
Objects in C++

Classes and Data Abstraction

Patrizia Scandurra

scandurra@dmi.unict.it

Info3

C++ Object System

� Object-oriented features

1. Classes and Data Abstraction

2. Encapsulation

3. Inheritance

� Single and multiple inheritance

� Public and private base classes

4. Objects, with dynamic lookup of virtual functions

5. Subtyping

� Tied to inheritance mechanism

Abstraction

� Abstraction means that implementation
details are hidden inside a program unit with a
specific interface.

� For objects, the interface consists of a set of
public functions (or methods) that manipulate
hidden data.

� Abstraction involves restricting access to a
program component according to its specified
interface.

C++: Classes and Data Abstraction

� C++ supports Object-Oriented Programming
(OOP)

� OOP models real-world objects with software
counterparts

� OOP encapsulates data (attributes) and
functions (behavior) into packages called
objects

� Objects have the property of information hiding

� Objects communicate with one another across
interfaces

� The interdependencies between the classes are
identified

� makes use of

� a part of

� a specialisation of

� a generalisation of

� etc.

C++: Classes and Data Abstraction

C and C++

� C programmers concentrate on writing functions

� C++ programmers concentrate on creating their
own user-defined types called classes

� Classes in C++ are a natural evolution of the C
notion of struct

A User-Defined Type Time with a Struct

// Create a structure, set its members, and print it

#include <iostream.h>

struct Time { // structure definition

int hour; // 0-23

int minute; // 0-59

int second; // 0-59

};

void printMilitary(const Time &); // prototype

void printStandard(const Time &); // prototype

main()

{

Time dinnerTime; // variable of new type Time

// set members to valid values

dinnerTime.hour = 18;

dinnerTime.minute = 30;

dinnerTime.second = 0;

cout << "Dinner will be held at";

printMilitary(dinnerTime); // 18:30:00

cout << " military time,\nwhich is ";

printStandard(dinnerTime); // 6:30:00 PM

cout << " standard time." << endl;

// set members to invalid values

dinnerTime.hour = 29;

dinnerTime.minute = 73;

dinnerTime.second = 103;

cout << "\nTime with invalid values: ";

printMilitary(dinnerTime); // 29:73:103 bad values!

cout << endl;

return 0;

}// end main

// Print the time in military format

void printMilitary(const Time &t)

{

cout << (t.hour < 10 ? "0" : "") << t.hour << ":"

<< (t.minute < 10 ? "0" : "") << t.minute << ":"

<< (t.second < 10 ? "0" : "") << t.second;

}

// Print the time in standard format

void printStandard(const Time &t)

{

cout << ((t.hour == 0 || t.hour == 12) ? 12 :

t.hour % 12)

<< ":" << (t.minute < 10 ? "0" : "") << t.minute

<< ":" << (t.second < 10 ? "0" : "") << t.second

<< (t.hour < 12 ? " AM" : " PM");

}

Comments

� Initialization is not required --> can cause
problems

� A program can assign bad values to members of
Time

� If the implementation of the struct is changed,
all the programs that use the struct must be

changed [No “interface”]

A Time Abstract Data Type with a Class

#include <iostream.h>

// Time abstract data type (ADT) definition

class Time {

public:

Time(); // default constructor

void setTime(int, int, int);

void printMilitary();

void printStandard();

private:

int hour; // 0 - 23

int minute; // 0 - 59

int second; // 0 - 59

};

// Time constructor initializes each data member to zero.

// No return value

// Ensures all Time objects start in a consistent state.

Time::Time() { hour = minute = second = 0; }

// Set a new Time value using military time.

// Perform validity checks on the data values.

// Set invalid values to zero (consistent state)

void Time::setTime(int h, int m, int s)

{

hour = (h >= 0 && h < 24) ? h : 0;

minute = (m >= 0 && m < 60) ? m : 0;

second = (s >= 0 && s < 60) ? s : 0;

}

// Print Time in military format

void Time::printMilitary()

{

cout << (hour < 10 ? "0" : "") << hour << ":"

<< (minute < 10 ? "0" : "") << minute << ":"

<< (second < 10 ? "0" : "") << second;

}

// Print time in standard format

void Time::printStandard()

{

cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)

<< ":" << (minute < 10 ? "0" : "") << minute

<< ":" << (second < 10 ? "0" : "") << second

<< (hour < 12 ? " AM" : " PM");

}

// Driver to test simple class Time

main()

{

Time t; // instantiate object t of class Time

cout << "The initial military time is ";

t.printMilitary(); // 00:00:00

cout << "\nThe initial standard time is ";

t.printStandard(); // 12:00:00 AM

t.setTime(13, 27, 6);

cout << "\n\nMilitary time after setTime is ";

t.printMilitary(); // 13:27:06

cout << "\nStandard time after setTime is ";

t.printStandard(); // 1:27:06 PM

t.setTime(99, 99, 99);

// attempt invalid settings

cout << "\n\nAfter attempting invalid settings:\n"

<< "Military time: ";

t.printMilitary(); // 00:00:00

cout << "\nStandard time: ";

t.printStandard(); // 12:00:00 AM

cout << endl;

return 0;

} // end main

Output

� The initial military time is 00:00:00

� The initial standard time is 12:00:00 AM

� Military time after setTime is 13:27:06

� Standard time after setTime is 1:27:06 PM

� After attempting invalid settings:

� Military time: 00:00:00

� Standard time: 12:00:00 AM

Comments

� hour, minute, and second are private data

members. They are normally not accessible
outside the class. [Information Hiding]

� Use a constructor to initiailize the data
members. This ensures that the object is in a
consistate state when created.

� Outside functions set the values of data
members by calling the setTime method, which
provides error checking.

Classes as User-Defined Types

� Once the class has been defined, it can be used as a
type in declarations as follows:

Time sunset //object of type Time

Time arrayOfTimes[5] //array of Time objects

Time *pointerToTime //pointer to a Time object

Using Constructors

� Constructors can be overloaded, providing
several methods to initialize a class.

Interface

Time(); // default constructor

Time(int hr);

Time(int hr, int min, int sec);

Implementation

Time::Time(){ hour = minute = second = 0; }

Time::Time(int hr) { setTime(hr, 0, 0); }

Time::Time(int hr, int min, int sec)

{ setTime(hr, min, sec); }

Time t1;

Time t2(08); // class_name object_name(values)

Time t2 = Time(08);

Time t2 = 08;

Time t2 = (Time) 08; // cast

Time t3(08,15,04);

Time t3 = Time(08,15,04);

Using Constructors

Type_name * pointer_name;

Pointer_name = new Type_name;

where Type is a Class or a primitive type

Int *ptr;

ptr = new int;

Time *t;

t = new Time; // Time() is invoked

t = new Time(08); // Time(int) is invoked

t = new Time(08,15,04); // Time(int, int, int)

// is invoked

Using Constructors and
dynamic objects

Using Constructors and
array of objects

Time arrayOfTimes[5]; //Time() is invoked

Explicit array initialization:

//Only the first four elements are inizialized

//Time() (if any) is invoked for the other elements

Time arrayOfTimes[8] = { 3, Time(05), Time(),

Time(01,12,03)}

Using Constructors and
dynamic arrays

Time *t = new Time[8];

// Time() is invoked for each element

int i = 3;

Time (*t) [20] = new Time[3*i] [20];

// Multi-dimension array

// Time() is invoked for each element

posite, can be variable posite, constant

In both cases, explicit initialization is not allowed!

The constructor initializer list

� A list of “constructor calls” that appears only in the
definition of the constructor – after the argument list

� The initialization in the list is executed before any of the main
constructor code.

� This is the place to put all const initializations, primitive type
variables and object variables, except arrays.

class Info

private:

const int i;

double m;

Time t;

Public:

Info(); // default constructor

};

Info::Info(int j, double n) : i(j), m(n), t(i) {}

Destructors (1)

� To guarantee cleanup when using dynamic
memory

Destructors (2)

� A public function member ~class_name with

no parameters and no return values

Class_name::~class_name() {

//delete operations

…

}

� Operator delete

� can be called only for an object created by new

delete ptr;

delete [] ptr;

new() and delete() (1)

new() and delete() (2)

Deleting zero pointers

IfIf the pointer the pointer youyou’’re re deletingdeleting isis zero, zero,

nothingnothing willwill happenhappen. .

ForFor thisthis reasonreason, people , people oftenoften recommendrecommend settingsetting

a pointer a pointer toto zero zero immediatelyimmediately after after youyou deletedelete itit, ,

toto preventprevent deletingdeleting itit twicetwice..

Int* myPtr = 0

DeletingDeleting anan objectobject more more thanthan once once

isis definitelydefinitely a bad a bad thingthing toto do,do,

and and willwill cause cause problemsproblems..

Function Declaration

;

Function declaration:Const modifier

#include <iostream.h>

Class Car{

private:

int lenght;

double weight;

public:

int fun_weight(double) const;

};

int Car::fun_weight(double new_weight) const

{

// weight++; ERROR

new_weigth += weight;

return (int) new_weight;

}

Function Declaration Examples

pass-by-reference &

pass-by-reference *

pass-by-value

In future!!

Call by value

Call by reference

pass-by-reference &

In future!!

Object Variable Classification (like in C)

� Extern variables double x

� global variables, the prefix extern when declared by other files

� Static extern variables static double x

� global variables, but can’t be used by other files

� are zero-initialized by default

� Automatic internal variables

� defined within a function/block

� Static internal variables
� like static external variables,

� but defined within a function/block

� retains its state between calls to that
function

int

count_calls() {

static int

calls=0;

//local static

return ++calls;

}

Static member variables

� A static variable, member of a class, is a variable
shared by all objects created from the class

Class Car{

private:

static int num_cars;

public:

…

};

//Outside initialized, like an external variable,
//even if private!

int Car::num_cars = 22;

Static member functions (1)

� Executed in the same manner for all objects of
the given class, e.g., to open a file or to set
static variables.

� They can’t:

� access to non static variables,

� invoke non static functions,

� use the pointer this

� be declared virtual

� Constructors and destructors can’t be static

Static member functions (2)

#include <iostream.h>

class Car{

private:

static int num_cars;

public:

Car(); // default constructor

static void new_car();

};

Static member functions (3)

Car::Car() { num_cars++; }

void Car::new_car(){cout << num_cars << '\n';}

int Car::num_cars = 0; // Access to the static
// private variable is allowed!

int main(int argc, char *argv[])

{

//cout << Car::num_cars; ERROR Access to a

//private variable!

Car a;

Car::new_car(); // or a.new_car() bad style!

return 0;

}

Memory layout (1)

member functions

extern variables,
static variables

dynamic variables

automatic variables
(including pointers)

Memory layout (2)

Pointer have a constant size of 1 word (16 or 32 bit)

Inline functions

� Any function defined within a class body is automatically
inline, but you can also make a non-class function inline
by preceding it with the inline keyword.

inline int plusOne(int x) { return ++x; }

inline int plusOne(int x); //has no effect

� Any behavior you expect from an ordinary function, you
get from an inline function.

� The only difference is that an inline function is expanded
in place, like a preprocessor macro in C, so the overhead
of the function call is eliminated.

C++ source structure

main()

Exercises (1)

Exercises (2)

Default arguments

� When functions have long argument lists, it is tedious to write
(and confusing to read) the function calls

� when most of the arguments are the same for all the calls.

� A commonly used feature in C++ is called default arguments.

� A default argument is one the compiler inserts if it isn’t
specified in the function call.

void f(int size, int initQuantity = 0);

void g(int x, int = 0, float = 1.1);

void h(int = 0, int x, float = 1.1); //ERROR

Function overloading

void f(int size, int initQuantity);

void f(int size, double initQuantity);

int f(int size, int initQuantity);//ERROR

� The compiler resolves the correct version of an overloaded
function based on the number/type of arguments in each call

� Functions differing only in their return type cannot be
overloaded.

� Since the returned value may be implicitly converted, the
compiler cannot resolve which version is intended to use

� An immediately useful place for overloading is in constructors.

