— Block exit: remove most recent activation record

Some basic concepts

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

@ Scope
e Region of program text where declaration is visible

¢ Lifetime
e Period of time when location is allocated to program

Lint x : o e Inner declaration of x hides outer one.
L int y.= o e Called “hole in scope”
Lntx= ... e Lifetime of outer x includes time when
Inner block is executed
I - Lifetime # scope
, & e Lines indicate “contour model” of scope.

INn-line Blocks

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

& Activation record

e Data structure stored on run-time stack
e Contains space for local variables

€ Example
{ int x=0;
Int y=x+1;
{ Int z=(x+y)*(x-y);
&

&

Push record with space for x, y
Set values of x, y

Push record for inner block

Set value of z

Pop record for inner block
Pop record for outer block

May need space for variables and intermediate results like (x+y), (x-y)

Activation record for in-line block

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

Environment
Pointer

& Control link

e pointer to previous record
on stack

® Push record on stack:

e Set new control link to
point to old env ptr

e Set env ptr to new record

@ Pop record off stack

e Follow control link of
current record to reset
environment pointer

Example

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

{ int x=0;
Int y=x+1;
{ Int z=(x+y)*(x-y);
};

&

Push record with space for x, y (set
control link = old env pointer,
et env pointer)

Set/ values of x, y
Push record for inner block
Set value of z

Pop record for inner block (set
env pointer to control link)

Pon record for otiter block

Environment
Pointer

Scoping rules

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

® Global and local variables

e X, Yy are local to outer block { int x=0;
e zis local to inner bock int y=x+1;
e X, Yy are global to inner block { int z=(x+y)*(x-y):
};
&

Static scope
e global refers to declaration in closest enclosing block

€ Dynamic scope
e global refers to most recent activation record

These are same until we consider function calls.

Functions and procedures

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

@ Syntax of procedures (Algol) and functions (C)

procedure P (<pars>) <type> function f(<pars>)
begin {
<local vars> <local vars>
<proc body> <function body>
end; ¥
@ Activation record must include space for
e parameters e |ocation to put return
e return address value on function exit

e return value
(and intermediate result)

Activation record for function

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

@ Return address
e Location of code to
execute on function return
@ Return-result address

e Address In activation
record of calling block to
receive return address

& Parameters

e |Locations to contain data

Environment from calling block
Pointer

Example

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

@ Function
fact(n) = ifn<=1 then1
else n * fact(n-1)
® Return result address
e |ocation to put fact(n)

¥ Parameter

e set to value of n by calling
sequence

@ Intermediate result
e |ocations to contain value

Environment

Pointer

of fact(n-1
— "

Function call

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T
1 | |

fact(k) o fact(3) b

fact(2)

Environment
Pointer

fact(1)

fact(n) =ifn<=1 then 1
else n * fact(n-1)

Return address omitted: would

be ptr into code segment Function return next slide —>

Function return

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

fact(3) fact(3)

fact(2) fact(2)

fact(1)

fact(n) = ifn<=1 then 1
else n * fact(n-1)

Toplcs for flrst order functlons

P R T T P R DT e T P R T T P A GO e T P TR TR

@ Parameter passing

e use ML reference cells to describe pass-by-value,
pass-by-reference

@ Access to global variables

e global variables are contained in an activation record
higher “up” the stack

@ Tail recursion
e an optimization for certain recursive functions

See this yourself: write factorial and run under debugger

ML imperative features (review)
® General terminology: L-values and R-values
e Assignment Yy := Xx+3
— ldentifier on left refers to location, called its L-value
— ldentifier on right refers to contents, called R-value

® ML reference cells and assignment (anche in C++)
e Different types for location and contents

X o int non-assignable integer value

y :int ref location whose contents must be integer

ly the contents

ref x expression creating new cell initialized to x
e ML form of assignment

y = x+3 place value of x+3 in location (cell) y

y := ly + 3 add 3 to contents of y and store in location y

Parameter passing

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

® Pass-by-reference
e Caller places L-value (address)
of actual parameter in activation record
e Function can assign to variable that is passed

® Pass-by-value
e Caller places R-value (contents)
of actual parameter in activation record
e Function cannot change value of caller’s variable
e Reduces aliasing (alias: two names refer to same loc)

Example

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

pseudo-code Standard ML

N (et fun f (X :intref) =
0V (x:=Ix+1; 'x);
S
Qa‘i/' y = ref O : int ref;
f(y) +ly;

function f (x) =

{ x :=x+1; return x };
vary :int = 0;

print f(y)+y;
funf (z :int) =
'Oam let x = ref zin
Val,e X 1= Ix+1; Ix
end;

y = ref O : int ref;
f(ty) +ly;

Example

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

pseudo-code C++
et Int fun f (int & x) {
55,‘@1 X = X+1;
\33/ return Xx;
by
function f (x) = inty = 0;
{ X :=x+1; return X }; cout<< f(y) +v;
vary :int = 0;
print f(y)+y;
int fun f (int x) {
'Oam X = X+1;
Val,e return x;
¥
inty = 0;

cout<< f(y) +y;

Parameter passing & activation
record

@ pass by value: the value of the actual parameter
IS copied In the activation record as value of the
formal parameter

@ pass by ref: the address of the actual parameter
IS copied In the activation record

Access to global variables

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

€ Two possible scoping conventions
e Static scope: refer to closest enclosing block
e Dynamic scope: most recent activation record on stack

€ Example

functfon 9(z) = x+z; £(3)
function f(y) =
{int x = y+1,;

return g(y*x) }; g(12) _

f(3);

Which x is used for expression x+z ?

Activation record for static scope

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

*

@ Control (dynamic) link

e Link to activation record of
previous (calling) block

@ Access (static) link

e Link to activation record of
closest enclosing block in
program text

*
|
|

@ Difference
e Control link depends on
Environment dynamic behavior of prog
Pointer e Access link depends on

—— | static form of program text

Complex nesting structure

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

function m(...) {
Int x=1;
Int x=1;
function g(z) = x+z;
function f(y) =
{int x = y+1;

function n(...){
function g(z) = x+z;

{.

S return g(y*x) };
function f(y) { f(3);
int X = y+1;
return g(y*x) };
f(3); ..} Simplified code has same block nesting,
n(..) .} If we follow convention that each

.. m(...) declaration begins a new block.

Static scope with access links

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

_ outer block
Int Xx=1;

function g(z) =|x+z;

| function f(yj =
{int x =y+1,;
return g(y*x) };

f(3);

A

A

‘
A

f(3)
Use access link to find global variable:

— Access link is always set to frame
of closest enclosing lexical block

— For function body, this is block g(12)
that contains function declaration

Tall recursion (first-order case)

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

€ Function g makes a tai/ call to function f if
e Return value of function f is return value of g

@ Example tail call not a tail call

N\ i
fun g(x) = if x>0 then return f(x) else return f(x)*2
€ Optimization
e Can pop activation record on a tail call

e Especially useful for recursive tail call
— next activation record has exactly same form

Example

Calculate least power of 2 greater than y

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

f(1,3)

fun f(x,y) = If x>y
then ret x

else ret f(2*x, y);

f(1,3) + 7,

Optimization
e Set return

value address
to that of caller

Question

e Can we do the
same with
control link?

Optimization

e avoid return to
caller

Tall recursion elimination

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

f(1,3) f(2,3) f(4,3)

fun f(x,y) = if x>y Optimization

then X e pop followed by push =
else f(2*x, y); reuse activation record in place
f(1,3); Conclusion

e Tail recursive function equiv to
iterative loop

Tall recursion and iteration

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

f(1,3) f(2,3) f(4,3)

fun f(x,y) = lf@ test fun Q(Y) ={

then x
else f Z*X y); loop body Whlle not(dO
@ / R

return X;
Initial value

Higher-Order Functions

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

® Language features
e Functions passed as arguments
e Functions that return functions from nested blocks
e Need to maintain environment of function

& Simpler case

e Function passed as argument

e Need pointer to activation record “higher up” in stack
¥ More complicated second case

e Function returned as result of function call
e Need to keep activation record of returning function

no-da \Why this example here at this
Example AuTRe point in the lecture????

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

€ Map function
funmap (f, nil) =nil | map(f, x::xs) = f(x) :: map(f,xs)
€ Modify repeated elements in list
fun modify(l) =
let val ¢ =ref (hd |)
fun f(y) = ((if y = !c then c:=y+1 else c:=y); !c)
In
(hd 1) :: map(f, tl D)
end;
modify [1,2,2,3,4] => [1,2,3,4,5]

Exercise: pure functional version of modify

Pass function as argument

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

val x = 4;

fun f(y) = x*y;

fun g(h) = let
val x=7
N
h(3) + X;

a(f);

{Int x =4,
{ int f(int y) {return x*y;}
{ int g(int—>int h) {

Nt X=7;

return h(3) + Xx;
}
g(f);

P i}

There are two declarations of x
Which one is used for each occurrence of x?

Static Scope for Function Argument

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

val x = 4;
fun f(y) = x*y;
fun g(h) =
let
val x=7
In
h(3) + X;
g(f);

g(f)

h(3)
@*@% var

follow access link

How is access link for h(3) set?

Static Scope for Function Argument

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

{ Int x = 4;
{ int f(int y) {return x*y;}
{ int g(int—int h) {
Int Xx=17;
return h(3) + x;
}
g(f);

g(f)

h(3)
@*@% var

follow access link

P}

How is access link for h(3) set?

Closures

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

@ Function value is pair closure = {env, code)

€ When a function represented by a closure is
called,
e Allocate activation record for call (as always)

e Set the access link in the activation record using the
environment pointer from the closure

Function Argument and Closures

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

Run-time stack with access links

val x = 4;
fun f(y) = x*y;
fun g(h) =
let
val Xx=7

) h(3) + X; o(H

a(f);

access link set
from closure

h(3)

Function Argument and Closures

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

Run-time stack with access links
{int x = 4;

- {int f(int y){return x*y;}
{ int g(int—int h) {
INt Xx=7;
‘ return h(3)+x;
by
9(f); g(f)

-'-

access link set
from closure

33,

h(3)

Summary Functlon Arguments

FR YR T S T A YR GO d O Nl LT W R o P S T L WA L T L R A LT W R

€ Use closure to maintain a pointer to the static
environment of a function body

® When called, set access link from closure

@ All access links point “up” in stack
e May jump past activ records to find global vars
e Still deallocate activ records using stack (lifo) order

Return Function as Result

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

€ Language feature
e Functions that return “new” functions
e Need to maintain environment of function

€ Example
fun compose(f,g) = (fn x => g(f x));
@ Function “created” dynamically

e expression with free variables
values are determined at run time

e function value is closure = {(env, code)
e code not compiled dynamically (in most languages)

Example Return fctn W|th prlvate state

P R T T P R DT e T P R T T P A GO e T P TR TR

fun mk_counter (init : int) =
let val count = ref Iinit
fun counter(inc:int) =
(count := !count + inc; !count)
In

counter e Function to “make counter”
returns a closure

e How Is correct value of
count determined in c(2) ?

end;
val ¢ = mk_counter(1);

c(2) + c(2);

Example: Return fctn with private state

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

{int—>int mk_counter (int init) {
Int count = Init;
Int counter(int inc) { return count +=inc;}
return counter}
Int—>int ¢ = mk_counter(1);
print c(2) + c(2);
¥

Function to “make counter” returns a closure
How is correct value of count determined in call c(2) ?

Function Results and Closures

I R L A L S T N P Y TS A\ YO G T
fun mk_counter (init : int) =
let val count = ref init
fun counter(inc:int) = (count := !count + inc; !count)

1 et

BV

iIn counter end

end;
val ¢ = mk_counter(1);
c(2) + c(2);

mk_counter(1)

c(2)

Call changes cell
value from 1 to 3

Function Results and Closures

ORI R T TN P A GO e T P R T e T P T T T T PR R TR T

{int—int mk_counter (int init) {
Int count = init; int counter(int inc) { return count+=inc;}

} -

int—int ¢ = mk_counter(1);

print c(2) + c(2);
X

}

mk_counter(1)

c(2)

Call changes cell
value from 1 to 3

Summary Return Functlon Results

P R T T P R DT e T P R T T P A GO e T P TR TR

@® Use closure to maintain static environment

¢ May need to keep activation records after return
e Stack (lifo) order fails!

@ Possible “stack” implementation
e Forget about explicit deallocation
e Put activation records on heap
e Invoke garbage collector as needed

e Not as totally crazy as is sounds
May only need to search reachable data

Summary of scope Issues

PR A O e N P T T e T P R DT e T P R T T P DR TR T

@ Block-structured lang uses stack of activ records
e Activation records contain parameters, local vars, ...
e Also pointers to enclosing scope

@ Several different parameter passing mechanisms
® Tail calls may be optimized

@ Function parameters/results require closures
e Closure environment pointer used on function call
e Stack deallocation may fall if function returned from call
e Closures not needed if functions not in nested blocks

