Scope, Function Calls and
Storage Management

Angelo Gargantini

capitolo 7 del
Mitchell

Topics
* Block-structured languages and stack storage
* In-line Blocks

— activation records
— storage for local, global variables

* First-order functions

— parameter passing

— tail recursion and iteration
 Higher-order functions

— deviations from stack discipline

— language expressiveness => implementation
complexity

Block-Structured Languages

e Nested blocks, local variables
— Example

. new variables declared in nested blocks
/ { |nt>.< :47
C{ Nty >3 1 local variable
outer = : inner
block
}
}

block

global variable

J

\
— Storage management
e Enter block: allocate space for variables

e Exits block: some or all space may be
deallocated

Examples

 Blocks in common languages
— C/c++/)Java {..}
— Algol begin ... end
- ML let ... In ... end
e Two forms of blocks
— In-line blocks
— Blocks associated with functions or procedures

e Topic: block-based memory management, access
to local variables, parameters,global vars

It allows recursive functions

Simplified Machine Model

Registers Code Data

—

> Stack

_
Program
Counter ™
—
Environment ~ Heap
Pointer
L — ~

Interested in Memory Mgmt Only

 Registers, Code segment, Program counter
— Ignore regqisters
— Details of instruction set will not matter

e Data Segment
— Stack contains data related to block entry/exit
— Heap contains data of varying lifetime
- Environment pointer points to current stack position
e Block entry: add new activation record to stack
* Block exit: remove most recent activation record

Some basic concepts

e Scope

— Region of program text where declaration is visible
e Lifetime
— Period of time when location is allocated to program

¥

{intx=...;

{ inty=...;

¥

{intx=...;

¥

Inner declaration of x hides outer one.
Called “hole in scope”

Lifetime of outer x includes time when
inner block is executed

Lifetime # scope
Lines indicate “contour mode

III

of scope.

In-line Blocks

e Activation record

— Data structure stored on run-time stack
— Contains space for local variables

e Example

{ int x=0;
int y=x+1;
{ int z=(x+y)*(x-y),
¥

¥

Push record with space for x, y
Set values of x, y

Push record for inner block

Set value of z

Pop record for inner block
Pop record for outer block

May need space for variables and intermediate results like (x+y), (x-y)

Activation record for in-line block

e Control link

— pointer to previous record
on stack

e Push record on stack:

— Set new control link to point
to old env ptr

— Set env ptr to new record

 Pop record off stack

— Follow control link of current
record to reset environment
pointer

Environment
Pointer

Example

{ int x=0;

int y=x+1,
{ int z=(x+y)*(x-y);
s

b

Push record with space for X, y (set
control link = old env pointer,
et env pointer)

Se% values of x, y

Push record for inner block
Set value of z Environment
Pop record for inner block (set Pointer

env pointer to control link) _

Pan record for oiiter block

Scoping rules

* Global and local variables

e X, Yy are local to outer block { int x=0;
e zis local to inner bock int y=x+1;

e X, Yy are global to inner block {int z=(x+y)*(x-y):

o

[] Static scope b

e global refers to declaration in closest enclosing block

LI Dynamic scope
e global refers to most recent activation record

These are same until we consider function calls.

Esercizio 7.1

Functions and procedures

e Syntax of procedures (Algol) and functions (C)

procedure P (<pars>) <type> function f(<pars>)
begin {
<local vars> <local vars>
<proc body> <function body>
end; ¥

e Activation record must include space for

e parameters e |ocation to put return
e return address value on function exit

e return value
(and intermediate result)

Activation record for function

e Return address

— Location of code to execute
on function return

e Return-result address

— Address in activation record
of calling block to receive
return address

e Parameters

— Locations to contain data
from calling block

Environment
Pointer

Example

Function

fact(n) = ifn<=1 then1l
else n * fact(n-1)

Return result address

— location to put fact(n)

e Parameter

— set to value of n by calling
sequence

Intermediate result

— |locations to contain value of
fact(n-1)

Environment
Pointer

Function call

fact(k) D

fact(2)
Environment
Pointer
—
fact(1)
fact(n) = if nck=1 then 1

else n * fact(n-1)

Return address omitted; would

be ptr into code Segment Function return next slide —

Function return

fact(3) fact(3)

fact(2) fact(2)

fact(1)

fact(n) = if nck=1 then 1
else n * fact(n-1)

Topics for first-order functions

 Parameter passing

— use ML reference cells to describe pass-by-value, pass-
by-reference

e Access to global variables

— global variables are contained in an activation record
higher “up” the stack

e Tail recursion
— an optimization for certain recursive functions

See this yourself: write factorial and run under
debugger

ML imperative features (review)

 General terminology: L-values and R-values
— Assignment vy := x+3
 |dentifier on left refers to location, called its L-value
 |dentifier on right refers to contents, called R-value
ML reference cells and assignment (anche in C++)
— Different types for location and contents

X :int non-assignable integer value

y : int ref location whose contents must be integer

ly the contents

ref x expression creating new cell initialized to x
— ML form of assignment

y := x+3 place value of x+3 in location (cell) y

y = ly + 3 add 3 to contents of y and store in location y

Parameter passing

 Pass-by-reference
— Caller places L-value (address)
of actual parameter in activation record
— Function can assign to variable that is passed

 Pass-by-value
— Caller places R-value (contents)
of actual parameter in activation record
— Function cannot change value of caller’s variable
— Reduces aliasing (alias: two names refer to same loc)

Example

pseudo-code

function f (x) =

{ X :=x+1; return x };
vary :int = 0;
print f(y)+y;

Pass.

by.
¥ l’6'/(/@

Standard ML

fun f (x : int ref) =

(x:=Ix+1; Ix);
y = ref 0 : int ref;
fly) +1y;

funf(z:int) =
let x =ref zin
X = Ix+1; Ix
end;
y = ref 0 : int ref;

f(ly) + ly;

Example

pseudo-code

function f (x) =

{ X :=x+1; return x };
vary :int = 0;
print f(y)+y;

Pass.

by
¥ l’6'/(/@

C++

int f(int&x) {

X = X+1;
return Xx;
)
inty =0;

cout<< f(y) +vy;

int f(intx) {
X = X+1;
return x;

}

inty =0;
cout<< f(y) +vy;

Passaqgqgio di puntatorl

* || passaggio di puntatori € un passaggio per valore,
ma si usa (in C) per ottenere lo stesso effetto del
passaggio per riferimento.

* Es.: e si L
¢ s1 vuole, s1 puo
evitare la modifica del
int f(int* x){ parametro attuale
*X = *X+1; mediante copia:
return *x;
} int f(int* x) {
_ intz = *x
inty = 0; return z+1;
printf(f(&y) + v;))
inty =0;

printf(f(&y) + vy;)

Parameter passing & activation
record

e pass by value: the value of the actual parameter
IS copied in the activation record as value of the
formal parameter

e pass by ref: the address of the actual parameter
Is copied in the activation record

Access to global variables

 Two possible scoping conventions
— Static scope: refer to closest enclosing block
— Dynamic scope: most recent activation record on stack

e Example

int x=1;
function g(z) = x+z;
function f(y) =
{intx =y+1;
return g(y*x) };
f(3);

Which x is used for expression x+z ?

Activation record for static scope

*
| e Control (dynamic) link

: — Link to activation record of
previous (calling) block
e Access (static) link

— Link to activation record of
closest enclosing block in
program text

e Difference

— Control link depends on
dynamic behavior of prog

— Access link depends on
Environment static form of program text

Pointer

Complex nesting structure

function m(...) {
int x=1,
int x=1;
function g(z) = x+z;
function f(y) =
{intx = y+1;

function n(... X
function g(z) = x+z;

{

return g(y*x) };
function f(y) { f(3);
int x = y+1,;
return g(y*x) J;
f.(.:lg);) _Simplified code has_same block nesting,
n(.).0 If we follow convention that each

m(..) declaration begins a new block.

Static scope with access links

Int x=1; outer block
—| function g(z) =|x+z;

function f(y) =
<—‘{ int x = y+1;
return g(y*x) };
f(3);

A

Use access link to find global f(3)

variable:

» Access link is always set to
frame of closest enclosing
lexical block

« For function body, this is block 9(12)

that contains function
declaration

I A
A

Tall recursion (first-order case)

e Function g makes a tail call to function f if
— Return value of function f is return value of g
e Example
tail call not a tail call
fun g(x) = if x>0 then return\féx) else return f'(x/)*2
 Optimization
— Can pop activation record on a tail call

— Especially useful for recursive tail call
e next activation record has exactly same form

Example Calculate least power of 2 greater
thany

f(1,3)

fun f(x,y) = if x>y
then ret x

else ret f(2*x, y);

f(1,3) + 7;

Optimization
e Set return

value address
to that of caller

Question

e Can we do the
same with
control link?

Optimization

e avoid return to
caller

Tall recursion elimination

f(1,3) f(2,3) f(4,3)

fun f(x,y) = if x>y Optimization

then x) e pop followed by push =
else f(2*x, y); reuse activation record in place

f(1,3); .
Conclusion

e Tail recursive function equiv to
iterative loop

Tall recursion and iteration

f(1,3) f(2,3) f(4,3)

fun f(x,y) = if @ test fun g(y) = {

then x X =
else f(
loop body ﬁvﬁé not(dO
ol
return Xx;
initial value

b

Higher-Order Functions

 Language features
— Functions passed as arguments
— Functions that return functions from nested blocks
— Need to maintain environment of function

e Simpler case

— Function passed as argument

— Need pointer to activation record “higher up” in stack
e More complicated second case

— Function returned as result of function call
— Need to keep activation record of returning function

Summary of scope issues

Block-structured lang uses stack of activ records
— Activation records contain parameters, local vars, ...
— Also pointers to enclosing scope

Several different parameter passing mechanisms
Tail calls may be optimized

 Function parameters/results require closures
— Closure environment pointer used on function call
— Stack deallocation may fail if function returned from call
— Closures not needed if functions not in nested blocks

