Objects in C++
Inheritance

DR R AT B A R P R ST B A R R P R ST B A R R P R L ST S R R O R P RO T L ST A

Patrizia Scandurra
scandurra@dti.unimi.it
Info3

C++ Object System

DA R I S T T R W W R I S D T A W R I L R T A W R PR I L N T A N R PRI L N A

® Object-oriented features
1. Classes and Data Abstraction
2. Encapsulation

3. Inheritance
® Single and multiple inheritance
® Public and private base classes

4, Objects, with dynamic lookup of virtual functions
5. Subtyping

® Tied to inheritance mechanism

Inheritance (1)

The ability to reuse the definition of one kind of
object to define another kind of object.

Food
ChewingGum
class ChewingGu.mFood {
/7 ...
}i

= ChewingGum inherits
= all public class members (full access)
= all protected class members (full access)

= all private class members (no direct
access)

Class hierarchies

SRS 5 5 L b SRS Sl S b AL SR

= each derived class can act as a base
class for further derivation

Animal

WildAnimal

Constructors/destructors

NI L S g TR

m constructors
» require calling the base class constructor

» if arguments are mandatory, they have to be
provided

class Manager : public Employee {
public:
Manager (const std::string& name,
const short level)
: Employee (name) level (level) {

}

private:
short level ;

Constructors/destructors

NPV e T A WY

» destructors
» always make destructors virtual in base classes

« there might be cleanup work to be done in derived
classes

class Employee {

/e
public:
VR
virtual ~Employee() {}

}:

Public, private, protected inheritance

class CD: public CB{..}
class CD: private CB{..} or class CD: CB{..}

class CD: protected CB{..}

TIPO di EREDITARIETA’
protectet | private

protected | private
protected | protected | protected | private

&
:
3

Private inheritance — publicize members

T T T P P T P e T S M e P i e T T S Wl BSOS T

class CBase {

int x;

public:

int y;

voif £();

Void f (int);

}

class CDerivata: CBase{

public:

CBase::y; // y is turned in pubblic
CBase::x; // ERROR. Not allowed!! x is private
CBase::f; // Both overloaded members exposed
}

® Thus, private inheritance is useful if you want to hide part
of the functionality of the base class.

Multiple inheritance

OO EN PRI T T A OO % T LEEN S T DO S PR I T

= simply extend the inheritance definition

class MobileAgentCommand
public Command,
public Serializable,
public PersistentObject {

¥

However, multiple inheritance introduces a
number of possibilities for ambiguity!

Redefining (1)

class X {
int i;
public:
X() {1i=0;}
void set (int ii) { i = ii; }
int permute() { return i =i * 47; }

};

class Y : public X {
int i; // Different from X's i
public:
Y() {1 =0; }
int change() {
i = permute(); // Different name call

return i;
}
void set(int ii) { // redefining

i = ii;

X::set (ii); // Same-name function call
}

}i

Redefining (2)

O T e T A

s OO0 AT T

DO S PR I T

" Redefining for ordinary member functions and overriding
¥vhen the base class member function is a virtual
unction

" Redefining produces an overloaded function, with
code selection done at compile time through the
operator class_name::

® Virtual functions are the normal case and will be
covered in detail later

® Polymorphism is implemented in C++ with the
dynamic lookup of virtual functions

Redefining (3)

#include <iostream>
class A{
int i;
public:
A(): i(1){};
int £(){ return i;}
};
class B: public A{
int i;
public:
B():i(2){};
void f£(int s){i = s;} //REDEFINING
int g(){
// return £(); ERROR
return A::£(); //OK

