
1

Objects in C++

Objects, with dynamic lookup of

virtual functions

Patrizia Scandurra

scandurra@dti.unimi.it

Info3

C++ Object System

� Object-oriented features

1.Classes and Data Abstraction

2.Encapsulation

3. Inheritance

� Single and multiple inheritance

� Public and private base classes

4.Objects, with dynamic lookup of virtual functions

5.Subtyping

� Tied to inheritance mechanism

2

Polymorphism in C++

Run-time Polymorphism

� Run-time polymorphism: implemented with dynamic
lookup of virtual functions

� Dynamic lookup: a method is selected dynamically, at run
time, according to the implementation of the object that
receives a message

� not some static property of the pointer or variable used
to name the object

� The important property of dynamic lookup is that different
objects may implement the same operation
differently

3

Virtual functions

�Member functions are either

� Virtual, if explicitly declared or inherited as virtual

� Non-virtual otherwise

� Virtual members

� Are accessed by indirection through ptr in object

�May be overridden in derived (sub) classes

� Non-virtual functions

� Are called in the usual way. Just ordinary functions.

�May be redefined in derived classes (overloading through
redefining)

� Pay overhead only if you use virtual functions

Sample class: one-dimen. points

class Pt {

public:

Pt(int xv);

Pt(Pt* pv);

int getX();

virtual void move(int dx);

protected:

void setX(int xv);

private:

int x;

};

Overloaded constructor

Public read access to private data

Virtual function

Protected write access

Private member data

4

Sample derived class

class ColorPt: public Pt {

public:

ColorPt(int xv,int cv);

ColorPt(Pt* pv,int cv);

ColorPt(ColorPt* cp);

int getColor();

virtual void move(int dx);

virtual void darken(int tint);

protected:

void setColor(int cv);

private:

int color;

};

Overloaded constructor

Non-virtual function

Virtual functions

Protected write access

Private member data

Sample derived class

/* ---------- Definitions of Member Functions --------*/

void ColorPt::darken(int tint) { color += tint; }

void ColorPt::move(int dx) {

Pt::move(dx); this->darken(1);

}

5

Virtual functions and indirection (1)

� C++ allows a base class pointer to point to a
derived class object

� Upon method invocation, the method of the
derived object is called

� This leads to generic alghoritms using base class
pointers

Pt* ptr = new ColorPt;

ptr->move();

delete(ptr);

Virtual functions and indirection (2)

BaseClass f()

D1 f()

D2 f() doesn’t exist

D3 f() doesn’t exist
obj

6

Run-time representation

3

5

blue

Point object

ColorPoint object

x

vptr

x

vptr

c

Point vtable

ColorPoint vtable

Code for move

Code for move

Code for darken

Virtual pointers Virtual tables Function code

Compare to Smalltalk

2

3

x

y newX:Y:

...

move

Point object Point class Template

Method dictionary

...

4

5

x

y newX:Y:C:

color

move

ColorPoint object
ColorPoint class Template

Method dictionary

red

color

7

Why is C++ lookup simpler?

� Smalltalk has no static type system

� Code p message:pars could refer to any object

� Need to find method using pointer from object

� Different classes will put methods at different place in
method dictionary

� C++ type gives compiler some superclass

� Offset of data, fctn ptr same in subclass and superclass

� Offset of data and function ptr known at compile time

� Code p->move(x) compiles to equivalent of

(*(p->vptr[1]))(p,x) if move is first fctn in vtable.

data passed to member function; see next slide

Calls to virtual functions

� One member function may call another
class A {

public:

virtual int f (int x);

virtual int g(int y);

};

int A::f(int x) { … g(i) …;}

int A::g(int y) { … f(j) …;}

� How does body of f call the right g?

� If g is redefined in derived class B, then inherited f
must call B::g

8

“This” pointer

� Code is compiled so that member function takes
“object itself” as first argument

Code int A::f(int x) { … g(i) …;}

compiled as int A::f(A *this, int x) { … this->g(i) …;}

� “this” pointer may be used in member function

� Can be used to return pointer to object itself, pass
pointer to object itself to another function, ...

Non-virtual functions

� How is code for non-virtual function found?

� Same way as ordinary “non-member” functions:

� Compiler generates function code and assigns address

� Address of code is placed in symbol table

� At call site, address is taken from symbol table and
placed in compiled code

� But some special scoping rules for classes

� Overloading

� Remember: overloading is resolved at compile time

� This is different from run-time lookup of virtual function

9

Scope rules in C++

� Scope qualifiers

� binary :: operator, ->, and .

� class::member, ptr->member, object.member

� A name outside a function or class,

� not prefixed by unary :: and not qualified refers to
global object, function, enumerator or type.

� A name after X::, ptr-> or obj.

�where we assume ptr is pointer to class X and obj is
an object of class X

� refers to a member of class X or a base class of X

Virtual vs Overloaded Functions

class parent { public:

void printclass() {printf("p ");};

virtual void printvirtual() {printf("p ");}; };

class child : public parent { public:

void printclass() {printf("c ");};

virtual void printvirtual() {printf("c ");}; };

main() {

parent p; child c; parent *q;

p.printclass(); p.printvirtual(); c.printclass(); c.printvirtual();

q = &p; q->printclass(); q->printvirtual();

q = &c; q->printclass(); q->printvirtual();

}

Output: p p c c p p p c

10

Function call binding

