
1

Objects in C++

Patrizia Scandurra

scandurra@dti.unimi.it

Info3

History

�C++ is an object-oriented extension of C

�C was designed by Dennis Ritchie at Bell Labs

• used to write Unix

• based on BCPL

�C++ designed by Bjarne Stroustrup at Bell Labs

• His original interest at Bell was research on simulation

• Early extensions to C are based primarily on Simula

• Called “C with classes” in early 1980’s

• Popularity increased in late 1980’s and early 1990’s

• Features were added incrementally

Classes, templates, exceptions, multiple inheritance, type tests...

2

Design Goals

� Provide object-oriented features in C-based
language, without compromising efficiency

• Backwards compatibility with C

• Better static type checking

• Data abstraction

• Objects and classes

• Prefer efficiency of compiled code where possible

� Important principle

• If you do not use a feature, your compiled code
should be as efficient as if the language did not
include the feature.

What is Data Abstraction?

�Abstract Data Types (ADTs)

• type implementation & operations

• hidden implementation

� types are central to problem solving

� a weapon against complexity

� built-in and user-defined types are ADTs

3

How Well are ADTs Supported in C?

�Does C enforce the use of the ADTs interface
and the hiding of its implementation?

�No

C++

�C++ is a superset of C, which has added
features to support object-oriented
programming

�C++ supports classes

• things very like ADTs

4

How successful?

�Given the design goals and constraints,

• this is a very well-designed language

�Many users -- tremendous popular success

�However, very complicated design

• Many specific properties with complex behavior

• Difficult to predict from basic principles

• Most serious users chose subset of language

– Full language is complex and unpredictable

• Many implementation-dependent properties

• Language for adventure game fans

Email discussion group comment

... in my group ... we do use C++ regularly and find
it very useful but certainly not perfect. Every full
moon, however, we sacrifice a virgin disk to the
language gods in hopes that the True Object-
Oriented Language will someday be manifest on
earth, or at least on all major platforms. :-)

Rick Pember, LLNL

5

Further evidence

�Many style guides for using C++ “safely”

� Every group I’ve ever talked to has established
some conventions and prohibitions among
themselves.

• don’t inherit implementation

• SGI compiler group -- no virtual functions

• Others

Significant constraints

�C has specific machine model

• Access to underlying architecture

�No garbage collection

• Consistent with goal of efficiency

• Need to manage object memory explicitly

� Local variables stored in activation records

• Objects treated as generalization of structs, so some
objects may be allocated on stack

• Stack/heap difference is visible to programmer

6

Overview of C++

�Additions and changes not related to objects

• type bool

• pass-by-reference & the Copy-Constructor

• user-defined overloading

• function template

• exception handling

• …

OO Programming Languages

Four main concepts:

1. Abstraction: implementation details hidden inside a
program unit with a specific interface. The interface is a set
of public functions (or methods) over hidden data.

2. Inheritance: reusing the definition of one kind of object to
define another kind of object.

3. Dynamic lookup: a method is selected at run time,
according to the implementation of the object, not some
static property of the pointer/var used to name the object.

4. Subtyping is a relation on types that allows values (or
objects) of one type to be used in place of values (or
objects) of another.

Inheritance Is Not Subtyping!

“Subtyping is a relation on interfaces,
inheritance is a relation on implementations.”

7

C++ Object System

� Object-oriented features
1. Classes and Data Abstraction

2. Encapsulation

3. Inheritance

– Single and multiple inheritance

– Public and private base classes

4. Objects, with dynamic lookup of virtual functions

5. Subtyping

– Tied to inheritance mechanism

– A will be recognized by the compiler as a subtype of B
only if B is a public base class of A

