Objects in C++

Objects, with dynamic lookup of
virtual functions

DR R AT B A R P R ST B A R R P R ST B A R R P R L ST S R R O R P RO T L ST A

Patrizia Scandurra
scandurra@dti.unimi.it
Info3

C++ Object System

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

® Object-oriented features
1. Classes and Data Abstraction
2. Encapsulation

3. Inheritance
® Single and multiple inheritance
® Public and private base classes

4, Objects, with dynamic lookup of virtual functions
5. Subtyping

B Tied to inheritance mechanism

T S b o b AL Eh s L

Polymorphism in C++

[b RO B AL o

= runtime polymorphism
(virtual functions)

= compile-time polymorphism
(templates)

Run-time Polymorphism

OOREFAEIRE £

® Run-time polymorphism: implemented with dynamic
lookup of virtual functions

I S TR

® Dynamic lookup. a method is selected dynamically, at run
time, according to the implementation of the object that

receives a message
® not some static property of the pointer or variable used
to name the object

® The important property of dynamic lookup is that different
objects may implement the same operation

differently

Virtual functions

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

® Member functions are either
® Virtual, if explicitly declared or inherited as virtual
® Non-virtual otherwise
® Virtual members
® Are accessed by indirection through ptr in object
® May be overridden in derived (sub) classes
® Non-virtual functions
® Are called in the usual way. Just ordinary functions.

® May be redefined in derived classes (overloading through
redefining)

® Pay overhead only if you use virtual functions

Sample class: one-dimen. points
class Pt {
public:

Pt(int xv); } Overloaded constructor
Pt(Pt* pv);

int getX(); Public read access to private data
virtual void move(int dx); Virtual function
protected:
void setX(int xv); Protected write access
private:
int x; Private member data

¥

Sample derived class

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

class ColorPt: public Pt {
public:
ColorPt(int xv,int cv);
ColorPt(Pt* pv,int cv); | Overloaded constructor
ColorPt(ColorPt* cp);
int getColor(); Non-virtual function
virtual void move(int dx);

virtual void darken(int tint); } Virtual functions

protected:

void setColor(int cv); Protected write access
private:

int color; Private member data
};

Sample derived class

O R TN B A W P TN B e W P G TN B W W P P G T B A WO P RS I T R A

void ColorPt::darken(int tint) { color += tint; }

void ColorPt::move(int dx) {
Pt::move(dx); this->darken(1);
¥

V|rtual functlons and /na’/rectlon (1)

P S TN e VN P S T e N P S T e W P S N B A e Lol AL

® C++ allows a base class pointer to point to a
derived class object

® Upon method invocation, the method of the
derived object is called

® This leads to generic alghoritms using base class
pointers

Pt* ptr = new ColorPt;
ptr->move();
delete(ptr);

V|rtuaI functlons and /nd/rectlon (2)

SR B P T SFENE S E LS SFENE S E LS WP T WP T

BaseClass f()

I
D1 f()

I
D2 f() doesn't exist
o oD
» D3 f() doesn't exist

Run-time representation

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

Point object Point vtable Code for move
vptr
X
ColorPoint object ColorPoint vtable Code for move
vptr
X

Code for darken

C

Virtual pointers Virtual tables Function code

Compare to Smalltalk

O R TN B A W P TN B e W P G TN B W W P P G T B A WO P RS I T R A

Point class Template

Point object

Method dictionary

ColorPoint object ColorPoint class Template

Method dictionary

Why is C++ lookup simpler?

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

® Smalltalk has no static type system
® Code p message:pars could refer to any object
® Need to find method using pointer from object
® Different classes will put methods at different place in
method dictionary
® C++ type gives compiler some superclass
® Offset of data, fctn ptr same in subclass and superclass
® Offset of data and function ptr known at compile time
® Code p->move(x) compiles to equivalent of
(*(p->vptr[1]))(p,x) if move is first fctn in vtable.

data passed to member function; see next slide

Calls to virtual functions

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

® One member function may call another
class A{
public:
virtual int f (int x);
virtual int g(inty);
hor
int A::f(int x) { ... g(i) ...;}
int A::g(inty) { ... f(G) ...;}
® How does body of f call the right g?

® If g is redefined in derived class B, then inherited f
must call B::g

“This” pointer

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

® Code is compiled so that member function takes
“object itself” as first argument

Code int A::f(int x) { ... g(i) ...;}

compiled as int A::f(A *this, int x) { ... this->g(i) ...;}

® “this” pointer may be used in member function

® Can be used to return pointer to object itself, pass
pointer to object itself to another function, ...

Non-virtual functions

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

® How is code for non-virtual function found?

® Same way as ordinary “non-member” functions:
® Compiler generates function code and assigns address
® Address of code is placed in symbol table

® At call site, address is taken from symbol table and
placed in compiled code

® But some special scoping rules for classes

® QOverloading

® Remember: overloading is resolved at compile time

® This is different from run-time lookup of virtual function

Scope rules in C++

DA W I S DT S WO P I S T B A WO P R i S G B S WO R P R i G T T S W P R I L N R A

® Scope qualifiers

® binary :: operator, ->, and .

® class::member, ptr->member, object.member
® A name outside a function or class,

® not prefixed by unary :: and not qualified refers to
global object, function, enumerator or type.

® A name after X::, ptr-> or obj.

® where we assume ptr is pointer to class X and obj is
an object of class X

® refers to a member of class X or a base class of X

Virtual vs Overloaded Functions
class parent { public:
void printclass() {printf("p ");};
virtual void printvirtual() {printf("p ");}; };
class child : public parent { public:
void printclass() {printf("c ");};
virtual void printvirtual() {printf("c ");}; };
main() {
parent p; child c; parent *q;
p.printclass(); p.printvirtual(); c.printclass(); c.printvirtual();
q = &p; g->printclass(); g->printvirtual();
q = &c; g->printclass(); g->printvirtual();
b
Output: ppccpppc

OORENFRE LG

Function call binding

» early binding (C, C++)
» at compile time

= late binding (C++)
» at runtime

» Mighty, but a bit less efficient
« 1 more assembler statement per call,
= slight memory overhead due to VPTRs

T % 2 % T % - L ENFAE L

10

