
1

Objects in C++

Inheritance

Patrizia Scandurra

scandurra@dti.unimi.it

Info3

C++ Object System

� Object-oriented features

1.Classes and Data Abstraction

2.Encapsulation

3. Inheritance

� Single and multiple inheritance

� Public and private base classes

4.Objects, with dynamic lookup of virtual functions

5.Subtyping

� Tied to inheritance mechanism

2

Inheritance (1)

The ability to reuse the definition of one kind of
object to define another kind of object.

Class hierarchies

3

Constructors/destructors
and inheritance (1)

Constructors/destructors
and inheritance (2)

4

Public, private, protected inheritance

class CD: public CB{…}

class CD: private CB{…} or class CD: CB{…}

class CD: protected CB{…}

Private inheritance – publicize members

class CBase {

int x;

public:

int y;

voif f();

Void f(int);

}

class CDerivata: CBase{

public:

CBase::y; // y is turned in pubblic

CBase::x; // ERROR. Not allowed!! x is private

CBase::f; // Both overloaded members exposed

}

� Thus, private inheritance is useful if you want to hide part
of the functionality of the base class.

5

Multiple inheritance

However, multiple inheritance introduces a
number of possibilities for ambiguity!

Redefining (1)
class X {

int i;

public:

X() { i = 0; }

void set(int ii) { i = ii; }

int permute() { return i = i * 47; }

};

class Y : public X {

int i; // Different from X's i

public:

Y() { i = 0; }

int change() {

i = permute(); // Different name call

return i;

}

void set(int ii) { // redefining
i = ii;

X::set(ii); // Same-name function call

}

};

6

Redefining (2)

� Redefining for ordinary member functions and overriding
when the base class member function is a virtual
function

� Redefining produces an overloaded function, with
code selection done at compile time through the
operator class_name::

� Virtual functions are the normal case and will be
covered in detail later

� Polymorphism is implemented in C++ with the
dynamic lookup of virtual functions

Redefining (3)

#include <iostream>

class A{

int i;

public:

A(): i(1){};

int f(){ return i;}

};

class B: public A{

int i;

public:

B():i(2){};

void f(int s){i = s;} //REDEFINING

int g(){

// return f(); ERROR

return A::f(); //OK

}

};

