
Computabilità
(capitolo 2)

Angelo Gargantini

lezioni per informatica 3 ,
Università di Bergamo

Foundations: Partial,Total Functions

Value of an expression may be undefined
Undefined operation, e.g., division by zero

3/0 has no value

implementation may halt with error condition

Nontermination
f(x) = if x=0 then 1 else f(x-2)

this is a partial function: not defined on all arguments

cannot be detected at compile-time; this is halting problem

These two cases are
“Mathematically” equivalent, but Operationally different

Partial and Total Functions

Total function: f(x) has a value for every x

Partial function: g(x) does not have a value for every x

x

g(x)

f(x)

Functions and Graphs

Graph of f = { 〈 x,y〉 | y = f(x) }

Graph of g = { 〈 x,y〉 | y = g(x) }

Mathematics: a function is a set of ordered pairs (graph of

function)

x

g(x)

f(x)

Partial and Total Functions

Total function f:A→B is a subset f ⊆ A×B with
For every x∈A, there is some y∈B with 〈 x,y〉 ∈ f (total)

If 〈 x,y〉 ∈ f and 〈 x,z〉 ∈ f then y=z (single-valued)

Partial function f:A→B is a subset f ⊆ A×B with
If 〈 x,y〉 ∈ f and 〈 x,z〉 ∈ f then y=z (single-valued)

Programs define partial functions for two reasons
partial operations (like division)

nontermination
 f(x) = if x=0 then 1 else f(x-2)

Halting Problem

Entore Buggati: "I build
cars to go, not to stop."

Self-Portrait in the Green Buggati (1925)
Tamara DeLempicka

Computability

Definition
Function f is computable if some program P

computes it:
For any input x, the computation P(x) halts with output f(x)

Terminology
Partial recursive functions

= partial functions (int to int) that are computable

P written in which programming
language

Some functions may be computable by
programs written in a programming language
(e.g. C) , but not in another

let’s use a simple “programming language”:
Turing Machines

Turing Machines

In 1936, A.M. Turing proposed the Turing
machine as a model of any possible
computation.
This model was built using electro-
mechanical devices after several years.
Turing machine long has been recognized
as an accurate model for what any
physical computing device is capable of
doing.

Turing Machines

 Turing formalized the idea of “mechanical procedure”:

Can be described by a finite number of
instructions.

Instructions are simple and mechanical.

Have a finite number of internal states.

Can deal with input not restricted in size.

Have an unlimited storage space for calculations.

Can produce output of unlimited size.

Turing Machines

Finite
Control

This tape is for input, storage and output

(Q, Σ, Γ, δ , q0, B, F)

Q is a set of states

Γ is a set of tape symbols
B ∈ Γ is a blank symbol

Σ ⊆ Γ\{B} is a set of input symbols
q0 is the start state

F ⊆ Q is a set of final states

Tape head

Turing Machines

δ is a move function mapping from Q×Γ to Q×Γ×{L,R}

qi
qj

a/b,L

δ (qi, a) = (qj, b, L)

qi
qj

a/b,R

δ (qi, a) = (qj, b, R)

Replace the current
symbol “a” by “b”,
and move to the left.

Replace the current
symbol “a” by “b”,
and move to the right.

Note that if a = b, we write “a,L” instead of “a/a,L” along the edge.

An Example

q0 q1

q2q3

q4

b/x,R

#,R

#/b,R

x/#,R

a,L
b,L
#,L

a,R
b,R

a,R
b,R

a,R

#,R

Q = {q0, q1, q2, q3, q4}

Γ = {a, b, x, #}
B = #

Σ = {a, b}
q0 is the start state
F = {q4}
Consider the input:
baaba
What is the output?

Turing Machines

By using this powerful but simple model, we can
start looking at the question of what languages
can be defined (equivalently, what problems can
be solved) by a computational device. Is there
any problem that a computer cannot solve, and
what are they?

We will see in some later classes that there are a
lot of them, and they are called “undecidable”
problems.

Other Examples

 TM can do all sorts of things. Try the followings:
Add 1 to a unary number. (Easy)

Add 1 to a binary number.

Convert a unary number to binary, and vice versa.

Compare two unary numbers.

Add two unary numbers.

Compare two binary numbers x and y. If x > y, output 1.
Otherwise, output 0.

…...

TM Simulator

http://www.igs.net/~tril/tm/tm.html

http://www.cheransoft.com/vturing/download.html

chi scrive un simulatore salta la parte teorica sulle TM

Church thesis

Anni30!!
Non esiste meccanismo di calcolo automatico superiore alla MT o ai
formalismi ad essa equivalenti.
Fin qui potrebbe essere un Teorema di Church (da aggiornare ogni
volta che qualcuno si svegli al mattino con un nuovo modello di
calcolo)

Nessun algoritmo,indipendentemente dallo strumento utilizzato per
implementarlo, può risolvere problemi che non siano risolvibili
dallaMT: la MT è il calcolatore più potente che abbiamo e che
potremo mai avere!

Quali sono I problemi risolvibili algoritmicamente o
automaticamente?
Gli stessi risolvibili dalla semplicissima MT!

Esistono funzioni non computabili?

Halting function
Decide whether program halts on input

Given program P and input x to P,

 Halt (P,x) =

Halt does not go in infinite loops
 Fact: There is no program for Halt

yes if P(x) halts

no otherwise

Clarifications
Assume program P requires one string input x
Write P(x) for output of P when run in input x
Program P is string input to Halt

Proof

Suppose Q(P, x) is a program that:
returns "halts" if P(x) halts

returns "does not halt" if P(x) does not halt

Construct program D
D(P) = if Q(P,P) = "halts" then run forever

else halt

D(P) will halt if P(P) runs forever

D(P) will run forever of P(P) halts

Proof (2)

Applying as input D itself

What does D(D) do?
If D(D) halts, then D(D) will run forever.

If D(D) runs forever, then D(D) halts.

This is a contradiction!

Therefore, our assumption that Q solves the
halting problem is not valid.

Implications of Halting Problem

There are useful program properties we
cannot determine:

will a program run forever or not?

will a program eventually cause an error?
(compilers do conservative checking- more on
this later)

will a program touch a specific piece of memory
again?

will be a statement covered by any input?

Main points about computability

Some functions are computable, some are
not

Halting problem

Programming language implementation
Can report error if program result is undefined
due to division by zero, other undefined basic
operation

Cannot report error if program will not terminate

Other undecidable problems

Program equivalence

Do two programs always produce the
same output?

 where's my bug?

 useful for debugging

In general

 At the beginning of the 20th century, D. Hilbert
asked whether it was possible to find an algorithm
for determining the truth or falsehood of any
mathematical proposition.

 In 1931, K. Godel proved that for every consistent
logic, there are some questions which cannot be
answered “yes” or “no” - Incompleteness
Theorem.

Halting Problem Proof in Java

Assume the existence of halt(f,x):

public boolean halt(String f, String x) {

if (???) return true;

else return false;

}

encode f and x as strings

Halting Problem Proof

Assume the existence of halt(f,x):
Construct function strange(f) as follows:
If halt(f,f) returns true, then strange(f) goes into an
infinite loop
If halt(f,f) returns false, then strange(f) halts.
f is a string so legal to use for either input

public void strange(String f) {
 if (halt(f, f)) {

while (true);
}

}

Halting Problem Proof

Call strange()with ITSELF as input.

If strange(strange) halts then strange
(strange) does not halt.

If strange(strange) does not halt then
strange(strange) halts.

Either way, a contradiction. Hence halt
(f,x) cannot exist.

More Undecidable Problems

Hilbert’s 10th problem: “ Devise a process according to which it can be
determined by a finite number of operations whether a given multivariate
polynomial has an integral root.”
Examples.

 f(x, y, z) = 6x^3 y z^2 + 3xy^2 – x^3 – 10. yes: f(5, 3, 0) = 0
 f(x, y) = x2 + y2 – 3. no
 f(x, y, z) = xn + yn – zn yes if n = 2, x = 3, y = 4, z = 5
 no if n>= 3 and x, y, z > 0.

(Fermat's Last Theorem)
.

