Objects in C++
Subtyping

DR R AT B A R P R ST B A R R P R ST B A R R P R L ST S R R O R P RO T L ST A

Patrizia Scandurra
scandurra@dti.unimi.it
Info3

C++ Object System

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

= Object-oriented features

1.
2.
3.

Classes and Data Abstraction

Encapsulation

Inheritance

= Single and multiple inheritance

= Public and private base classes

Objects, with dynamic lookup of virtual functions
Subtyping

= Tied to inheritance mechanism

Subtyping (1)

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

= Subtyping is a relation on types that allows values of one
type to be used in place of values of another.

= If some object a has all of the functionality of another
object b, then we may use a in any context expecting b.

Inheritance Is Not Subtyping

» "Subtyping is a relation on interfaces, inheritance is a
relation on implementations.”

= A typical example is C++, in which

= A class A will be recognized by the compiler as a
subtype of B only if B is a public base class of A

Subtyping (2)

» (A<:B = A subtype of B)
= Subtyping in principle
= A <: B if every A object can be used without type
error whenever a B object is required
Pt: int getX();

void move(int);
ColorPt: int getX();
int getColor();
void move(int);
void darken(int tint);

= C++: A <:Bif class A has public base class B

Public members

Public members

Sample derived class
o - e In C-|7-+:p”ubllicrbaséclass

class ColorPt: public Pt { .
gives supertype!

public:
ColorPt(int xv,int cv);
ColorPt(Pt* pv,int cv); | Overloaded constructor
ColorPt(ColorPt* cp);
int getColor(); Non-virtual function
virtual void move(int dx);

virtual void darken(int tint); } Virtual functions

protected:

void setColor(int cv); Protected write access
private:

int color; Private member data
b

Independent classes not subtypes

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

class Point { class ColorPoint {

public: public:
int getX(); int_ getX(); _
void move(int); Yo'd move(int);
int getColor();

void darken(int);

}¥
b
» C++ does not treat ColorPoint <: Point as written
» Need public inheritance ColorPoint : public Pt
= Subtyping based on inheritance:

= An efficiency issue

= An encapsulation issue: preservation under modifications to
base class ...

Why C++ design?
y esign?
U I i G B S DLW I T G TN e VW L P T T e DS W P T G TN e W L P i o T B A

= Client code depends only on public interface

= In principle, if ColorPt interface contains Pt interface,
then any client could use ColorPt in place of point

= However -- offset in virtual function table may differ
= Lose implementation efficiency
= Without link to inheritance
= subtyping leads to loss of implementation efficiency
= Also encapsulation issue:

= Subtyping based on inheritance is preserved under
modifications to base class ...

Function subtyping
= Subtyping principle

= A <: Bif an A expression can be safely used in any
context where a B expression is required

= Subtyping for function results
» fA<:B, then C—>A <: C—B
= Subtyping for function arguments
= fA<:B, then B—-C <: A-C
= Terminology
= Covariance: A <: Bimplies F(A) <: F(B)
= Contravariance: A <: Bimplies F(B) <: F(A)

Examples

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

= If circle <: shape, then

circle — shape

circle — circle

/N

> shape — shape

shape — circle

C++ compilers recognize limited forms of function subtyping

Subtyping with functions

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

class Point { class ColorPoint: public Point {
public: public: / Inherited, but repeated
int getX(); int getX();¥ here for clarity

virtua smove(int); int getColor();
protected: move(int);
private: void darken(int);
. protected:
i private:

o

» In principle: can have ColorPoint <: Point

= In practice: some compilers allow, others have not
This is covariant case; contravariance is another story

Details, details

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

» This is legal
class Point{ ...
virtual Point * move(int);
b
class ColorPoint: public Point {
virtual ColorPoint * move(int);

-

= But not legal if *’s are removed
class Point { ... virtual Point move(int); ... }
class ColorPoint: public Point { ...virtual ColorPoint move(int);... }

Related to subtyping distinctions for object L-values and object R-values
(Non-pointer return type is treated like an L-value for some reason)

Subtyping and Object L,R-Values

O R TN B A W P TN B e W P G TN B W W P P G T B A WO P RS I T R A

= If classB: publicA{...}

Then
» Br-value <: A r-value
= If x = ais OK, then x = b is OK
provided A’s operator = is public
= If f(a) is OK, then f(b) is OK
provided A’s copy constructor is public
= Bl-value X Al-value
= B¥ <: A¥*
= BEK G AKX
Generally, X <:Y = X* <:Y* isunsound.

Review

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

= Why C++ requires inheritance for subtyping
= Need virtual function table to look the same
= This includes private and protected members
= Subtyping w/o inheritance weakens data abstraction

= Possible confusion regarding inlining
= Cannot generally inline virtual functions
= Inlining is possible for non virtual function

Inlining is very significant for efficiency; enables further optimization.

Abstract Classes
= Abstract class:

= A class that has at least one pure virtual member
function, i.e a function with an empty implementation
Declare by: virtual function_decl = 0;

A class without complete implementation

Useful because it can have derived classes

Since subtyping follows inheritance in C++, use abstract classes
to build subtype hierarchies.

Establishes layout of virtual function table (vtable)
= Example

= Geometry classes
= Shape is abstract supertype of circle, rectangle, ...

Multiple Inheritance

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

setColor

class CR : licR, publicC{ ... };

ove
setColor

Inherit independent functionality from independent classes

Problem: Name Clashes

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

class A {
public:
void virtual f() { ... }
3 same name
class B { in 2 base
public: classes

void virtual f() { ... }
o
class C : public A, publicB{ ... };

C* p;
p->f(); // error

Possible solutions to name clash

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

= Three general approaches
= Implicit resolution
= Language resolves name conflicts with arbitrary rule
= Explicit resolution
= Programmer must explicitly resolve name conflicts
= Disallow name clashes
= Programs are not allowed to contain nhame clashes

= No solution is always best

= C++ uses explicit resolution by using fully qualified
names

Repair to previous example

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

= Rewrite class C to call A::f explicitly
class C : public A, public B {
public:
void virtual f() {
A::f(); /] Call A::f(), not B::f();

= Reasonable solution
= This eliminates ambiguity

= Preserves dependence on A
= Changes to A::f will change C::f

vtable for Multiple Inheritance

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

class A { class C: public A, public B {
public: public:
int x; int z;
virtual void f(); virtual void f();
b b
class B {
public: C *pc = new C;
inty; B *pb = pc;
virtual void g(); A *pa = pc;
virtual void f(); Three pointers to same object,
) but different static types.

Object and classes .\./.

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

C object C-as-A vtbl

pa, pc . : &Cuf [0
) A object
4 C-as-B vtbl
b

= Offset 6 in vtbl is used in call to pb->f, since C::f may
refer to A data that is above the pointer pb

= Call to pc->g can proceed through C-as-B vtbl

Multiple Inheritance “"Diamond”

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

The diamond inheritance Problem: an interesting kind of name clash

Obj C

[DJA | [D]B

» The implementation is inherited twice

»= C objects consist of two windows, one capable of displaying
text and the other capable of displaying graphics!

A solution: virtual base classes

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

= C++ has a mechanism for eliminating multiple
copies of duplicated base-class members,

» called virtual base classes and consists in
declaring D as virtual base class of A and B

class A : public virtual D .\ class B : public virtual D

{..} {..} Obj C

ﬁﬁ

11

Diamond inheritance in C++

DA W I S DT S W P I i S T B S D W P P i S N B S W R P PR i G G B S D

Standard base classes
= D members appear twice in C
Virtual base classes
class A : public virtual D { ... }

= Avoid duplication of base
class members

= Require additional pointers so
that D part of A, B parts of
object can be shared

C++ multiple inheritance is complicated in part because of
desire to maintain efficient lookup

Virtual base classes give rise to other type conversion problems

C++ Summary

= Objects

= Created by classes

= Contain member data and pointer to class
Encapsulation

= member can be declared public, private, protected
= object initialization partly enforced

Classes: virtual function table

Inheritance

= Public and private base classes, multiple inheritance
Subtyping: Occurs with public base classes only

12

Some problem areas

= Casts
= Sometimes no-op, sometimes not (esp multiple inher)
Lack of garbage collection

= Memory management is error prone
= Constructors, destructors are helpful though

Objects allocated on stack

= Better efficiency, interaction with exceptions

= BUT assignment works badly, possible dangling ptrs
Overloading

= Too many code selection mechanisms
Multiple inheritance

= Efforts at efficiency lead to complicated behavior

Additional topics if more time

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

= Style guides for C++:

= Should a programming language enforce good style?
= Make it easier to use good style than bad?
= Simply make it possible to do whatever you want?

= Design patterns and use of OO
= Other topics of interest??

13

