
Control in Sequential Languages
Exceptions

Angelo Gargantini

Topics cap 8

Structured Programming
• Go to considered harmful

Exceptions
• “structured” jumps that may return a value
• dynamic scoping of exception handler

Continuations
• Function representing the rest of the program
• Generalized form of tail recursion

Control of evaluation order (force and delay)
• May not cover in lecture. Book section straightforward.

Fortran Control Structure

10 IF (X .GT. 0.000001) GO TO 20
11 X = -X

IF (X .LT. 0.000001) GO TO 50
20 IF (X*Y .LT. 0.00001) GO TO 30

X = X-Y-Y
30 X = X+Y

...
50 CONTINUE

X = A
Y = B-A
GO TO 11
…

Similar structure may occur in assembly code

Historical Debate

Dijkstra, Go To Statement Considered Harmful
• Letter to Editor, C ACM, March 1968

Knuth, Structured Prog. with go to Statements
• You can use goto, but do so in structured way …

Continued discussion
• Welch, “GOTO (Considered Harmful)n, n is Odd”

General questions
• Do syntactic rules force good programming style?
• Can they help?

Advance in Computer Science

Standard constructs that structure jumps
if … then … else … end
while … do … end
for … { … }
case …

Modern style
• Group code in logical blocks
• Avoid explicit jumps except for function return
• Cannot jump into middle of block or function body

Exception Concepts

An exception is an
unusual/unexpected/erroneous event in the
program’s execution.
An exception is “raised” when the event occurs.
An exception is “thrown” when it is raised
explicitly.
An exception handler is a code segment that is
executed when the corresponding exception is
raised.

Exception Handler

Example (in Ada):
loop

ABLOCK:
begin

PUT_LINE (“Enter a number”);
GET (NUMB);

exit;
exception

when DATA_ERROR =>
PUT_LINE (“Not number – try again”);

end ABLOCK;
end loop;

Exception Handler in Java /C++

Example (in Java):
try {
…

} catch (Exception e){
…

}

Continuation

Where to continue execution after the exception
handler?
• The statement that raised the exception?
• After the statement that raised the exception?
• After the current iteration of a block? (Ada loop)
• An explicit location?
• At the end of the subprogram in which the exception was raised?

(Ada)
• After the exception handler? (Java/C++)
• Nowhere – terminate the application? (unhandled exceptions)

Handler Selection

Exceptions can be specified by:
• Special exception type (Ada)
• Ordinary data type (C++)
• Object type with specified superclass (Java)

Handler can be selected according to:
• First match (Java/C++)
• Best (most specific) match

First match
Control jumps to first matching
catch block
Order matters if multiple possible
matches
• Especially with inheritance-related

exception classes
• Put more specific catch blocks

before more general ones
• Put catch blocks for more derived

exception classes before catch
blocks for their respective base
classes

catch(...)
• catches any type

try {
// can throw exceptions

} catch (Derived &d) {
// Do something

} catch (Base &d) {
// Do something else

} catch (...) {
// Catch everything else

}

Exception Specifications C++
// can throw anything
void Foo::bar();

// promises not to throw
void Foo::bar() throw();

// promises to only throw int
void Foo::bar() throw(int);

// only char or int
void Foo::bar() throw(char,int);

Make promises to the caller
Allow stronger type checking enforced
by the compiler
By default, a function can throw
anything it wants
A throw clause in the signature
• Limits what a function can throw
• A promise to the calling function

A throw clause with no types
• Promises nothing will be thrown

Can list multiple types
• Comma separated

Exception Propagation

If an exception is not handled by the
subprogram in which it is generated, control is
returned to the caller and the exception is
reraised.
If the main program has no handler, the
program terminates.

Default Handlers

Some languages have default handlers for some
exceptions – Ada usually terminates the
program.
Generic handlers can be specified as a fallback
mechanism:
catch (Exception e) in Java
catch (…) in C++
othersin Ada

finally

Java has a special exception handler clause to be
executed whether or not an exception occurred, and
before control passes beyond the handler. Example:

try {
…
} catch (Exception e) {
…
} finally {
…
}

Summary

Structured Programming
• Go to considered harmful

Exceptions
• “structured” jumps that may return a value
• dynamic scoping of exception handler

	Control in Sequential LanguagesExceptions
	Topics cap 8
	Fortran Control Structure
	Historical Debate
	Advance in Computer Science
	Exception Concepts
	Exception Handler
	Exception Handler in Java /C++
	Continuation
	Handler Selection
	First match
	Exception Specifications C++
	Exception Propagation
	Default Handlers
	finally
	Summary

