
1

Objects in C++

Encapsulation

Patrizia Scandurra

scandurra@dti.unimi.it

Info3

C++ Object System

� Object-oriented features

1.Classes and Data Abstraction

2.Encapsulation

3. Inheritance

� Single and multiple inheritance

� Public and private base classes

4.Objects, with dynamic lookup of virtual functions

5.Subtyping

� Tied to inheritance mechanism

2

Encapsulation

� Encapsulation means that implementation
details are hidden inside a program unit with a
specific interface.

� A way to provide abstraction: the interface of
objects usually consist of a set of public
functions that manipulate hidden data.

� Incapsulation involves restricting access to a
program component according to its specified
interface.

Struct and Class in C++ (1)

� A struct is a way to collect a group of variables,
like in C.

struct Structure1 {

char c;

int i;

};

int main() {

struct Structure1 s1, s2; // the keyword

//struct is optional in C++

…

}

3

Struct and Class in C++ (2)

� In C++ struct and class have been made similar

� In C++, a struct can contain

�member functions

� private fields

� By default, all members of a struct are public

� By default, all members of a class are private

� Similar considerations also apply to union

Visibility

� Public, private, protected levels of visibility

� Public: visible everywhere

� Protected: within class and subclass declarations

� Private: visible only in class where declared, inherited
private members exist in the derived class, but cannot be
named directly in code written as part of the derived class.

� Friend functions and classes

� Friend allows special access

� Careful attention to visibility and data abstraction

� Are executed faster

4

Private, protected, public levels of visibility

� Member data is made private, so that changes do not
affect the way that other classes (including derived classes)
depend on this class.

� Members that modify private data are made
protected, so that derived classes may change the value of
member data, but external code is not allowed to do so.

� Finally, member functions that read the value of member
data and provide useful operations on objects are
declared public.

Friend functions (1)

� A class may declare friend functions

� The friend designation is used to allow visibility
to the private and protected part of a class

� A friend function can be

� a public member function of another class

� an external function

5

Friend functions (2)

class A {

private:

int i;

public:

friend int B::f(int n, A* a);

…

};

class B {

private:

int i;

public:

int f(int n, A* a);

…

};

int B::f(int n, A* a) {

return i + a->i + n;

}

Friend classes

� If a class B has the declaration friend class A, then code
written as part of A has access to the private/private part of B.

� The friend mechanism is used when a pair of classes is
closely related, such as matrices and vectors.

class A {
int a;
friend class B;
};

class B {
public: void foo();
};

B::foo() {
A a_obj;
a_obj.a = 10;

}

