
1st International Workshop on
Quality-Aware DevOps

(QUDOS 2015)

Proceedings

Danilo Ardagna, Andreas Brunnert, Giuliano Casale,
and Andre van Hoorn

September 1, 2015
Bergamo, Italy

The Association for Computing Machinery, Inc.
2 Penn Plaza, Suite 701

New York, NY 10121-0701

Copyright c© 2015 by the Association for Computing Machinery, Inc (ACM). Permission to make digital or hard
copies of portions of this work for personal or classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permission to republish from: Publications Dept. ACM, Inc.
Fax +1-212-869-0481 or E-mail permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that
the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923.

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously published by ACM.
If you have written a work that was previously published by ACM in any journal or conference proceedings prior to
1978, or any SIG Newsletter at any time, and you do NOT want this work to appear in the ACM Digital Library, please
inform permissions@acm.org, stating the title of the work, the author(s), and where and when published.

ACM ISBN: 978-1-4503-3817-2

Additional copies may be ordered prepaid from:

Phone: 1-800-342-6626
ACM Order Department (U.S.A. and Canada)
P.O. BOX 11405 +1-212-626-0500
Church Street Station (All other countries)
New York, NY 10286-1405 Fax: +1-212-944-1318

E-mail: acmhelp@acm.org

Production: Conference Publishing Consulting
D-94034 Passau, Germany, info@conference-publishing.com

Message from the Chairs

It is our great pleasure to welcome you to the first edition of the International Workshop on
Quality­aware DevOps (QUDOS 2015), held on September 1, 2015 in Bergamo, Italy, co­located with
the 10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE 2015).

DevOps has emerged in recent years as a set of principles and practices for smoothing out the gap
between development and operations, thus enabling faster release cycles for complex IT services.
Common tools and methods used in DevOps include infrastructure as code, automation through deep
modeling of systems, continuous deployment, and continuous integration. As of today, software
engineering research has mainly explored these problems from a functional perspective, trying to
increase the benefits and generality of these methods for the end users. However, this has left behind the
definition of methods and tools for DevOps to assess, predict, and verify quality dimensions.

The QUDOS workshop focuses on the problem of how to best define and integrate quality assurance
methods and tools in DevOps. Quality covers a broadly­defined set of dimensions including
performance, reliability, safety, survivability, cost of ownership, among others. To answer these
questions, the QUDOS workshop wants to bring together experts from academia and industry working
in areas such as quality assurance, agile software engineering, and model­based development. The goal
is to identify and disseminate novel quality­aware approaches to DevOps.

QUDOS 2015 is a one­day workshop. In total, we have accepted four technical full papers proposing
novel approaches for quality­aware DevOps and four short papers presenting tools in the scope of the
workshop. These papers have been selected based on the reviews provided by the QUDOS 2015
program committee members. On average, each submitted paper received three reviews. In addition to
the talks presenting the accepted papers, QUDOS 2015 features an invited keynote by Petr Tuma
(Charles University of Prague, CZ), sharing his thoughts on performance awareness for DevOps.
Moreover, ample space will be devoted to discussions on quality­aware DevOps.

QUDOS 2015 is organized by the consortia of the two EU Projects DICE and MODAClouds, as well as
the DevOps Performance Working Group of the Standard Performance Evaluation Corporation's
Research Group (SPEC RG). QUDOS 2015 is kindly sponsored by NovaTec Consulting GmbH and
technically supported by SPEC RG. We thank the program committee members, who helped with timely
and constructive reviews, as well as each author and presenter who submitted their work to the QUDOS
2015 workshop.

Danilo Ardagna, Andreas Brunnert, Giuliano Casale, Andre van Hoorn
(QUDOS 2015 Chairs)

iii

QUDOS 2015 Organization

Workshop Chairs
Danilo Ardagna Politecnico di Milano, Italy
Andreas Brunnert fortiss GmbH, Germany
Giuliano Casale Imperial College London, UK
Andre van Hoorn University of Stuttgart, Germany

Program Committee
Varsha Apte IIT Bombay, India
Matej Artac XLAB, Slovenia
Simona Bernardi Centro Universitario de la Defensa, AGM, Spain
Andre Bondi Siemens Corporate Research, USA
Francesco D'Andria ATOS, Spain
Wilhelm Hasselbring Kiel University, Germany
Samuel Kounev University of Wuerzburg, Germany
Klaus­Dieter Lange HP, USA
Zhen Ming (Jack) Jiang York University, Canada
Manoj Nambiar Tata Consultancy Services, India
Richard Paige University of York, UK
Dana Petcu IEAT, Romania
Dorina Petriu Carleton University, Canada
Meikel Poess Oracle Corporation, USA
Matteo Rossi Politecnico di Milano, Italy
Arnor Solberg SINTEF, Norway
Catia Trubiani Gran Sasso Science Institute, Italy
Petr Tuma Charles University of Prague, Czech Republic
Liming Zhu NICTA, Australia

iv

Contents
Frontmatter
Foreword . iii

Approaches for Quality-Aware DevOps
A DevOps Approach to Integration of Software Components in an EU Research Project

Mark Stillwell and Jose G. F. Coutinho — Imperial College London, UK . 1
DevOps Meets Formal Modelling in High-Criticality Complex Systems

Marta Olszewska and Marina Waldén — Abo Akademi University, Finland . 7
Modelling Multi-tier Enterprise Applications Behaviour with Design of Experiments Technique

Tatiana Ustinova and Pooyan Jamshidi — Imperial College London, UK . 13
A Proactive Approach for Runtime Self-Adaptation Based on Queueing Network Fluid Analysis

Emilio Incerto, Mirco Tribastone, and Catia Trubiani — Gran Sasso Science Institute, Italy; IMT Institute for Advanced
Studies, Italy . 19

Tools for Quality-Aware DevOps
Model-Based Performance Evaluations in Continuous Delivery Pipelines

Markus Dlugi, Andreas Brunnert, and Helmut Krcmar — fortiss, Germany; TU München, Germany 25
Continous Deployment of Multi-cloud Systems

Nicolas Ferry, Franck Chauvel, Hui Song, and Arnor Solberg — SINTEF, Norway 27
SPACE4Cloud: A DevOps Environment for Multi-cloud Applications

Michele Guerriero, Michele Ciavotta, Giovanni Paolo Gibilisco, and Danilo Ardagna — Politecnico di Milano, Italy . 29
Filling the Gap: A Tool to Automate Parameter Estimation for Software Performance Models

Weikun Wang, Juan F. Pérez, and Giuliano Casale — Imperial College London, UK 31

Author Index

v

A DevOps Approach to Integration of Software
Components in an EU Research Project

Mark Stillwell
m.stillwell@imperial.ac.uk

Jose G. F. Coutinho
gabriel.figueiredo@imperial.ac.uk

Imperial College London
United Kingdom

ABSTRACT
We present a description of the development and deployment infras-
tructure being created to support the integration effort of HARNESS,
an EU FP7 project. HARNESS is a multi-partner research project
intended to bring the power of heterogeneous resources to the cloud.
It consists of a number of different services and technologies that
interact with the OpenStack cloud computing platform at various
levels. Many of these components are being developed indepen-
dently by different teams at different locations across Europe, and
keeping the work fully integrated is a challenge. We use a combi-
nation of Vagrant based virtual machines, Docker containers, and
Ansible playbooks to provide a consistent and up-to-date environ-
ment to each developer. The same playbooks used to configure
local virtual machines are also used to manage a static testbed
with heterogeneous compute and storage devices, and to automate
ephemeral larger-scale deployments to Grid’5000. Access to in-
ternal projects is managed by GitLab, and automated testing of
services within Docker-based environments and integrated deploy-
ments within virtual-machines is provided by Buildbot.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging; D.2.7
[Software Engineering]: Distribution, Maintenance, and Enhance-
ment; D.2.9 [Software Engineering]: Software configuration man-
agement

Keywords
DevOps, Configuration Management, Automated Testing, Ansible,
Vagrant, Docker, OpenStack, GitLab, BuildBot

1. INTRODUCTION
In the past most academic software was developed for specific

purposes by individuals or small teams of developers. However,
current funding policies of agencies such as the EPSRC, EU FP7
commission, and HORIZON 2020 encourage both multi-partner
coalitions and development of high-quality software intended for
distribution and reuse [14, 15]. While these trends are encouraging

in terms of increasing knowledge exchange and reducing wasted
or repeated effort, meeting the new requirements poses challenges
for project leaders who need to ensure that work undertaken by
independent organizations is coordinated to an appropriate degree in
order to assure quality. Furthermore, a recent study [19] compared
four research projects conducted by academics over the span of
nine years, and concluded that there is a strong correlation between
publication output and the software development effort invested
three years prior to publication, thus highlighting the importance
of software engineering practices to boost the number of papers
stemming from large research projects.

In this paper we describe how developers on the HARNESS
project [7] address this issue through an approach based on version-
controlled configuration management, automated software deploy-
ment, and continuous integration. While software development in
industry faces similar difficulties, there are differences in the objec-
tives, incentives, and measures of success between commercial and
academic research projects, and this work is intended primarily to
address the needs of the latter. HARNESS is an EU FP7 research
project with the objective of making it easier for cloud providers
and consumers alike to take advantage of heterogeneous resources,
including, computational accelerators (GPGPUs and FPGAs), pro-
grammable routers and heterogeneous storage devices. The key mo-
tivation for incorporating heterogeneity is to offer a richer context
for price/performance trade offs, and to bring wholly new degrees of
freedom to the cloud resource allocation and optimization problem.

A key challenge of the HARNESS project, and indeed most EU
research projects [17], is that it requires bringing together specialists
from a number of geographically distributed partner institutions in
academia and industry. Individual components addressing different
classes of heterogeneous resources or requirements can be developed
independently, but there is a need to coordinate effort and ensure
that API specifications are adhered to and consistently interpreted,
so that components can be deployed in a such a way as to provide a
coherent distributed computing infrastructure. While responsibility
for the quality of the individual components is shared among a
number of lead institutions and is managed by the work package
leader for each component, there is a need to provide a way to test
and evaluate the fully integrated deployment as well. Finally, as this
is an academic research project, deployments and benchmarking
experiments should be made as reproducible as possible in order to
facilitate verification of research results. To address these challenges
we present in this paper a development and operations (DevOps)
workflow that allows: (a) teams of developers to work autonomously
on specific parts of the software architecture; (b) automated testing
of individual projects as well as the integrated system deployments;
(c) reproducible automated deployment on heterogeneous and large-
scale testbeds.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

QUDOS’15, September 1, 2015, Bergamo, Italy
ACM. 978-1-4503-3817-2/15/09...$15.00
http://dx.doi.org/10.1145/2804371.2804372

1

Service
Layer

Infrastructure
Layer

Platform
Layer

volume
reservation

available
OSDs

OpenStack
Nova Controller

IRM-NOVA
VMs

Cross-Resource Scheduler

Compute
DB

IRM-XtreemFS
storage devices

IRM-SHEPARD
HW accelerators

XtreemFS
Directory

MaxelerOS
Orchestrator

OpenStack
Neutron Controller

switches

XtreemFS client

MPC-XMPC-X

DFE
GPGPU
FPGA

OSDs/
MRCs

AlphaData OpenCL MaxelerOS

execute
task

status

Executive POSIX

read/write
operations

Application
Module

ConPaaS

IRM-NEUTRON
network resources

Neutron Agent

servers

submit application feedback

feedback
submit

app, manifest, SLO

XtreemFS
Scheduler

available resources
feedback

reservation
request

Application Manager (AM)Application Manager (AM)

UsersUsers

ConPaaS agent

virtual machines

IRM-NET
networked VMs

Nova Compute

PCIe device reservation
SHEPARD
Compute

allocation request feedback

Figure 1: The HARNESS cloud architecture consists of a suite
of loosely coupled distributed services that interact with each
other through an HTTP/REST API. This microservice architec-
ture puts considerable overhead in managing the development
and deployment processes.

The remainder of this paper is structured as follows. In Section 2
we describe the HARNESS cloud architecture. and explain why
a DevOps approach is needed to maintain high quality output. In
Section 3 we present a high-level view of the HARNESS DevOps
workflow. In Section 4 we describe how various deployment tools
help achieve reproducibility and why this is important for testing
and quality assurance. In Section 5 we report our automated testing
infrastructure and our novel methodology for testing full systems
deployments. In Section 6 we describe two platforms where HAR-
NESS is being deployed. Finally, we conclude with a summary and
plans for future work in Section 7.

2. HARNESS CLOUD ARCHITECTURE
The HARNESS cloud architecture is divided into three main parts:

a platform layer in charge of managing applications that works on
behalf of the cloud tenant, an infrastructure layer responsible for
managing resources that works on behalf of the cloud provider, and
a service layer where cloud applications are deployed and executed.
An example HARNESS cloud platform, currently being developed
as a proof-of-concept, is presented in Figure 1. This platform com-
bines (a) VM and network resources managed by OpenStack [10],
(b) networked FPGA devices managed by MaxelerOS Orchestra-
tor [9], (c) OpenCL accelerators managed by SHEPARD [21], and
(d) heterogeneous storage devices managed by XtreemFS [23].

The HARNESS architecture is designed to be open and modular,
allowing arbitrary types of resources (compute, storage and network)
to be integrated and leased to cloud users. Each resource type has
a specially designed Infrastructure Resource Manager (IRM) that
understands its internal semantics while presenting a uniform API to
the Cross-Resource Scheduler component (CRS). The CRS acts as
the central scheduling module and has a global view of all resources
available in the data-center. This structure, wherein a larger project
is made up of a suite of fine-grained collaborative services, each
running on its own process and communicating with each other
through a well-defined HTTP/REST API, is commonly referred to
as a microservice software architecture [18]. As a consequence of
this design decision, services are loosely coupled, allowing different
developer teams to work and maintain each service autonomously.
As an alternative to the microservice architecture, there is the mono-
lithic architecture, in which applications can be realized into a single
logical executable.

Cloud tenants submit their applications and performance/cost
objectives through the ConPaaS frontend interface [4]. ConPaaS
is responsible for providing an entry point to cloud users, as well
as handling user authentication and creating a context for applica-
tion management. An application manager instance is generated
whenever an application is submitted on the HARNESS platform,
and is responsible for overseeing the life-cycle of the application.
For instance, the application manager automatically runs a suite of
micro-benchmarks to generate a performance profile for a submitted
application, and then works with the CRS module to determine the
best way to run it, taking into account both user-specified perfor-
mance and cost objectives and the demands of competing users.
Once resources have been provisioned by the CRS, the application
manager deploys the application on allocated VMs. The application
can access other resources (such as GPGPUs, FPGAs and hetero-
geneous storage) allocated in the previous step by interacting with
management systems (daemons) running on the VMs.

While there are many benefits to following a microservice archi-
tecture, it does require each service to be built and tested individually,
and then deployed with other services in order to ensure that all these
modules stay up and collaborate with each other. Hence, managing
and rolling out all these services puts considerable overhead on the
development and operations processes, requiring a high degree of
deployment automation to ship and configure the integrated system.
While this problem is also commonly encountered in real world
systems, dealing with it is still an area of active development and
research and there are no widely accepted standard solutions. In the
next section, we describe our development and operations processes
in the context of the HARNESS project.

3. DEVOPS WORKFLOW
Figure 2 illustrates the HARNESS DevOps workflow, which cap-

tures the process of developing the HARNESS cloud system from
version control to release. Our key goal is to allow different teams
of programmers to develop and maintain each service autonomously,
while also enabling collaboration between teams and providing
feedback as soon as possible about the flow of changes and their
impact on the combined system. The HARNESS project has four
development teams and one integration team. Each development
team is responsible for maintaining a specific part of the architecture
belonging to one of four technical areas: compute, network, storage
and platform. The integration team is responsible for ensuring that
all these services are properly tested when combined and deployed
on the HARNESS testbeds (see Section 6).

All the development and integration teams share a single HAR-
NESS GitLab server. GitLab is a web-based Git repository manager

2

Automated
Unit Tests

Development
Team

Version
Control

check-in

F

trigger

feedback

check-in
trigger

Automated
Integration Tests

trigger

F

P

feedback

check-in

release approval

P

Integration
Team Release

feedback

feedback
P

feedback

F = fail
P = pass

deployment and
automated

testing in a virtual
development
environment

F F

Testbed
Deployment

check-in
trigger

P

feedback
P

feedbackF
P

deployment and
testing in Grid’5000 and

Imperial Cluster testbeds

deployment and
testing in Grid’5000 and

Imperial Cluster testbeds

trigger

Figure 2: The HARNESS DevOps workflow.

that supports multiple users, groups, and owner-specified access con-
trols for repositories. GitLab provides an open-source alternative to
GitHub that can be installed on private infrastructure. With GitLab,
each developer team stores a specific project (such as an architecture
component or an automated deployment project) in its own Git
repository, with all HARNESS software contributions aggregated
into a single central server acting as the authoritative reference. In
HARNESS, each project has one owner who is responsible for main-
taining the project and has exclusive access to the master branch.
The contributors (other members of the development team) can only
make changes, such as adding experimental features or fixing bugs,
by forking the master branch. Hence, rather than logging an issue,
contributors can fork (copy) the repository, make updates, and then
submit a pull (merge) request to the project owner. The project
owner can then review the changes and accept or reject the merge
request by exploiting GitLab’s advanced tracking of the relationship
between forks and its code reviewing facilities.

Whenever the owner of a project pushes a commit to GitLab or
merges in changes, it triggers a set of automated tests (see Section 5).
First, unit tests associated with each project are executed. If any
of these tests fail, then the project owner is notified. Otherwise,
automated integration tests are queued to run at specific times. In this
case, an integration deployment project pulls the latest version of all
HARNESS components from various master branches, deploys the
HARNESS software stack on virtual machines, and runs tests that
aim to exercise all critical features of the system. If any integration
test fails, then both the integration team and the project owner
(whose commit triggered the integration tests) are notified by email.

Periodically, the integration team deploys and tests the HAR-
NESS cloud system in two HARNESS testbeds (see Section 6),
namely Grid’5000 and the Imperial Cluster, depending on the types
of updates submitted by the development teams. This process is

manually initiated but almost entirely automated. In the case of
Grid’5000, deploying HARNESS requires requesting nodes from
the batch scheduler and provisioning them with a base Ubuntu 14.04
operating system [16], but after that point the deployment infras-
tructure can take over to install and configure all of the HARNESS
software and its dependencies without human intervention. If any
deployment test fails, then the integration team writes one or more
integration tests that can flag a particular fault the next time the
tests are executed. In addition, the integration team also notifies the
development team of any bug, who in turn can write one or more
unit tests to flag the problem at the component level.

4. REPRODUCIBLE DEPLOYMENT
One of the defining characteristics of a DevOps-based approach is

that the testing environments should reliably reflect the production
environments. That is, the environments themselves should be, to
the extent feasible, stateless and reproducible. Statelessness in this
case refers simply to the idea that the runtime environment should
not change over time in a way that might affect the behavior of
running applications. It is difficult, if not impossible, to achieve
true statelessness on real-world machines, but many of the same
benefits can be achieved by isolating running services from each
other and the host environment through either virtualization or op-
erating system specific methods of containerization. In order to
achieve reproducibility we focus on automation and version control.
Automation allows us to ensure that all configuration steps are fully
documented, while version control lets us see how configurations
have evolved over time, and potentially to review the differences
in configuration between running systems. An additional benefit
of automation is that it can ease deployment to new target systems,
potentially increasing the number of operating production systems
and reducing downtime in the event of catastrophic failure.

3

4.1 Containerized Services
An operating system container is an isolated environment pro-

vided by an operation system kernel rather than a hypervisor. While
hypervisors achieve isolation between environments through high-
overhead techniques like intercepting interrupts in order to provide
the appearance of a physically isolated machine, containers provide
a lighter-weight approach. In the case of the Linux operating sys-
tem, containerization is primarily achieved by replicating various
kernel data structures to provide separate namespaces to running
processes. From the perspective of the operating system, processes
running within containers are no different from processes running
outside of containers, they just have a more constrained view of the
system. Thus, containerized services can run in isolation at native or
near-native performance (there may be some small overheads due to
an extra layer of abstraction for some operations) [24]. Containers
have an additional benefit in that, since services can be launched
directly from the host, and links can be made easily between con-
tainers or between a container and the host [5], there is no need
to deploy a complete stack of running services in every container,
which improves efficiency as compared with full virtual machines.
While some work may be needed to give containers direct access to
hardware devices, it is nonetheless simpler to do so than to imple-
ment similar functionality for virtual machines. Some drawbacks of
containers relative to virtual machines are that environments must
all share the same kernel version, and there may be some difficulty
in management of access to the kernel module space.

Docker is a software technology for managing containerized soft-
ware deployments. As with OpenStack, Docker provides an inter-
face and various databases to track conceptual objects, while leaving
implementation primarily up to other lower-level technologies [5].
Application specific software runtime environments are described
in a “Dockerfile” that can be committed to the software repository
or maintained in a separate project. Dockerfiles give instructions for
reproducibly creating an image from a standard binary base. There
are base images available representing the environments provided by
most of the mainline Linux distributions, though it should be noted
that applications may not function in precisely the same way within
a container as on the equivalent full operating system. In particular,
through experience we have learned that in the standard Ubuntu
image the upstart service does not work correctly, so daemons need
to be started either directly or by using a third-party application.

The main advantages of deploying services within containers
rather than directly on the host system are 1) that the services them-
selves are implemented and tested within the same environment,
which includes all dependencies and so there is no need to worry
about the configuration of the host and 2) deploying services does
not affect the host’s operating environment, and so there is no con-
cern, for example, that deploying a service B will result in breaking
some unrelated service A because of dependencies on incompat-
ible libraries. This latter benefit also means that services can be
un-installed and reinitialized cleanly, without worrying that they are
leaving behind old versions of data or configuration files that may
affect the running of future service deployments. Within HARNESS,
many components are implemented as python daemons that need
to talk or be available on different network interfaces, which is the
ideal situation for docker based deployment. In recent versions of
the platform we are moving away from simply running these dae-
mons directly on the host to having Dockerfiles embedded within the
projects and having docker as the preferred means of deployment.

4.2 Service Orchestration and Configuration
In recent years there has been a movement toward increasing

the use of automation for systems administration and configuration

management tasks. This has been motivated by a number of factors,
including: the difficulty of tracking configuration changes across
multiple systems, the need to ensure configurations are applied con-
sistently to ephemeral cloud-based systems, and the desire to make
configurations reproducible across platforms. Leading technologies
in this area include Puppet [11], Chef [3], Salt [12], and Ansible [1],
among others. While each of these has its advantages and disadvan-
tages, Ansible stands out for its relatively low barrier to entry for
new projects: client systems need only ssh and Python; there is no
need to install a client service or manage a separate trusted certifi-
cate registry as with Puppet or Chef; and it is conceptually simple:
nodes are listed and categorized into groups within an “inventory”
(usually a static configuration file, but potentially a dynamic script),
while configuration changes are described within “playbooks” as
sequences of tasks applied in parallel to one or more nodes or groups
of nodes, with checks implemented within modules to ensure idem-
potency (that is, if a configuration change is applied once then it
should not be applied a second time, even if the same set of Ansible
tasks are run multiple times on the same system) [1]. In Puppet, by
contrast, there is a need to fully describe dependencies between con-
figuration directives to ensure that changes are consistently applied
in the same order when there are possible side-effects [20].

As discussed in the previous section, container-management tech-
nologies like Docker are extremely useful for creating reproducible
environments for individual services, but there is still a need for
higher-order orchestration and configuration management. For one
thing, not every service can be deployed within a Docker container:
examples include Docker itself (which can run in a container, but
there first needs to be an installation on the base operating system)
and services that need to cross standard container boundaries, like
OpenStack Neutron, which must be able to control the host network-
ing interface. It should be emphasized that services like Neutron
can run in containers, but getting them to function correctly requires
significant effort and is not yet widely supported. Another reason
that an orchestration is required is that even if all services are con-
tainerized, there is still a need to place them on particular hosts
and make sure that required configuration information (particularly
secret information, like passwords) is distributed correctly to the
services that need it.

The HARNESS deployment project contains several Ansible
playbooks and related configuration files describing how the various
components are instantiated on different nodes within the distributed
system. There is an inventory file for each deployment target, in-
cluding the automated testing environment. Each inventory groups
hosts in the target environment by services run in the deployment
and sets deployment-specific configuration variables. Currently, all
of the deployment targets make use of the same set of playbooks.
The “getreqs.yml” playbook first fetches related projects, or roles,
each of which describes the tasks required to instantiate a number of
standard services: mysql (database), rabbitmq (messaging), docker
(container management), keystone (OpenStack authentication and
identity), glance (OpenStack virtual machine image service), nova
controller (OpenStack virtual machine frontend API and manage-
ment services), neutron controller (OpenStack virtual network fron-
tend API and management services), neutron network (OpenStack
virtual network gateway service) and nova compute (OpenStack
virtual machine management service). The source code and Dock-
erfiles for each of the HARNESS services are also fetched, so that
these can ultimately be synced to appropriate target nodes in order
to build the required Docker images. The “deploy.yml” playbook
contains instructions for actually deploying the HARNESS platform,
while the “test.yml” playbook should be run after the deployment to
ensure that the integrated system functions as expected.

4

4.3 Virtual Machine Environments
Yet another advantage of automated, reproducible deployment is

that it makes it possible for developers to create personal testbeds so
that they can see how their individual components function within
the larger system and make changes without fear of causing prob-
lems for others. The most practical way to go about this is to
provision the full system in a virtual machine based environment
on the developer workstation—this way the environment can be
destroyed and recreated in a pristine state relatively quickly, without
having to worry about reconfiguring the base operating system on a
physical system. Of course, setting up virtual machines, particularly
multiple machines connected to each other by virtual network links,
is in itself a complicated process, but fortunately one that is also
amenable to a certain level of abstraction and automation.

Vagrant is used to manage the creation and configuration of vir-
tual machines for testing environments (see Section 5). Vagrant is
a software tool that provides a simple and consistent configuration
and command line interface for developers to manage virtual ma-
chines [13]. For each project, a “Vagrantfile” is created within the
root directory of the software project and can be included within
the source control system. After this, developers can simply run
“vagrant up” to have all of the virtual machines required for local test-
ing made available, with networking and local file synchronization
set up automatically. Vagrant has hooks that are configured to call
Ansible to configure a full HARNESS software deployment auto-
matically. Critically, Vagrant can be used to manage the creation of
both local virtual machines in VirtualBox on developer workstations
and virtual machines that run within the testing environment.

5. AUTOMATED TESTING
Automating tests is a fairly standard procedure with the aim of

minimizing the number of defects of a software system within a
standard environment. These tests need to ensure that not only
individual services or packages function correctly, but that the in-
dividual parts work together as part of a coherent whole. In this
context, development and integration teams can be automatically
notified by email or access a web service interface to verify if their
projects are passing—or failing—the automated tests.

There are a number of standard solutions for automating testing
and continuous integration. Perhaps the most popular and widely
deployed of these is Jenkins [8]. However, the normal way to config-
ure Jenkins and set up projects is through its interactive web console,
whereas we wished to take a DevOps-oriented approach and manage
the configuration and deployment of the testing environment using
Ansible. For this reason, along with its Python implementation,
we use Buildbot to provide an automated testing service for the
HARNESS project.

Figure 3 illustrates the HARNESS Buildbot architecture. With
Buildbot, it is possible to define a number of automated tests to run,
and to have those tests invoked whenever changes are made to a
specified repository. The architecture of Buildbot consists of one or
more master nodes which monitor repositories and generate tasks,
and multiple buildslave nodes to run queued tasks [2].

For the HARNESS unit tests, the Buildbot master monitors spec-
ified projects. When changes are detected, Buildbot checks them
out, and looks for a run_tests.sh script in the root directory. If
such a file is found then the script is run within a Docker container
using the standard Ubuntu 14.04 image as illustrated in Figure 3(a).
The buildslaves, in this case, run the unit tests on standard virtual
machines deployed within the Imperial DoC cloud infrastructure.

The integration tests, on the other hand, require all the HARNESS
cloud services to be deployed, including OpenStack, incurring a

GitLab
server

Git
repositories

poll

manage

change
status

build
commands

build
commands

Imperial DoC Cloud
unit test buildslave

(a)

build slave
process

build slave
process

Docker
container

Docker
container

Physical Server
integration test buildslave

(b)

build slave process

Vagrant
manage

manage
VM 1

VM 2

Multi-VM Vagrant deployment
running all the HARNESS cloud services,
which interact with each other.
Some of the VMs run services deployed
within Docker containers

Each component is tested in
isolation within a Docker
container

BuildBot
Master

Figure 3: Automated testing workflow using Buildbot. Indi-
vidual components tested include the services illustrated in Fig-
ure 1, including the Application Manager, the Cross-Resource
Scheduler, and the IRM components which interface various
resource managers.

higher runtime overhead than running isolated unit tests. For this
reason, we run the integrated tests on dedicated physical nodes as
illustrated in Figure 3(b). In this case, the Buildbot service runs Va-
grant with the same configuration file as used by developers to create
and test systems locally, and the output is monitored to ensure both
that the Ansible configuration and testing scripts run successfully,
and that the implementation is idempotent (that is, that subsequent
runs of the vagrant provision command do not result in changes
to the configuration of the deployed virtual machines). Our current
automated integration tests run on top of multiple Vagrant spawned
VMs, where some of these VMs run HARNESS cloud services
within Docker containers. These integration tests are triggered and
queued whenever a change is pushed to any project on which the
integrated environment depends. However, due to high overheads,
these builds are only run when all of the required projects have
passed their unit tests, to a maximum of a few times per hour.

6. HARNESS TESTBEDS
There are two main deployment testbeds for the HARNESS cloud

platform: the Imperial Cluster, which offers a relatively small-scale
static testbed with heterogeneous compute and storage devices, and
Grid’5000, which is a large-scale research testbed to support parallel
and distributed computing experiments.

The Imperial Cluster testbed infrastructure, which is partly man-
aged by the Custom Computing Group at Imperial College London,
consists of a total of 6 compute nodes, 16 CPU cores, 2 GPGPUs,
heterogeneous storage devices (HDD and SSD), and 3 MPC-X boxes
harboring a total of 24 Dataflow Engines (DFEs). A Dataflow En-
gine is a general purpose reconfigurable device using an FPGA at its
core and RAM for bulk storage. In our testbed, DFEs are co-located
in MPC-X appliances which are in turn connected to select hosts
via an Infiniband network. Dataflow computing technology [22]
has been used successfully in fields such as oil and gas exploration
and financial risk analytics, while research has been conducted in
scientific areas as diverse as fluid dynamics and quantum chemistry.

The other main deployment target, Grid’5000, is a large-scale
research testbed to support parallel and distributed computing exper-

5

iments. This testbed is distributed across 10 sites (mostly in France),
with 1000 compute nodes and 8000 cores. It features a diverse set
of technologies, including 10G Ethernet, Infiniband, GPUs, Xeon
PHI, and data clusters. One key capability of Grid’5000 is that it is
highly reconfigurable, providing bare-metal deployment that allows
a fully customized software stack (including the operating system)
and isolation at the network layer [16].

Deploying HARNESS to Grid’5000 requires an almost fully au-
tomated approach. The allocation is ephemeral, so there is an em-
phasis on speed of deployment and a need to dynamically generate
an inventory. The dynamic nature of Grid’5000 means that there is
no single set of static nodes that form the test bed. Rather, develop-
ers must request sets of nodes and other resources from the OAR
batch scheduler. The following commands show an example of how
HARNESS can be deployed on Grid’5000:

% oarsub -t deploy -I \
-l slash_22=1+cluster=1/nodes=3,walltime=4:00:00

% kadeploy3 -f $OAR_NODE_FILE -e ubuntu-x64-1404 -k
% ansible-playbook -i inventories/g5k.sh deploy.yml

The first command (oarsub) requests a reservation of three Grid’5000
nodes, all on the same cluster, with a /22 subnet, for 4 hours. The sec-
ond command (kadeploy3) puts a fresh install of Ubuntu 14.04 on
the reserved nodes. Finally, the third command (ansible-playbook)
deploys the HARNESS cloud to the reserved nodes. The g5k.sh

script, which is passed as an argument, is a shell script that reads
environment variables set by the batch job scheduler to dynamically
generate an inventory based on the user’s reservation.

7. CONCLUSION
In this paper we have described the development and deployment

infrastructure created to support the integration effort of the FP7
HARNESS project. This infrastructure addresses a number of chal-
lenges commonly found in EU research projects that aim to develop
high-quality software intended for distribution and reuse, with a
focus on dissemination activities (such as proof-of-concept demon-
strations and experiments for research papers) rather than following
the imperatives of commercial clients. Currently, the primary de-
ployment targets for HARNESS consist of a static testbed hosted at
Imperial College London and Grid’5000, which presents a larger-
scale but ephemeral environment with direct access to machine
hardware. Future plans for the project include deploying HAR-
NESS to the EGI Federated Cloud, a multi-site cloud computing
infrastructure for research within the European Union [6].

While it is difficult to fully quantify how our DevOps workflow
has affected our development process, and we are only now starting
to collect metrics, we can see a qualitative difference in the way
teams operate as compared to the previous year, before putting in
place automated testing and deployment. In particular, in the be-
ginning of this year considerable changes in the HARNESS cloud
architecture where planned with the introduction of a new API spec-
ification and updated features such as monitoring and feedback,
which required extensive modifications across the whole cloud soft-
ware stack. We found development teams more able to operate
autonomously, while simultaneously being more willing to accept
changes and providing more frequent updates. There also seemed to
be a reduction in communication overhead for making coordinated
changes. The combination of automated testing and deployment
appears to have contributed greatly to improving the speed and
efficiency with which we converge toward the project milestones.

8. ACKNOWLEDGMENTS
This work was supported by the European Union Seventh Frame-

work Programme under Grant agreement number 318521.
Experiments presented in this paper were carried out using the

Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several Universities
as well as other organizations (see https://www.grid5000.fr).

9. REFERENCES
[1] Ansible: DevOps made simple. http://ansible.com.
[2] Buildbot: The continuous integration framework.

http://buildbot.net.
[3] Chef: Automation for web-scale IT. http://chef.io.
[4] ConPaaS Project. http://www.conpaas.eu/.
[5] Docker. http://docker.io.
[6] European grid infrastructure federated cloud.

http://www.egi.eu/infrastructure/cloud/.
[7] FP7 HARNESS project. http://www.harness-project.eu/.
[8] Jenkins: An extensible open source continuous integration

server. http://jenkins-ci.org.
[9] Maxeler Technologies. http://www.maxeler.com.

[10] OpenStack: Open source software for creating private and
public clouds. http://openstack.org.

[11] Puppet Labs. http://puppetlabs.com.
[12] SaltStack. http://saltstack.com.
[13] Vagrant: Development environments made easy.

http://vagrantup.com.
[14] European Commission: Software technologies, the missing

key enabling technology, 2012. http://cordis.europa.eu/
fp7/ict/docs/istag-soft-tech-wgreport2012.pdf.

[15] EPSRC: Software as an infrastructure, 2015.
https://www.epsrc.ac.uk/newsevents/pubs/

software-as-an-infrastructure/.
[16] D. Balouek et al. Adding Virtualization Capabilities to the

Grid’5000 Testbed. In Cloud Computing and Services Science,
volume 367, pages 3–20. 2013.

[17] A. Bubeck et al. Implementing Best Practices for Systems
Integration and Distributed Software Development in Service
Robotics. In IEEE/SICE Inter. Symp. on System Integration
(SII), pages 609–614, Dec 2012.

[18] M. Fowler. Microservices. http:
//martinfowler.com/articles/microservices.html.

[19] D. Groen et al. Software Development Practices in Academia:
A Case Study Comparison. CoRR, abs/1506.05272, 2015.

[20] R. Harrison. How to avoid Puppet dependency nightmares
with defines. http://www.webcitation.org/6a1doDLla.

[21] E. O’Neill et al. Cross resource optimisation of database
functionality across heterogeneous processors. In Proc. IEEE
on Parallel and Dist. Processing with Applications, 2014.

[22] O. Pell et al. Maximum Performance Computing with
Dataflow Engines. In High-Performance Computing Using
FPGAs, pages 747–774. Springer, 2013.

[23] F. Schintke. XtreemFS & Scalaris. Science & Technology,
(6):54 – 55, 2013.

[24] M. G. Xavier et al. Performance Evaluation of
Container-based Virtualization for High Performance
Computing Environments. In Proc. of Euromicro Inter. Conf.
on Parallel, Distributed and Network-Based Processing
(PDP), pages 233–240, 2013.

6

https://www.grid5000.fr
http://ansible.com
http://buildbot.net
http://chef.io
http://www.conpaas.eu/
http://docker.io
http://www.egi.eu/infrastructure/cloud/
http://www.harness-project.eu/
http://jenkins-ci.org
http://www.maxeler.com
http://openstack.org
http://puppetlabs.com
http://saltstack.com
http://vagrantup.com
http://cordis.europa.eu/fp7/ict/docs/istag-soft-tech-wgreport2012.pdf
http://cordis.europa.eu/fp7/ict/docs/istag-soft-tech-wgreport2012.pdf
https://www.epsrc.ac.uk/newsevents/pubs/software-as-an-infrastructure/
https://www.epsrc.ac.uk/newsevents/pubs/software-as-an-infrastructure/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://www.webcitation.org/6a1doDLla

DevOps Meets Formal Modelling in High-Criticality
Complex Systems

Marta Olszewska
Åbo Akademi University
Joukahaisenkatu 3-5A
20520 Turku, Finland

+358442806858

mplaska@abo.fi

Marina Waldén
Åbo Akademi University
Joukahaisenkatu 3-5A
20520 Turku, Finland

+35822154675

mwalden@abo.fi

ABSTRACT
Quality is the cornerstone of high criticality systems, since in case
of failure not only major financial losses are at stake, but also
human lives. Formal methods that support model based-
development are one of the methodologies used to achieve
correct-by-construction systems. However, these are often heavy-
weight and need a dedicated development process. In our work we
combine formal and agile software engineering approaches. In
particular, we use Event-B and Scrum to assure the quality and
more rapid and flexible development. Since we identified that
there are more prerequisites for a successful IT project, we use
DevOps to embrace the development, quality assurance and IT
operations. In this paper we show how formal modelling can
function within DevOps and thus promote various dimensions of
quality and continuous delivery.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications —
Elicitation methods, Methodologies; D.2.4 [Software
Engineering]: Verification methods — Formal methods; D.2.10
[Software Engineering]: Design — Methodologies.

General Terms
Management, Design, Reliability, Verification.

Keywords
Agile, Scrum, formal modelling, Event-B, DevOps.

1. INTRODUCTION
Development of complex systems of high-criticality requires not
only vast domain knowledge, but also use of appropriate methods
and tools that would ensure high quality of the produced systems.
Therefore, formal methods are often employed to build software
models in the early phases of the software development and
guarantee that the system is correct by construction. However,
nowadays there are other requirements added to the development,
i.e. reducing friction in the development time, delivering artefacts

faster, improving communication within development team and
with stakeholders. Formal methods alone provide firm software
engineering approaches; however, they need support on behalf of
the development process and resource management.

Formal methods are mature enough and ready for being integrated
in the development with other methods [1]. Agile methods, on the
other hand, are the most appropriate means for engineering such a
merge [2]. However, they both need some more support for the
interdependencies within the development, including issues
regarding a project set-up (tools, methods and decisions on
collaboration), overcoming the learning curve of formal methods,
identifying bottlenecks and handling standardization issues, etc.
The merge of formal methods and agile approaches is meant,
among others, to speed up the delivery of artefacts while ensuring
their quality.

In our previous work we have deepened the understanding of agile
concepts set in the context of safety-critical development by (i)
providing evidence of such development through related work and
(ii) relating agile principles, practices and values to formal
environment in order to create a synergy between these two
(FormAgi framework) [3]. We chose Event-B as a formal method
to be used within the agile development process.

Here we continue our work with the FormAgi framework by
setting up a Scrum-based process for development of systems of
high criticality with the use of Event-B. We present the merge of
formal modelling with Scrum in DevOps perspective. We show
how formal modelling can function within DevOps and contribute
to its quality assurance and continuous delivery. We also point out
how DevOps can support certain aspects of formal development.

This paper is structured as follows. Section 2 provides description
of approaches for achieving shorter release cycles leading towards
continuous delivery and integration. Section 3 describes methods
supporting correctness and quality of development. In section 4
we present how we adapted Scrum to a formal modelling context.
Section 5 depicts formal modelling with Scrum in perspective of
DevOps. We conclude our paper in section 6 and provide
directions for future work.

2. STRIVING FOR RESPONSIVENESS

2.1 Iterative and Flexible Development
Agile software development philosophy [4] introduced in 2001
occurred to be successful due to the capabilities of substantially
increasing the project success rate, while reducing the
development time and cost. Although criticised for disregarding
existing practices of traditional software engineering, it is still
popular, mainly because of its responsiveness and ability to meet
stakeholders’ needs within the given time. Agile methods are
known for facilitating the collaboration within the development

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
QUDOS'15, September 01 2015, Bergamo, Italy
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3817-2/15/09…$15.00
DOI: http://dx.doi.org/10.1145/2804371.2804373.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

QUDOS’15, September 1, 2015, Bergamo, Italy
ACM. 978-1-4503-3817-2/15/09...$15.00
http://dx.doi.org/10.1145/2804371.2804373

7

team and boosting internal morale. Moreover, the communication
between the team and stakeholders is strengthened, thus leading to
higher customer satisfaction [5].

There is a plethora of agile software development methods
available, all of which encourage adaptive planning, evolutionary
development, early delivery, continuous improvement, and
promote rapid and flexible response to change [3]. The methods
themselves need to be carefully chosen and tailored to the needs
of the case development in order to be successful.

Even though agile methods are meant to improve product quality
by e.g. leading to less defects in the development, there are still
ongoing discussions whether this is really the case [6]. Some
projects, for instance the ones of high-criticality, need to adhere to
certain standards and follow well-defined practices [7] [8].

Boehm et al. [9] stated that neither the agile nor the traditional
disciplined approach can alone be the optimal solution. Although
they seem contradicting [10], a software project needs both agility
and discipline [9] [11]. Therefore, a comprehensive approach is
essential to embrace all the necessary methods and raise the
understanding what is needed in the development – from the
perspective of tools, methodology and people.

2.2 A Synergy Demand – DevOps
A rapid creation of software products and services, as well as
improvement in operations performance, is at the core of today’s
IT. DevOps [12] answers these needs by putting special emphasis
on collaboration, integration, communication and automation.
There is no clear definition of DevOps yet [13], however, it is
described as a software development method that combines
quality assurance mechanisms with IT operations within software
engineering practices (see Figure 1). It is based on the ideas from
agile development movements and supports rapid development
and deployment cycles.

Figure 1. DevOps concept

Since systems become more complex, we need to increase our
comprehension of what needs to be mapped from the empirical
world to the model or code, as well as how to do it effectively.
Moreover, we should improve our communication and
collaboration, so that we can (i) raise the understanding of the
system to be developed, (ii) foster awareness between people
involved in the development and operations, (iii) progress with
our development, and (iv) build our infrastructure. We require
tool support for our work, to automate some of our activities. And
finally we need to understand that our models, code, teams and
organization are constantly in flux, thus we need to continuously
address all the above mentioned issues.

3. CORRECTNESS AND QUALITY
There are various methods available for assuring quality in
systems of high-criticality. Application of formal methods [14]

brings high quality to critical systems, in particular when certain
system behaviour and properties need to be guaranteed. However,
some experience and mathematical background is needed in order
to properly utilise the existing modelling solutions.

3.1 Iterative Formal Development
Refinement [15] [16] [17] [18] is a stepwise formal development
method, which allows the system to be created iteratively
following certain rules called refinement rules (also referred to as
proof obligations) [19] [20]. Stepwise refinement is a top-down
approach [16], which aids handling all the implementation matters
and complexity by splitting up the problems to be specified and
gradually introducing details of the system to the specification. In
the refinement process, an abstract specification is created from
requirements. It is then transformed into a more concrete and
deterministic system that preserves the functionality of its
specification in consecutive refinement steps. For each refinement
step an invariant is given that states the properties of the system.
Hence, also the invariant is created in an iterative manner. The
refinement process is presented in Figure 2.

Figure 2. Refinement process

The correctness of each step, resulting in a system that is correct
by construction [15], is ensured by mathematically proving that
the abstract model is consistent and feasible. It involves proving
that each refined model preserves its invariant. Even if proving is
tool-supported, there are still some proofs that cannot be
automatically discharged, but will require human interaction. The
amount of involvement needed heavily depends on the chosen
modelling strategy and is a subject of our current work.

The complexity of proofs depends not only on the problem and
the complexity of the system to be modelled, but also on the
refinement strategy utilised and e.g. on the decomposition
mechanisms [21]. Therefore, assisting the modelling activity by
facilitating the development process would help dealing with the
complexity issues.

3.2 Modelling in Event-B
Event-B [22] is a formal method and modelling language for
stepwise system-level modelling and analysis, based on the
Action Systems formalism [18] [23] [24]. It is derived from the B-
Method [25], with which it has several commonalities, e.g. set
theory and the refinement idea. Event-B is dedicated to model
complete systems, including hardware, software and environment
[26] and has gained appreciation in industrial settings [27].

An Event-B specification uses a pseudo-programming notation –
Abstract Machine Notation – and consists of a dynamic and a
static part, machine and context respectively. The formal
development starts from specifying an abstract machine from a set
of requirements and then refining it in a number of steps (see
Figure 2). It identifies the machine being refined, so that the
refinement chain and the modelling process can be tracked and

8

controlled. The static part of the specification is also extended
with respect to the development of the machine.

Event-B utilises refinement to represent systems at different
abstraction levels, which enables us to gradually introduce details
to the constructed system and to represent new levels of a system
with more functionality. Mathematical proofs are used to verify
consistency between the refinement levels. Event-B provides
rigour to the specification and design phases of the development
of critical systems. It is effectively supported via the Rodin
platform [28], an Eclipse based tool, which is an open source
“rich client platform” that is extendable with plug-ins, e.g. ones
providing simulation and animation, as well as visualisations of
the model. Finally, code generation from models to various
programming languages is supported.

3.3 Standardisation
Systems of high criticality typically need to be qualified or
certified in order to be deployed. Formal methods are
recommended practices when licensing critical software, just to
mention the IEC 61508 standard (“Functional Safety of Electrical,
Electronic and Programmable Electronic Safety-related Systems”)
[29] or ISO 26262 standard for automotive domain (“Road
vehicles — Functional safety”) [30]. The application of formal
methods is additionally followed by measures and techniques that
are obligatory for the product to be certified.

Although agile methods are not explicitly considered in standards
(e.g. IEC 61508 standard), their use in safety-critical development
is already present and needs to be transferred to standards (see e.g.
the goals of the European Project RECOMP [31]).

3.4 Need for Speed
Developing a system has never been an easy task, but now, when
the complexity of the surrounding world is increasing and the
requirements given by the stakeholders are expanding, it has
become even more intricate [32]. There is a constant struggle
between development cost, quality and time, where the choice is
made on the expense of one of these characteristics (note that we
do not consider cost in this paper).

Achieving high quality seems like a prerequisite for stakeholder
satisfaction. However, the time pressure and need for fast delivery
of a product can lead to “good enough” solutions and acceptable
quality. This attitude cannot suffice for the systems of high
criticality, where human lives or major financial losses can be at
stake. Yet, development of this kind of systems is also required to
be responsive to change, actionable, providing faster delivery, as
well as enabling communication and collaboration. This as a
consequence inevitably leads to the amendments in the
development process, as well as organisational changes.

The formal modelling process itself is thought to be heavy-weight
and thus may seem far from the need for speed that we experience
nowadays. Therefore, a suitable development process, along with
some principles and practices tailored for the specifics of the
formal modelling environment and development domain is
necessary to facilitate the change and aid in adapting to the
challenges set by the contemporary IT world.

4. TOWARDS AGILE
A combination of (semi) formal and agile approaches has been
discussed in a number of publications [9] [11] [7] [8] [33], where
capabilities of traditional software development process models or
development methods were merged with agile methods, principles
and practices.

We observed that having a well-described and flexible
development process is not sufficient for formal methods to be
successful. Additional mechanisms are needed, which are specific
to the development setting. In this section we first shortly describe
the FormAgi [3] framework, which is the basis of our work. Next,
we depict Scrum as the agile software development method of our
choice and then adapt it to the formal modelling setting. Finally,
we describe the merge of formal modelling of critical systems
with the Scrum development process in the context of DevOps.

4.1 FormAgi Framework
In our previous work we explored the values, principles and
practices of agile development methods and placed them in the
context of formal, refinement-based developments. We analysed
several of the agile methods with respect to their feasibility in
development of critical systems. [3]

We provided a mapping between the characteristics of these two,
which established FormAgi [3], a high-level framework consisting
of (i) guidelines on what concerns should be tackled before
committing to a certain agile method and (ii) pointers in which
aspects an agile method can be a facilitator in the formal
development. Additionally, we mentioned Event-B as a formal
method of our choice to be utilised within the agile process.
Although Event-B is thought as being far from lightweight
approach, we argue that by conducting the development in small
refinement steps [22], and by decomposing the models [21] e.g.
using abstractions [40], it is a good candidate to be applied in a
rapid manner. Our current work on an example is meant to
investigate this claim.

4.2 Scrum
In this work we chose to use Scrum [34], an iterative agile
development framework, which relies on frequent releases and
short development cycles, as well as supports process
improvement. Since some of the characteristics conceptually
overlap with the ones of Event-B, e.g. iterations and refinement
steps, we consider the integration of the two to be seamless.

One of the reasons for which we chose Scrum was the clear
definition of time frames for iterations (organisation of sprints)
and the set of meetings to be held during the development process
[35]. An overview of a sprint within Scrum is shown in Figure 3.

Figure 3. The overview of a Scrum sprint

During each sprint the development team takes a set of features
from the product backlog, which is a set of high-level
requirements. Then the stakeholder informs the developers of the
features that should be completed in this iteration. From this
subset the team selects the features that are realistic to be
implemented. Next, when the goals for the sprint are determined,
they are shifted to the sprint backlog, which remains fixed for the
time of the sprint. The sprint lasts for a specific amount of time
(2-4 weeks) and at the end it produces a potentially shippable
product increment, which is presented by the team to the

Product
Backlog

Sprint
Backlog

Sprint Working increment
of the software

24h

30 days

Daily

9

stakeholder. Any of the unimplemented features are returned to
the product backlog.

Communication, one of the cornerstones of agile approaches, is
also important within Scrum. Various meetings are held
throughout the development: before the sprint starts (Planning),
during the sprint (Daily Scrum), after the sprint (Review and
Retrospective). Retrospective is a process improvement-oriented
meeting, while the other meetings concern the development itself.

In Scrum there is a strong involvement of the representative of the
end user (or the stakeholder), so that at the end of each sprint the
directions for further development can be indicated. The issue of
how much functionality will be implemented during each iteration
is controlled and decided by the development team. The contents
of a sprint do not change during its duration. Thus, the moments at
which functionality changes can occur are limited and well-
defined.

The goal of this development methodology is to increase the
relative effectiveness of development practices for improvement
purposes and at the same time delivering a framework for
development of complex products [36].

4.3 Adapting Scrum
One of the purposes of agile methods is to be tailored to fit the
characteristics of the environment they are utilized in. These
adjustments aid in getting the most out of the used methodologies
and tools. In case of developing systems in Event-B we aim at
smoothening the development by supporting shorter iterations, as
well as facilitating the intra-project communication. Moreover, we
consider supporting the communication between the team and the
stakeholders as crucial to obtain high quality software.

Although formal modelling differs from coding in programming
languages, creation of artefacts (be it a subset of requirements,
specification, model on specific abstraction level or
implementation of a feature) remains as the main goal.

We adapt Scrum to fit the specifics of Event-B development,
which is depicted in Figure 4. In practice, formal modelling
involves not only transforming requirements into models, which
are then proven to be correct, but also elicitation and modelling of
requirements themselves. For this reason we use the term item.

Figure 4. Scrum Sprint adapted to formal modelling (within
the FormAgi framework)

The requirements in the item pool are considered as a set. The
item pool acts as product backlog. However it contains not only
high-level requirements, but also lower-level requirements, safety
cases, environment descriptions. Furthermore, the item backlog is
a subset of the item pool and consists of requirements chosen for
this sprint, but not prioritised. Since prioritization may take more
time than what is scheduled for regular Scrum process, we believe
it should be done within sprints. The reasoning is twofold: (i) we
do not want to rush decisions which would lead to a complex and
hard to prove model and (ii) the work on the requirements and
their structuring with respect to the modelling strategy will pay off

later, when the model needs to be extended. Thus, a sprint
includes modelling of the requirements, as well as developing and
proving a model. For the verification purposes, model animation
and simulation can also be a part of the sprint. It is well supported
via plug-ins to the Rodin platform.

The duration of long and short iterations should be decided before
the development starts. There is a risk that some requirement or
property is too complex to be processed within a short iteration. In
this case it should be discussed during the short daily meeting so
that the team is informed. The sprint review resembles the
discussions in a regular sprint. However, some issues like model
walkthroughs, or demonstrating the results to stakeholder as
model simulation or animation should also be included at this
stage. The retrospective is meant to reflect upon the sprint and
highlight the areas of the sprint for future improvement.

It can be noted that the relation between a refinement step and a
development process iteration is certainly not a one-to-one
mapping. There can be several refinement steps in one iteration.
Moreover, a refinement step might be too large for an iteration, so
that the problem to be modelled needs to be decomposed into sub-
problems and only as such placed into the item backlog.

Finally, although not present in original Scrum, a feedback system
is included in the sprint via the Monitoring and Metrics
mechanisms (M&M), which is to raise understanding on what is
being done (short iterations), as well as to facilitate the process
improvement and provide evidence on the development (long
iterations). We are aware that metrics and measurements within
agile developments are sometimes considered as harmful to the
team morale and against agile philosophy. However, we use them
for informational purposes rather than “plunger of blame”.

5. EMBRACING IT ALL
Nowadays it is not only the software system development itself
that matters, regardless if it is the work on requirements,
specifying the system, modelling its properties and behaviour, or
proving it afterwards. It needs certain methods and tools, practices
and principles, as well as some external mechanisms for making
the development work smoothly and progress towards creation of
a quality product. In Figure 5 we present our view on formal
modelling set in the DevOps context. Note that the formal
development method is only a part of the whole development.

Figure 5. Formal Modelling in DevOps context

Apart from the formal method (Event-B), and the development
process (Scrum) supported by the FormAgi framework, there are
other necessary elements that need to be taken into consideration
in order to achieve a quality product in the domain of highly-
critical systems. DevOps encapsulates what we believe is vital for
the development to be successful, from technical, social and
quality perspectives.

Item
Pool

Item
Backlog

Sprint
Usable
artefact

Short
iteration

Long
iteration

Daily

M&M

10

While dependability, herein reliability, is ensured by Event-B,
Scrum increases the speed of delivery of artefacts and facilitates
their deployment. Iterations supported by the development process
and model refinement promote continuous delivery. Once the
model is created and proved throughout the development, all the
modelling decisions are documented in a stepwise manner in form
of refinement steps [37]. They can serve as artefacts for
standardisation purposes. Moreover, runtime information in the
Ops phase can be tracked all the way to requirements due to the
way the system is developed. In case of a failure at runtime, it can
be traced to a flaw in the modelling process, the specification or
even the requirements. Modifications of a system by either adding
new or altering existing components or requirements will cause
the whole system to be remodeled and (partially) proved again.

We can facilitate the modelling and help continuous delivery of
artefacts by application of patterns, be it the lower level ones [38],
or the ones related to the modelling strategy [39]. We are
currently working on a library of components to support the reuse
and modularity of development.

We noticed that there is quite a natural transition from push to pull
flow with respect to modelling requirements and building a
model. We focus only on necessary properties related to a
modelled artefact in a certain refinement step. Thus refinement
helps us in (i) concentrating on what matters the most at a
particular point in the development and (ii) matching the level of
abstraction with the current development stage. As a consequence,
we provide better control over the model complexity, and by that
contribute to higher quality. Moreover, by employing requirement
prioritisation and providing strategy in modelling, e.g. by
decomposition and abstraction mechanisms [40], we avoid waste.
So far we have identified two cases of generating it that can be
avoided: (i) when insufficient time is spent on requirements
modelling, it can lead to spending excessive time on modelling
and then cause cumbersome proving; (ii) when detailing the
model too early, it increases the complexity of the model and its
related proofs.

Identifying bottlenecks and prioritising the improvement areas,
which are identified as important in DevOps, are supported by the
retrospectives in Scrum. We additionally propose monitoring and
metrics to be used as a feedback system for improvement. So far
we provide metrics for measurement of the complexity of the
Event-B models [41], as well as their UML representations [42].

Visualisations of models are available via Rodin tool plugins for
animation and simulation. This enables us to show the results of
the modelling to team members and stakeholders after a sprint,
without the need to provide executable code. The platform offers
code generation to various programming languages, with different
level of technical detail, once the model is at a lower level of
abstraction.

Although tests are not necessary for the critical development
modelled with formal methods (proofs are ensuring correctness),
integration tests should be used in order to ensure quality in case
the critical part is integrated with a non-critical one [31].

Post-mortems are one of the mechanisms that should be
incorporated in the formal modelling and should be done with two
groups (team and stakeholders). However, one would need an
additional “check” mechanism that could be incorporated in the
development process once a bigger milestone is achieved.
Particularly, a more in-time feedback could be provided if this
check is integrated with some other part of the system.

So far we have shown how formal modelling can work within
DevOps, but we also see how DevOps (and agile methods) can
contribute to formal modelling. What is often missing in the
formal process is the emphasis on communication between the
team members (and also with the stakeholders). After receiving
requirements, be it safety cases or functional properties, the
experts are singlehandedly working out a good way of modelling
them, but usually without a common strategy for the development.
We observed that intra-team communication largely enhances the
modelling capabilities. We also observed that stand-ups are a
good approach of pinpointing difficulties with the modelling or
proving. Thus the collaboration means not only knowledge
sharing, but also raising understanding and awareness in the
project. It also leads to the concept of “reusable team”, where the
expertise of every group member is known and can be utilised
whenever needed.

6. CONCLUSIONS AND FUTURE WORK
As observed by many DevOps followers, having no clear
definition of this concept has its advantages. Firstly, it raises
discussions, and secondly, it opens new possibilities of combining
methods and tools within one high level development method,
which in consequence enables to smoothen out the gap between
development and operations. We believe that regardless of the
application domain, it is important to utilise existing
methodologies and tools through a well-structured merge
(DevOps umbrella), so that not only the development is
supported, but also the people, processes and the artefacts
inevitably bound to it (operations and quality management tasks).

In our work quality in formal modelling within DevOps is
achieved by building a correct-by-construction software system,
incorporating monitoring and metrics mechanisms to the
development process, providing tool support for modelling and
proving, as well as facilitating communication and collaboration
across organisation and with stakeholders.

We are currently planning to perform a case study, where we will
employ all the methodologies and practices mentioned in this
paper (see Figure 5). It will be a development of a high-criticality
system, but executed in an academic environment. Moreover, we
would like to investigate further what can be interpreted as a
waste in formal modelling and how to minimise it. Since the
information about how to model in Event-B is spread over a
number of publications, we are currently working on providing
more comprehensive guidelines, suitable also for inexperienced
Event-B users. Finally, we believe that deeper research on how
refinement steps relate to Scrum sprints has a potential of
shortening the deployment time for artefacts.

7. ACKNOWLEDGMENTS
This work was carried out within the project ADVICeS, funded
by Academy of Finland, grant No. 266373. We would like to
thank PhD Mikołaj Olszewski, Vaadin Expert and a Scrum
enthusiast, for constructive discussions on agile topics.

8. REFERENCES
[1] Larsen, Peter Gorm, Fitzgerald, John S., and Wolff, Sune.

Are Formal Methods Ready for Agility? A Reality Check. In
Second International Workshop on Formal Methods and
Agile Methods (Pisa 2010), Springer.

[2] Paige, Richard F. and Brooke, Phillip J. Agile Formal Method
Engineering. In Integrated Formal Methods (Eindhoven 2005), Springer.

11

[3] Olszewska, Marta and Waldén, Marina. FormAgi – A
Concept for More Flexible Formal Developments. Åbo
Akademi University, Turku, 2014.

[4] Manifesto for Agile Software Development. 2001.

[5] Olszewski, Mikołaj. Scaling Up Stepwise Feature
Introduction to Construction of Large Software Systems.
TUCS Dissertation Series, Turku, 2013.

[6] Olszewska, Marta, Jeanette, Heidenberg, Weijola, Max,
Mikkonen, Kirsi, and Porres, Ivan. Did It Actually Go This
Well? A Large-Scale Case Study on an Agile Tranformation.
TUCS, Turku, 2014.

[7] Glazer, Hillel, Dalton, Jeff, Anderson, David, Konrad, Mike,
and Shrum, Sandy. CMMI or Agile: Why Not Embrace Both!
Carnegie Mellon University (CMU) and Software
Engineering Institute (SEI), 2008.

[8] Fritzsche, M. and P., Keil. Agile methods and CMMI:
compatibility or conflict? e-Informatica, Software
Engineering Journal, 1, 1 (2007), 9-26.

[9] Boehm, Barry and Turner, Richard. Balancing Agility and
Discipline: A Guide for the Perplexed. Addison-Wesley, 2003.

[10] Turner, R. Agile development: good process ot bad attitude?
In Oivo, Markku and Komi-Sirviö, Seija, eds., Product
Focused Software Process Improvement. Springer,
Rovaniemi, 2002.

[11] Boehm, Barry and Turner, Richard. Observations on balancing
discipline and agility. (Salt Lake City 2003), IEEE Computer
Society.

[12] Loukides, Mike. What is DevOps? O’Reilly Media,
Sebastopol, 2012.

[13] Loukides, Mike. What is DevOps (yet again)? Radar,
radar.oreilly.com (Feb. 2015).

[14] Butler, Ricky W. What is Formal Methods? In NASA LaRC
Formal Methods Program. 2001.

[15] Dijkstra, Edsger W. A Constructive Approach to the Problem
of Program Correctness. BIT Nmerical Mathematics, 8(3)
(1968), 174-186.

[16] Wirth, Niklaus. Program Development by Stepwise Refinement.
Communications of the ACM, 14(4) (1971), 221-227.

[17] Back, Ralph-Johan. On the Correctness of Refinement Steps in
Program Development; PhD thesis. University of Helsinki, 1978.

[18] Back, Ralph-Johan. Refinement Calculus, Part II: Parallel
and reactive programs. Stepwise Refinement of Distributed
Systems. In de Bakker, J. W. et al., eds., Stepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness.
Springer-Verlag, 1990.

[19] Metayer, Christophe, Abrial, Jean-Raymond, and Voisin, Laure.
Event-B Language, RODIN Deliverable 3.2 (D7). 2005.

[20] Waldén, Marina and Sere, Kaisa. Reasoning about Action
Systems using the B-Method. Formal Methods in System
Design, 13 (1998), 5-35.

[21] Yeganefard, Sanaz and Butler, Michael. Problem
Decomposition and Sub-Model Reconciliation of Control
Systems in Event-B. In IEEE International Workshop on
Formal Methods Integration (Turku 2013).

[22] Abrial, Jean-Raymond. Modeling in Event-B: System and
Software Engineering. Cambridge University Press, 2010.

[23] Back, Ralph-Johan and Kurki-Suonio, R. Decentralization of
process nets with centralized control. 2nd ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing
(1983), 131-142.

[24] Back, Ralph-Johan and Sere, Kaisa. From modular systems to
action systems. Software - Concepts and Tools, 17 (1996), 26-39.

[25] Abrial, Jean-Raymond. The B-Book: Assigning Programs to
Meanings. Cambridge University Press, 1996.

[26] Event-B, http://www.event-b.org/index.html. Home of Event-
B and the Rodin Platform. 2008.

[27] Romanovsky, Alexander and Thomas, Martyn. Industrial
Deployment of System Engineering Methods. Springer
Heidelberg, 2013.

[28] RODIN and http://www.event-b.org/platform.html. RODIN -
Rigorous Open Development Environment for Complex Systems.
2006.

[29] Commission(IEC), International Electrotechnical. IEC 61508
1-7 - Functional Safety of Electrical, Electronic,
Programmable Electronic Safety-related Systems. IEC, 2010.

[30] ISO/FDIS. 26262 Road Vehicles - Functional Safety.
ISO/FDIS, 2011.

[31] RECOMP. RECOMP Project - Reduced Certification Costs
Using Trusted Multi-core Platforms. In https://artemis-
ia.eu/project/21-recomp.html.

[32] Olszewska, Marta. On the Impact of Rigorous Approaches on the
Quality of Development. Turku Centre for Computer Science, 2011.

[33] Mandal, Ardhendu and Pal, S. C. Achieving agility through
BRIDGE process model: an approach to integrate the agile
and disciplined software development. Innovations on
System Software Engineering, 11, 1 (March 2015), 1-7.

[34] Schwaber, Ken. Agile Project Management with Scrum.
Microsoft Press, 2004.

[35] Shore, James and Warden, Shane. The Art of Agile
Development. O'Reilly Media, Sebastopol, 2008.

[36] Schwaber, Ken and Sutherland, Jeff. Scrum. The Official
Guide. Scrum.org, 2010.

[37] Pląska, Marta, Waldén, Marina, and Snook, Colin.
Documenting the Progress of the System Development.
(Heidelberg 2009), Springer-Verlag.

[38] Snook, Colin and Waldén, Marina. Refinement of Statemachines
using Event-B semantics. In Formal Specification and
Development in B (Besançon 2007), Springer.

[39] Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A.,
Varpaaniemi, K., Ilic, D., and Latvala, T. Supporting Reuse
in Event B Development: Modularisation Approach. In
Abstract State Machines, Alloy, B and Z: Second
International Conference (ABZ) (2010), Springer.

[40] Parsa, Masoumeh, Snook, Colin, Olszewska, Marta, and
Waldén, Marina. Parallel Development of Event-B Systems with
Agile Methods. In Mousavi, Mohammad Reza and Taha, Walid,
eds., Proceedings of 26th Nordic Workshop on Programming
Theory, NWPT '14. Halmstad University, Halmstad, 2014.

[41] Olszewska (Pląska), Marta and Sere, Kaisa. Specification
Metrics for Event-B Developments. In 13th International
Conference on Quality Engineering in Software Technology
(CONQUEST 2010) (Dresden 2010).

[42] Olszewska, Marta and Waldén, Marina. Measuring the Progress of
a System Development. In Petre, Luigia et al., eds., Dependability
and Computer Engineering: Concepts for Software-Intensive
Systems. IGI Publishing House, Hershey, 2011.

12

Modelling Multi-tier Enterprise Applications Behaviour
with Design of Experiments Technique

Tatiana Ustinova
Imperial College London

Exhibition road, South Kensington
London, UK, SW7 2AZ

tatiana.ustinova12@imperial.ac.uk

Pooyan Jamshidi
Imperial College London

Exhibition road, South Kensington
London, UK, SW7 2AZ

p.jamshidi@imperial.ac.uk

ABSTRACT

Queueing network models are commonly used for performance

modelling. However, through application development stage

analytical models might not be able to continuously reflect

performance, for example due to performance bugs or minor

changes in the application code that cannot be readily reflected in

the queueing model. To cope with this problem, a measurement-

based approach adopting Design of Experiments (DoE) technique

is proposed. The applicability of the proposed method is

demonstrated on a complex 3-tier e-commerce application that is

difficult to model with queueing networks.

Categories and Subject Descriptors

C.2.4, C.4, D.2.8, D.4.8

Keywords

Multi-tier enterprise applications, design of experiments, two-

level factorial designs, response surface models, linear regression,

software performance testing

1. INTRODUCTION
DevOps is defined as a set of practices and principles

bridging the gap between application development and operation

stages [8]. One way to achieve this is continuous application

performance modelling and prediction combined with automated

feedback of the models to the developer and their update via

continuous testing. A large body of work exists that employs

Machine Learning algorithms [9] and tools, as well as linear

regression, to obtain performance models based on

measurements. In this paper we propose application performance

modelling and prediction algorithm based on the Design of

Experiments (DoE) technique.

DoE – widely used in engineering and industry for

optimising processes – looks very promising for the use in

DevOps, as it utilises measurements obtained at runtime to build

performance models. These models can be fed to the application

developer and updated in an automated way through continuous

testing. However, its use is rather sparse in computer science,

especially in the area of application performance modelling and

prediction. This technique involves choosing a number of input

parameters called ‘factors’, designing a set of experiments and

then carrying them out on the system-under-study. The

experiment results, called ‘response variables’, are then used to

construct linear regression model representing a relationship

between system output (‘response variable’) and inputs (factors).

In this approach system under study is treated as a black box.

A number of studies exist that explore the capabilities of

the DoE technique and DoE-based models in performance

modelling, evaluation and prediction. Li et al. [4] presented a

factor framework for performance evaluation of commercial

Cloud services. This framework establishes factors that are

currently used in the performance evaluation of clouds and can

help facilitate designing new experiments for evaluating cloud

services. However, this work does not provide any quantitative or

qualitative assessment allowing to conclude which of these

factors may be important for software performance testing.

Westerman et al. [10] apply statistical inference techniques

to adaptively select experiments resulting in the optimal

performance model. The approach automatically selects and

conducts experiments based on the accuracy observed for the

models inferred from the currently available data. The results

demonstrate that this approach can automatically infer a

prediction model with a mean relative error of 1.6% using only

18% of the measurement points in the configuration space.

However, this work is focused only on the design of experiments

and does not investigate predictive capabilities of the obtained

model.

Molka and Casale [in revision] applied DoE techniques to

generate response surfaces (non-linear models constructed using

linear regression) that describe database performance as a

function of workload and hardware parameters for in-memory

databases. The response variables this study reported include

response times, server utilisation, energy consumption and

memory occupancy. They found out that the queueing network

and response surface models yield mean prediction errors in the

range 5%-22% with respect to response times and mean memory,

but the accuracy for the latter deteriorates in response surfaces as

the number of experiments are reduced, whereas model-based

simulation is effective in all cases. This suggests that simulation

can be more effective in performance prediction for in-memory

database management. However, this queueing network model

was tailored to describe in-memory database, which required

significant effort and knowledge of the system under study.

The proposed method described in details in the following

sections is based on the design of experiments technique, which is

first used to establish the design space (screening procedure) – a

set of factors and their low and upper bounds – that influence

response variable(s). Then a linear regression is used to construct

a model describing relationship between input parameters and

performance metrics based on the experiment results obtained

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

QUDOS’15, September 1, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3817-2/15/09...$15.00

http://dx.doi.org/10.1145/2804371.2804374

13

during the screening. Afterwards, the model prediction accuracy

is assessed. Additionally, the model prediction error is then

compared to prediction made by the out-of-the-box Mean Value

Analysis algorithm for queueing network models. To the best of

our knowledge none of the work presented in this paper has been

done before.

The rest of the paper is organised as follows. Section 2

presents the methodology of the proposed approach; Section 3 is

dedicated to the case study – load simulation for the web-based e-

commerce 3-tiered application; Section 4 provides analysis of the

model prediction accuracy and discussion of the analysis results;

Section 5 draws conclusions and gives suggestions for further

work.

2. METHODOLOGY
Design of Experiments (DoE) starts with determining the

objectives of an experiment and selecting the factors for the

study. The choice of the experimental design would influence the

amount of runs required to obtain sufficient information about

system under test [1]. For example, if software performance tester

is interested only in identifying the parameters that significantly

influence application’s performance, then two-level factorial

design would suffice. The objective in this case would be to find

out parameters (factors) that cause significant change in the

output by shifting from one (low) level to another (high).

Additionally, because in order to investigate all possible

combinations of levels, 2
k
 runs (where k = number of factors in

the experimental design) would be needed, the so-called

fractional factorial designs are often used, where only a part

(fraction) of the 2
 k

 (full factorial) design is used. These designs,

however, should be treated with care, as they are constructed

under a number of assumptions, which may not hold for the given

system.

Two-level factorial designs are also widely used for

construction of linear regression models, but their use implies that

relationship between system inputs and output is linear. If there is

a chance that this relationship is not linear, other designs,

allowing to construct polynomial regression models (e.g.

Response Surface Methodology), might be considered instead.

Therefore, it can be summarised that well-chosen experimental

design would involve minimum possible number of runs required

to obtain necessary information about the system under test. Also

on this step response variables should be agreed on.

Taking into consideration everything said above, the

following actions are needed to implement the method:

a) Define response variables: those would be performance

metrics (e.g. response time, CPU utilisation, throughput);

b) Create design space via screening for important factors and

their interactions using two-level fractional factorial design:

choose a number of factors that might influence

performance metrics, set the low and high levels for them

(the levels are chosen based on the experimenter’s

experience and knowledge of the system).

c) Validate results of the screening with full factorial design

for the chosen subset of important factors (may or may not

require additional runs) and allocation of variation [7].

Allocation of variation shows how much variation each of

the factors causes in the response variable when changed

from low to high level.

d) Construct linear regression model based on the experiment

results from b) and c) (may or may not require additional

runs).

3. CASE STUDY

3.1 Objective
The objective of this case study is to build the model

allowing to describe and predict performance of the web-based 3-

tier e-commerce application following the methodology presented

in the Section 2. The outputs (response variables) considered are

application response time and CPU utilisation.

3.2 Test Environment

3.2.1 Testbed Description
The testbed consists of workload generator syntactically

generating requests to a backend web-based application.

Experiments in this study were performed using model-driven

workload generator called MDLoad [5]. MDload automatically

generates requests to an application under test by simulating a set

of users. Since the workload generator needs to create

considerable number of virtual users, MDLoad was deployed on a

Virtual Machine (VM) with 12 CPU and 3GB of memory. This

VM is located on the private cloud at Imperial College London.

The hosts of the private cloud are Intel Xeon with CPU E5-2450

2.10 GHz. The capacity of the VM machine was chosen based on

the previous experience with MDload such a way that relatively

small number of users would saturate the application, resulting in

significant increase in application response time and CPU

utilization, but not leading to the MDload outage. This decision

allowed to reduce execution time needed for each experimental

run while still obtaining sufficient samples to estimate mean

values of performance metrics.

The software stack of workload generator comprises JAVA

and shell scripts for submitting HTTP requests and controlling the

behaviour of virtual users by creating session-based workload.

The request composition of the sessions for the three MDload

user classes adopted in this study is shown in Table 1:

Table 1: Request mix per session for 3 MDload user classes.

Request
Class I

(light)

Class II

(medium)

Class

III*

(heavy)

Home + + +

Login + + +

Login details + + +

Main + +

Order History + +

QuickAddMain + +

CartAddAll + +

Checkout + +

CheckoutAddressNext + +

CheckoutPaymentNext + +

CheckoutShippingNext + +

Logout + + +

*Class III has higher number of Checkout requests per session than Class

II

3.2.2 Application Under Test
The application under test is Apache OFBiz [6] - an open

source web-based e-commerce system. The OFBiz instance is

14

http://www.itl.nist.gov/div898/handbook/pri/section3/pri31.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri32.htm

deployed on a VM with 1 CPU and 3GB of memory on the same

private cloud at Imperial College London. Keeping both workload

generator and backend application on the hosts in the same

private cloud and connected through high-speed broadband

network allows to remove ‘noise’ in the system response time

(collected on the MDload side using tool’s features) caused by

network latencies. Therefore, measurements for the system

response time can be considered response time on the application

level.

3.3 Screening Procedure
There are a number of parameters (in DoE known as

‘factors’) that might influence application performance. These

may be external inputs, such as, for example, number of users,

user think time, or system parameters (e.g. hardware

configuration on which application is deployed). Such parameters

may be controllable (can be changed by the experimenter) and

uncontrollable. For example, network delay, mentioned above,

can be viewed as the noise factor, influencing response time as it

is experienced by the user. An extensive taxonomy of factors is

given in [4]. However, to explore all possible combinations of

these factors would require 2
k
 experimental runs, as was

mentioned in the Section 2. In the example from [4] that would be

2
38

=274x10
9
 runs, which is, of course, infeasible. Therefore, not

only fractional factorial design is needed, but also careful

consideration for the choice of the candidate factors for the

screening procedure, based on the experience of the experimenter.

In this study it was decided to start with a small set of well-

known factors, such as number of users, user think time and

workload mix. Additionally it was tested if the testbed set up

described in 3.2.1 would allow to decrease execution time of the

experimental run without causing deterioration of estimates. The

low and high levels for the number of users were chosen based on

the N*, where N*, following the definition from [3] is the point

where application starts exhibiting saturation behaviour. Levels

for other factors for the two-level design were chosen based on

the authors’ experience with application load testing and MDload.

The summary of factors and their levels chosen for the screening

procedure is given in the Table 2.

Table 2: Factors and their levels.

Levels

Low (-1) High (1)

Number of users* 3** 20

User think time, s 10 1

Execution time,

min (steady state)
10 30

Workload mix

(user class)
I III

* N*=16 for user think time = 5 s.

** N_users = 3 instead of 1 is chosen to obtain more samples for

averaging.

To investigate all possible combinations of these four

factors would require 2
4
=16 runs, which is theoretically feasible,

but with half of the runs requiring execution for 30 minutes it

would take 5 h 20 min. Therefore it was decided to use fractional

factorial design in line with the commonly-used procedure. It is

important to note, though, that the price for the reduction in runs

is so-called confounding of effects. This means that the effects

(factors and their interactions) estimated based on the results of

fractional factorial design are a combination of two or more

effects. Hence it is important to choose fractional factorial design

in such a way so that main effects are confounded with higher-

order interactions. The higher-order interactions (interactions of

N-1 factors in design for N factors) are generally considered

negligible. The fractional factorial design of resolution IV (all

main effects will be confounded with higher-order interactions,

low order interactions will be confounded with each other) for the

example data from Table 2 along with the confounding pattern is

presented in Table 3:

Table 3: Fractional factorial design for four factors.

Exp.

run

Number

of users

(A)

Think

time

(B), s

Execution

time (C),

min

User

class

(D)

Confounding

pattern

1 3 10 10 I I=I+ABCD

A = A + BCD

B = B + ACD

C = C + ABD

D = D + ABC

AB = AB + CD

AC = AC + BD

AD = AD + BC

2 3 10 30 III

3 3 1 10 III

4 3 1 30 I

5 20 10 10 III

6 20 10 30 I

7 20 1 10 I

8 20 1 30 III

As was mentioned above, higher-order interactions are

considered negligible. Therefore, based on the results of the

experimental runs it should be possible to make conclusion about

significance of main effects (significance of interactions should

be treated carefully as they are confounded with each other).

Response variables response time and CPU utilisation,

obtained in the screening experiments can be analysed graphically

(numerical analysis such as ANOVA or p-values is not

recommended because of confounding). Example analysis for the

response time is shown in the Figures 1 and 2.

A C

C

A D

B

A B

D

A

5 0 0 04 0 0 03 0 0 02 0 0 01 0 0 00

T
e

r
m

Ef fe c t

4 5 8 2

A N u s e rs

B T h in k t im e

C E xe cu t io n t im e

D W o rk lo a d m ix

F a c to r N a m e

P a r e to C h a r t o f th e E f f e c ts

(r e s p o n s e is C 9 , A lp h a = 0 ,0 5)

Le n th 's P S E = 1 2 1 7 ,2 5

Figure 1. Ranking of effects.

On the Figure 1 estimated effects are ranked by their

magnitude. Red line represents Lenth’s PSE – pseudo-standard

error. All effects that cross this line are deemed significant. From

the Figure 1 it is obvious that none of the factors are deemed

significant, which is suspicious, because from the Figure 2 it is

seen that at least number of users, think time and workload mix

make an impact on the response time. To investigate this problem

8 more runs were conducted to create a full factorial design for 4

factors. The results (for the response time) of the full factorial

design for 4 factors are shown on Figure 3.

15

1-1

3 0 0 0

2 5 0 0

2 0 0 0

1 5 0 0

1 0 0 0

1-1

1-1

3 0 0 0

2 5 0 0

2 0 0 0

1 5 0 0

1 0 0 0

1-1

N u se rs

M
e

a
n

Th in k t ime

E x e c u t io n t im e W o rklo a d m ix

M a in E f f e c ts P lo t f o r C 9

Da ta M e a n s

Figure 2. Main effects plot.

A C D

B C

A C

A B C

C D

A B C D

C

B C D

B D

A B D

A D

B

A B

D

A

1 8 0 01 6 0 01 4 0 01 2 0 01 0 0 08 0 06 0 04 0 02 0 00

T
e

r
m

Ef fe c t

1 2 8 9

A N u s e rs

B T h in k t im e

C E xe cu t io n t im e

D W o rk lo a d m ix

F a c to r N a m e

P a r e to C h a r t o f th e E f f e c ts

(r e s p o n s e is C 9 , A lp h a = 0 ,0 5)

Le n th 's P S E = 5 0 1 ,5 6 3

Figure 3. Ranking of effects.

It is clearly seen from the Figure 3 that number of users is

significant, user class is close to significance, as well as the

interaction between number of users and think time. Additionally,

it can be seen that high-order interactions ABD and BCD (and

even ABC) are not negligible as had been assumed. This resulted

in the distortion of main effects and the value of Lenth’s PSE,

which is based on the effects’ magnitudes. In the case of 4

factors, where at least two of them turned out to be significant

(number of users and workload mix) as well as the two-way

interaction for the third factor(think time), the combined influence

ABD of these three factors turned out to be large. Such

occurrence can be mitigated by screening for large number of

factors, especially with deliberate addition of factors which

should not be significant, because then there is a small chance

that combined interaction of, e.g., 5 factors for 6-factor design

would be present.

After screening test is conducted, and significant main

effects are found, the full factorial design with replications should

be conducted for this subset. If there are significant interactions

(or close to significance), the factors that cause them also should

be included into full factorial design, even if they themselves

were not identified as significant. In the example think time (B)

would be taken into the subset of significant factors, even though

it is on itself wasn’t flagged as significant, because the interaction

AB (between number of users and think time) is very large.

Execution time did not show any significant influence either on

response time or CPU utilisation, therefore it was set at the low

level (10 minutes). The full factorial design with 3 replications

and response variables are presented in the Table 4. This design is

needed to validate analysis conducted on the fractional factorial

design stage and required 4 additional runs (2, 3, 5 and 8).

Table 4: Full factorial design for 3 factors.

Exp. run N_users
Think time,

s
User class

(D)

Execution

time, min

1 3 10 I 10

2 3 10 III 10

3 3 1 I 10

4 3 1 III 10

5 20 10 I 10

6 20 10 III 10

7 20 1 I 10

8 20 1 III 10

The analysis of results confirmed that all three factors, as

most of their low-order interactions were significant. Additional

analysis was conducted to estimate the allocation of variation:

how much variation each of the factors causes in the response

variable when changed from low to high level [7]. Variation of

responses (in %) due to factors and their interactions is shown in

Table 5:

Table 5: Variation of responses (in %) due to factors and their

interactions.

Effect Response time CPU utilisation

N_users 26.03 54.27

Think time 4.53 42.99

User class 36.25 1.14

N_users:Think time 19.13 0.59

N users:User class 6.63 7.886*10-6

Think time:User class 1.5x10-8 1.8917*10-4

N_users:Think time:

User class
5.42 0.91

Error 2.01 7.6946*10-4

Error term in the Table 5 contains both random error and

influence of any factors that were not considered when

constructing screening design. As this error term is very small for

both response variables, it is safe to assume that all major sources

of variation were identified.

3.4 Constructing the Model
As both response time and CPU utilization exhibit non-

linear behaviour, Response Surface (RS) design, namely central-

composite Box-Wilson design, was chosen. This design contains

full factorial design for 3 factors and centre points, therefore can

be used to construct both linear, quadratic and polynomial

models. Additionally, the ‘faced’ configuration of the design was

implemented. This configuration does not use points outside of

the design space. The prediction capabilities of the model

constructed based on this design can be worse than of a

combination using the points outside the design space, but in our

case this combination is impossible to implement (we can’t go

beyond user classes I and III). This design requires 24 runs in

total (centre points are run 10 times to allow for a more uniform

estimate of the prediction variance over the design space). The

design is shown in the Table 6 (shaded area shows full factorial

design):

16

Table 6: Box-Wilson central composite ‘faced’ design.

N 1 2 3 4 5 6 7 8 9 10 11 12

X1 -1 -1 -1 -1 1 1 1 1 -1 1 0 0

X2 -1 -1 1 1 -1 -1 1 1 0 0 -1 1

X3 -1 1 -1 1 -1 1 -1 1 0 0 0 0

N 13 14 15 16 17 18 19 20 21 22 23 24

X1 0 0 0 0 0 0 0 0 0 0 0 0

X2 0 0 0 0 0 0 0 0 0 0 0 0

X3 -1 1 0 0 0 0 0 0 0 0 0 0

As was mentioned above, chosen RS design allows to

construct various types of regression models. We want to

investigate how they fare in prediction. Summary of the

constructed regression models is given in the Table 7:

Table 7: Regression models constructed from the experiment

results and used in subsequent analysis.

Name Description Formula

Linear

Model contains an intercept

and linear terms for each

factor

y=I+a1x1+a2x2+

+a3x3

Interactions

Model contains an intercept,

linear terms, and all products

of pairs of distinct factors

y=I+a1x1+a2x2+

+a3x3+a4x1:x2+

+a5x1:x3+a6x2:x3

Pure

Quadratic

Model contains an intercept,

linear terms, and squared

terms

y=I+a1x1+a2x2+

+a3x3+a4x1
2+

+a5x2
2+a6x3

2

Quadratic

Model contains an intercept,

linear terms, interactions, and

squared terms

y=I+a1x1+a2x2+

+a3x3+a4x1:x2+

+a5x1:x3+a6x2:x3+

+a7x1
2+a8x2

2+a9x3
2

Full

Polynomial

Model is a polynomial with

all terms up to degree 3 in the

first factor, degree 3 in the

second factor, and degree 3 in

the third factor*

y=I+a1x1+a2x2+

+a3x3+a4x1:x2+

+a5x1:x3+a6x2:x3+

+a7x1:x2:x3+a8x1
2++a

9x2
2+a10x3

2+

+a11x1
2:x2+

+a12x1:x2
2+ +a13x1

2:x3

*x3 terms are zero, the third level was chosen to include 3-way interaction

between number of users, think time and user class into the model.

Prediction curves R=f(N users) and U_cpu=f(N users) were

constructed for each model type for every combination of user

class and user think time. As an example, the curves for ‘full

polynomial’ model type and user class III are shown in the

Figures 4 and 5.

Figure 4. Prediction for the response time.

Figure 5. Prediction for CPU utilization.

4. ANALYSIS AND DISCUSSION

4.1 Collect Independent Observations.
In order to assess the model prediction capabilities, a series

of experiments with parameter values from the design space was

run. One experiment point was run per each prediction, i.e. pair

{User think time, user class}, for N users = 16. The points

collected for the model verification are given in the Table 8:

Table 8: Independent observations.

Think

time, s

User class I User class II User class III

RT, s
Ucpu,

%
RT, s

Ucpu,

%
RT, s

Ucpu,

%

10 0.79 31.8 2.72 33.1 2.7 39.8

7.5 0.83 41.0 3.14 39.9 2.02 37.0

5 0.88 50.7 2.72 53.5 2.00 67.0

2.5 1.29 76.1 2.03 77.8 2.83 64.8

1 1.43 80.1 2.91 80.99 3.71 92.0

4.2 Prediction Accuracy.
Prediction error for each {User think time, user class} pair

is defined as a relative standard error

where Y is an observation and is predicted value. Accuracy of

prediction for the entire model is estimated as a standard

deviation of the sum of squares of prediction errors

where N = 15 (3 user classes, 5 think time values (1, 2.5, 5, 7.5

and 10 s)) and P = 4 (intercept and 3 independent variables).

Additionally, these observations were compared to the

prediction based on the out-of-the-box Mean Value Analysis

(MVA) algorithm for queueing network models, implemented in

the Java Modelling Tool [2].

Total prediction error and estimation bias (average of all

differences between observed and predicted values, not their

absolute values) for response time and CPU utilisation for each

17

model type, full factorial design (FF) for 3 factors and MVA

prediction are summarised in the Table 9:

Table 9: Total prediction error and bias for various model

types.

 Total prediction

error σ, %
Bias, %

RT CPU RT CPU

Response

Surface

models

Linear 6.51 4.3 -3.62 -0.75

Interactions 6.32 4.09 -2.6 -0.65

Pure

quadratic
5.11 4.93 -2.02 -0.79

Quadratic 5.42 4.09 -1.0 -0.69

Full

polynomial
5.12 4.06 -1.97 -0.96

FF 6.896 3.987 -4.96 -0.32

MVA 40.0 11.4 -234.6 7.29

From the Table 9 it may be seen that prediction error σ for

the response time is a bit higher in the case of linear models

(‘linear’, ‘interactions’ and full factorial design), which is to be

expected since relationship between number of users and response

time is not linear. As for the CPU utilization, all DoE models

showed error 4-5%. This may be explained by the fact that within

most of the design space CPU utilization increases linearly with

increase in the number of users. However, prediction by MVA

algorithm produced the error of 40% for the response time.

In order to investigate this phenomenon, we looked into

independent observations and predicted values obtained from

both DoE models and MVA algorithm. From the Table 8 and

Figure 4 it may be seen that for the response time both observed

and predicted response times do not follow classical trend of

monotonous increase with decrease in user think time [3]. The

comparison between independent observations, DoE RS ‘full

polynomial’ model and MVA algorithm predictions, along with

prediction errors (on the example for the user class III) are

presented in the Table 10. Comparison of results in Table 10

revealed that both independent observations and values, predicted

by RS model, follow the same trend. It indicates that there is

some persistent (i.e. constantly present) behaviour, which RS

model, having no knowledge of the system under test, however, is

able to capture based only on the application inputs and outputs.

MVA algorithm also captures this trend, however, it drastically

overestimates response time values.

Table 10: Trend for response time (s) in predicted values and

observations.

User think time, s

10 7.5 5 2.5 1

Observed 2.7 2.02 1.9 2.8 3.7

RS model 2.66 2.33 2.39 2.84 3.67

Error,% 1.1 -15.3 -25.8 -1.4 0.8

MVA 33 24.9 25.5 43.8 58.4

Error, % -1122 -1124 -1216 -1464 -1478

All RS models demonstrate negative bias, which means

that overall prediction tends to overestimate both response time

and CPU utilisation, except MVA algorithm, which

underestimates CPU utilisation.

5. CONCLUSIONS AND FUTURE WORK
This study highlighted the importance of software

performance modelling and prediction, identified existing gap in

the knowledge and proposed a new performance modelling

approach, based on the Design of Experiments technique.

The results demonstrate that proposed method produces

good prediction of an application performance while treating it as

a black box, even in the presence of an anomalous behaviour.

Additionally, it showed much better prediction capabilities

compared to the out-of-the box Queuing Network model. This

allows to suggest that proposed method may be used for the

performance modelling and prediction on the application

development stage, where models based on measurements may be

a better alternative as they provide a good trade-off between

efforts required for model specification and accuracy of

estimation and prediction.

Considering the study outcomes, some of the directions for

further work may be investigation of the approach predictive

capabilities in multiclass models and as a tool for anomaly

detection.

6. ACKNOWLEDGMENTS
This work was supported by the funding from the European

Union’s Horizon 2020 research and innovation programme [grant

agreement No. 644869]. Authors also would like to thank Dr. G.

Casale and Dr. J.F. Perez-Bernal from Imperial College London

for their support and invaluable comments.

7. REFERENCES
[1] NIST/SEMATECH e-Handbook of Statistical Methods

http://www.itl.nist.gov/div898/handbook/

[2] Java Modelling Tools. http://jmt.sourceforge.net/

[3] Lazowska E et. al. ‘Quantitative system performance’. Available

online from: http://homes.cs.washington.edu/~lazowska/qsp/

[4] Z. Li, L. O'Brien, H. Zhang, and R. Cai. A factor framework for

experimental design for performance evaluation of commercial cloud

services. In Cloud Computing Technology and Science, 2012 IEEE

4th International Conference on, pages 169, 176.

[5] MDload load generation simulator. https://github.com/imperial-

modaclouds?query=modaclouds-mdload

[6] OFBiz web-based 3 tier e-commerce application.

http://ofbiz.apache.org/

[7] J. Rai. Art of Computer Systems Performance Analysis Techniques

For Experimental Design Measurements Simulation And Modeling.

Wiley Computer Publishing, John Wiley & Sons, Inc. ISBN:

0471503363 Pub Date: 05/01/91

[8] Software Engineering Institute - Blog

https://blog.sei.cmu.edu/post.cfm/continuous-integration-in-devops

[9] Spinner S., Casale G., Zhu X., and Kounev S. LibReDE: A Library

for Resource Demand Estimation (Demonstration Paper). In

Proceedings of the 5th ACM/SPEC International Conference on

Performance Engineering (ICPE 2014), Dublin, Ireland, March 22-

26, 2014. ACM. March 2014

[10] D. Westermann, R. Krebs, and J. Happe. Efficient experiment

selection in automated software performance evaluations. In

Computer Performance Engineering, pages 325-339. Springer, 2011.

18

http://www.itl.nist.gov/div898/handbook/

A Proactive Approach for Runtime Self-Adaptation
Based on Queueing Network Fluid Analysis

Emilio Incerto
Gran Sasso Science Institute

Viale Francesco Crispi, 7
L’Aquila, Italy

emilio.incerto@gssi.infn.it

Mirco Tribastone
IMT Institute for Advanced

Studies Lucca
Piazza S. Francesco, 19

Lucca, Italy
mirco.tribastone@imtlucca.it

Catia Trubiani
Gran Sasso Science Institute

Viale Francesco Crispi, 7
L’Aquila, Italy

catia.trubiani@gssi.infn.it

ABSTRACT
Complex software systems are required to adapt dynamically
to changing workloads and scenarios, while guaranteeing a
set of performance objectives. This is not a trivial task, since
run-time variability makes the process of devising the needed
resources challenging for software designers. In this context,
self-adaptation is a promising technique that work towards
the specification of the most suitable system configuration,
such that the system behavior is preserved while meeting
performance requirements.

In this paper we propose a proactive approach based on
queuing networks that allows self-adaptation by predicting
performance flaws and devising the most suitable system
resources allocation. The queueing network model represents
the system behavior and embeds the input parameters (e.g.,
workload) observed at run-time. We rely on fluid approxi-
mation to speed up the analysis of transient dynamics for
performance indices. To support our approach we devel-
oped a tool that automatically generates simulation and fluid
analysis code from an high-level description of the queueing
network. An illustrative example is provided to demonstrate
the effectiveness of our approach.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures; C.4 [Performance of Systems]: Modeling tech-
niques, Performance Attributes

Keywords
Runtime Self-Adaptation, Queueing Networks, Fluid Approx-
imation Analysis

1. INTRODUCTION
In the software development process it is fundamental to

understand if performance requirements are fulfilled, since

they represent what end users expect from the software sys-
tem. In fact, if performance targets are not met, a variety of
negative consequences (such as damaged customer relations,
business failures etc.) can impact the project success.

The performance evaluation of software systems is crit-
ical in most application domains, such as distributed web
systems and services, enterprise applications or cloud com-
puting, since such domains are increasingly required to adapt
dynamically to changing workloads, scenarios and objectives.
Guaranteeing performance requirements with a high degree
of unpredictability and dynamism in the execution context
is a not trivial task, since the presence of runtime variability
(e.g., workload peaks) makes the whole process challenging
for software designers.

Several approaches have been proposed in literature for
performance evaluation [14], however the current status of
the proposed approaches is far from an ideal situation. Cur-
rent methodologies rely on: (i) model-based predictions that
may not approximate real systems; (ii) measured runtime val-
ues that are very expensive in terms of resource usage. Our
work tries to overcome these issues by proposing a proactive
approach based on queuing networks (QN) [16] that allows
model-based predictions while considering runtime variability
by means of fluid approximation analysis. In this way we are
able to efficiently predict performance flaws and devise the
most suitable system resources allocation.

We propose an approach to guarantee the performance
requirements of software systems by explicitly considering
variability in the performance analysis process. The perfor-
mance predictions are leveraged to pro-actively place the
software in the optimal configuration with respect to chang-
ing conditions and parameter runtime changes. In particular,
the QN model represents the system behavior and embeds
the input parameters (e.g., workload) observed at runtime.
We rely on fluid approximation to speed up the analysis of
transient dynamics for performance indices. The goal is to
build a framework able to anticipate performance flaws by
adapting software on the basis of the monitored runtime
variabilities.

In this paper self-adaptation is currently implemented with
a repository of design changes that impact the system per-
formance, such as the reallocation of software components
to hardware platforms, and mirroring the software compo-
nents to better distribute incoming requests. To support
our approach we developed a tool that automatically gen-
erates simulation and fluid analysis code from a high-level
description of the queueing network.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

QUDOS’15, September 1, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3817-2/15/09...$15.00

http://dx.doi.org/10.1145/2804371.2804375

19

The remainder of this paper is organized as follows. Section
2 presents related work; Section 3 provides foundations for
the QN fluid approximation analysis; Section 4 describes
our approach; Section 5 shows the approach at work on an
illustrative example to demonstrate its effectiveness; Section
6 discusses the relevant open issues raised by the approach
and provides directions for future research.

2. RELATED WORK
The work presented in this paper relates to two main

research areas: (i) runtime self-adaptation, and (ii) queueing
network fluid analysis.
Runtime Self-Adaptation. The need of runtime self-adap-

tation has been widely recognized in literature. In [11] the
problem to dynamically self-adapt software systems (due
to resource variability, changing user needs, system faults,
etc.) is addressed with a framework using software architec-
tural models to monitor and adapt a running system. Our
approach differs from [11], since we are interested in per-
formance properties of running systems and our proactive
approach makes use of QN models to avoid performance
flaws. In [28] authors claim that one of the major challenges
in self-adaptive systems is to assure the required Quality-
of-Service (QoS) properties (e.g., performance, reliability),
and a relevant part of the studies use formal methods at
runtime. However the usage of such methods is limited to
modeling and analysis, whereas our approach includes a set of
adaptation strategies aimed at executing changes in the run-
ning system. In [1] approaches for performance engineering
of self-adaptive systems are surveyed and classified (design
vs runtime [19], and reactive vs proactive [18]), outlining
that model-driven tools including modeling of self-adaptive
systems with explicit adaptation strategies are missing in
the current state-of-the-art. Several approaches have been
defined in the context of QoS driven runtime adaptation,
in particular for service-oriented systems [4, 17], for the
evolution of runtime parameters [9], for the quantitative
verification [3]. The novelty of our approach is that it ex-
ploits the QN fluid approximation to speed up the analysis
of transient dynamics for performance indices.

Queueing Network Fluid Analysis. We consider fluid anal-
ysis in the sense of Kurtz [15], providing a system of ordinary
differential equations that associates one equation to each
service center in the network. The solution to this equation
gives an estimate to the average queue length as a function of
time. We refer to [7, 26, 2, 23] for a more in-depth discussion
of the derivation of the fluid QN models considered here.
The refactoring approach presented in this paper in principle
requires the evaluation of each possible QN design alterna-
tive from scratch, i.e., without the possibility of reusing the
analysis across different alternatives. This is a problem that
has been recently tackled in previous literature, for instance
in [24] and [13]. However, the approach in [24] allows to
reduce the complexity of the exploration of the design space
when specific conditions on the constraints for adaptation are
met. The symbolic technique of [13] computes the solution
of every possible design alternative at once, but it works for
Jackson-type queuing networks (see e.g., [22]). Furthermore,
it supports only steady-state performance measures, which
prevents to apply adaptation when transient violations are
detected (as shown in our running example).

Lastly, Table 1 reports some of the QN analysis tools that
can be found in literature. We can notice that such tools

Table 1: Other QN Tools
Tool Evaluation technique
JMT [6] Analytic and Discrete

Event Simulation
SHARPE [25] Analytic
JINQS [10] Discrete Event Simulation
PEPSY-QNS [12] Discrete Event Simulation

and Analytic
TANGRAM-II [5] Simulation and Analytic
QSIM [21] Discrete Event Simulation

make use of simulation (providing transient behavior analysis)
and/or analytic (providing exact or approximate steady state
solutions) evaluation techniques. The novelty of our approach
is that it relies on QN fluid approximation analysis that can
be seen as an analytical technique for studying the transient
behavior of the QN model.

3. BACKGROUND
The purpose of this section is to briefly describe the main

concepts underlying the fluid approximation analysis of queu-
ing networks. Roughly speaking, the goal of this analysis
technique is to translate a QN model in a system of ordi-
nary differential equations (ODEs), then solving them to
derive the performance indexes of interest. The role of the
defined equations is to analytically describe the evolution of
the queue length at each service center composing the QN
model. The main idea is to view a QN model M as a Markov
Population Process (MPP) where:

i) xi(t) is the number of jobs in the queue of service
center i at time t, and N(t) =

∑
i∈M xi(t) is the total

population of jobs circulating in the network of M
centers;

ii) each service center i modifies the number of jobs waiting

in the queue, according to a jump vector Ii ∈ R|M|;

iii) the rate of the changes caused by each server center
i is proportional to its actual jobs population xi(t),
and is expressed by the definition of the infinitesimal
generator qx,x+I .

Let us now consider, as an example, a tandem QN model
with N circulating jobs. Assume that this network consists
of a pure delay station (station 1) and a single server station
(station 2) with services rates µ1 and µ2 respectively. From
the topology of the QN model we can derive the jump vectors
I1 = (−1,+1) and I2 = (+1,−1) where each component of
the jump vector Ii, with i ∈ {1, 2}, describes the change of
number of jobs at each service center. The elements of the
infinitesimal generator for this model are qx1,x1+I1 = µ1x1

and qx2,x2+I2 = µ2 min(1, x2). Putting it all together we can
write the ODE system as:

dx1(t)

dt
= −µ1x1(t) + µ2 min(1, x2(t))

dx2(t)

dt
= +µ1x1(t)− µ2 min(1, x2(t))

By solving this system, we can compute the queue length
of the two stations over time. The transformation of the QN

20

Figure 1: Overview of the proposed technique

model in ODE implies that the solution process shifts from
a discrete-state characterization and mean value analysis
to a continuous-state representation (based on a system
of ordinary differential equations) and fluid approximation
analysis. Its computational complexity depends directly on
the algorithm used for solving the ODE system that, by
referring to the original QN model, is related to the product
between the number of stations in the network and the
transitions among them.

4. OUR APPROACH
The purpose of this section is to describe a framework that

provides the self-adaptation capability to software systems.
The goal of this adaptation process is to keep the performance
indices of the system within the stated requirements.

The key idea of our approach is to exploit the predictive
power of queuing network models by analyzing them at
runtime. In particular, feeding a model of the running system
with runtime parameters allows us to see if its future evolution
will results or not in the degradation of the performance
indices of interest.

Our work, can be considered as an implementation of the
MAPE-K [8] loop that is a very well assessed methodology
in the context of self-adaptive systems. The overview of the
proposed approach is depicted in Figure 1 in which we can
identify the following phases:

• Monitoring: the idea of this phase is to monitor the
running system using some kind of runtime system
profiler tool, similarly to [27]. Ideally, beyond the
choice of a particular tool, we expect to periodically
extract a set of parameters from the running system.
More precisely we want to collect µi as the service rate
for each service center, qi as the estimated queue length

at service center i and Rixi as the routing matrix of the
QN model. In case of closed networks, we estimate the
number of customers in the system N and the thinking
time Z. On the contrary, in case of open networks,
we identify the jobs arrival rate λ. Then we use these
parameters to feed the runtime QN model built in order
to describe the running system.

• Analysis: in this step using an ad-hoc defined model-
to-text transformation (M2T) we translate the high-
level queuing network model of the previous phase,
in a low-level representation (QN code) suitable for
automatic analysis. Executing this code we can analyze
the transient behavior of the QN exploiting the fluid
approximation technique. Result of this step is the set
of performance indices of interest that are influenced
by the previously estimated parameters. Now giving
the computed indices and the performance constraints
model as input to the constraint analysis engine we
detect the eventual performance violations.

• Planning: starting from the performance violations
previously computed and from a refactoring specifica-
tion model, the refactoring engine component is able
to compute a set of refactoring actions that represent
the plan for the current adaptation iteration. We can
think at this actions as the adding or removal of a
service center, the modification of the service rates or
for example the change of the routing probability for
some branch in the model.

• Execution: executing the previously defined refactor-
ing actions we are able to devise the new QN model
that is aimed at avoiding violations of performance
constraints. Several refactoring actions may be avail-
able and each action gives rise to a new runtime QN

21

model that undergoes the same process of the initial
one. Our approach aims to evaluate several QN mod-
els and then reflect in the running system the change
actually beneficial only.

We identify as knowledge of the MAPE-K loop the in-
formation that is required to describe the system in each
self-adaptation iteration t. Such information is identified by
the runtime QN model, the computed performance indices
and the detected performance violations.

Note that the presented approach is tool supported. We
developed an Eclipse-based tool used for the definition of the
Queuing network models and to automatically execute the
M2T transformation on them. Our tool can be downloaded
here http://sourceforge.net/projects/qnml.

5. ILLUSTRATIVE EXAMPLE
In this section we show a simple but meaningful illustrative

example suitable to demonstrate our approach. In particular
we consider a constraint model requiring that the percentage
of jobs in a queue of every service center do not exceed 0.5%
of the total jobs population. In the following the example is
described step by step.

5.1 Monitoring
Figure 2 depicts the QN model describing the running

system used in our illustrative example. It represents a
closed network composed by: one delay station (D1), four
service centers (Server1, Server2, Server3, Server4) and four
routing stations (R1, R2, R3, R4). In Figure 2 the solid lines
are used to represent the connections between the routing
station and service center; on the contrary, the dashed line
is used to represent the opposite direction.

Figure 2: Initial Model

Although, in our vision, the parameters embedded by the
model should to be automatically and periodically extracted
from the running system, for sake of simplicity, we fed the
model for the example with specific parameters suitable to
trigger interesting behavior into the system. More precisely
the used parameters are listed in Table 2 while the routing
matrix is reported hereafter.


0 1 0 0 0
0 0 1/3 1/3 1/3
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0



Table 2: Initial Model Parameters
Station Type Init. Pop. µi Z
D1 Delay Center 10 n.d. 0.5
Server1 Service Center 0 2.0 n.d.
Server2 Service Center 0 0.5 n.d.
Server3 Service Center 0 0.5 n.d.
Server4 Service Center 0 0.5 n.d.

5.2 Analysis
Goal of this step is to produce the performance indices and

to detect the eventual constraints violation of the system.
Figure 3 shows the structure of the Eclipse plug-in used in
order to implement the Model to Text Transformation (M2T)
through the ACCELEO framework [20].

Figure 3: M2T plug-in structure

Using this transformation we can translate the previously
defined QN model into Octave1 executable code, shown in
Listing 1. It is worth to notice that this low-level representa-
tion of the model allows us to analyze the transient behavior
of the system through the fluid approximation technique.

Listing 1: Octave Code For The Initial Model
function dx = qn ode (x , t)
dx = zeros (5 , 1) ;
dx (1) = −mu1∗x(1)+mu3∗min(x (3) , 1)

+mu4∗min(x (4) ,1)+mu5∗min(x (5) , 1) ;
dx (2) = +mu1∗x(1)−mu2 1∗min(x (2) , 1)

−mu2 2∗min(x (2) ,1)−mu2 3∗min(x (2) , 1) ;
dx (3) = +mu2 1∗min(x (2) ,1)−mu3∗min(x (3) , 1) ;
dx (4) = +mu2 2∗min(x (2) ,1)−mu4∗min(x (4) , 1) ;
dx (5) = +mu2 3∗min(x (2) ,1)−mu5∗min(x (5) , 1) ;
endfunction

Figure 4 shows how the queue length at each service center
changes during the observation time. We can see that the
population of the jobs in the network, at the beginning of
the analysis, is almost in the queue of server1. This happens
due to the fact that the thinking time Z of D1 is lower than
the time needed by Server1 in order to complete a job.

1http://www.gnu.org/software/octave/

22

http://sourceforge.net/projects/qnml
http://www.gnu.org/software/octave/

Figure 4: Transient behavior for the initial model

Considering our constraints model, the behavior shown
in Figure 4 is not acceptable and represents a performance
violation. The set of perfomance violations are used as input
for the planning phase in order to produce the appropriate
set of refactoring actions.

5.3 Planning
The refactoring engine relying on the refactoring specifica-

tion is able to generate a set of refactoring actions suitable to
react to the identified performance violation. In our example
the refactoring specification suggests to duplicate the queu-
ing center suffering of these kind of performance violations.
Figure 5 depicts the refactored QN model for our example.

Figure 5: Refactored Model

In particular, we added a new service station in parallel to
Server1 with an equal routing probability. In this way the
jobs coming from D1 are equally distributed among Server1
and Server2.

5.4 Execution
In this phase we check if the new QN topology is suitable to

avoid the performance violations and we actually execute the
refactoring actions. This means to update the QN model and,
once verified the effectiveness of the refactoring, to report
this change in the structure of the running system. Figure
6 shows that the executed refactoring action is suitable to
fulfill the constraints specification.

Figure 6: Transient behavior for the refactored
model

This change in the QN topology (i.e., the addition of a fur-
ther server) makes the peak no longer happening. After this
phase the adaptation iteration ends and the self-adaptation
process continues with new iterations using this model as the
starting point for the future analysis and adaptation. We
are aware that our illustrative refactoring action is straight-
forward, but the experimental results seem promising to
implement further actions for self-adaptation purpose.

6. CONCLUSION
In this paper we presented a proactive approach that pro-

vides self-adaptation capabilities to software systems in order
to guarantee the fulfillment of performance requirements.

The novelty with respect to current state-of-art is that our
approach exploits the QN fluid approximation to speed up
the analysis of transient dynamics for performance indices.
To this end, we developed a tool that automates the genera-
tion of simulation and fluid analysis code from a high-level
description of QNs.

As future work, our short-term research agenda includes
the task of providing a more formal definition of the con-
straints analysis and refactoring engines, together with the
introduction of a language for constraints and refactoring
specifications. For the last mentioned task we plan to investi-
gate the use of formal specifications such as Signal Temporal
Logic. Furthermore, a systematic comparison between the
proposed approach and other simulation techniques is needed.
In the long-term we intend to apply our approach to other
case studies, possibly coming from real-world domains. This
wider experimentation will allow us to deeply investigate
the scalability and the usefulness of our approach for self-
adaptation, thus quantifying its effectiveness.

7. REFERENCES
[1] M. Becker, M. Luckey, and S. Becker. Model-driven

performance engineering of self-adaptive systems: a
survey. In Proceedings of the 8th international ACM
SIGSOFT conference on Quality of Software
Architectures (QoSA), pages 117–122, 2012.

23

[2] L. Bortolussi and M. Tribastone. Fluid limits of
queueing networks with batches. In WOSP/SIPEW
International Conference on Performance Engineering
(ICPE), pages 45–56, 2012.

[3] R. Calinescu, C. Ghezzi, M. Z. Kwiatkowska, and
R. Mirandola. Self-adaptive software needs quantitative
verification at runtime. Commun. ACM, 55(9):69–77,
2012.

[4] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci,
F. L. Presti, and R. Mirandola. MOSES: A framework
for qos driven runtime adaptation of service-oriented
systems. IEEE Trans. Software Eng., 38(5):1138–1159,
2012.

[5] R. M. Carmo, L. R. de Carvalho, E. d. S. e Silva, M. C.
Diniz, and R. R. Muntz. Tangram-ii: A performability
modeling environment tool. In Computer Performance
Evaluation Modelling Techniques and Tools, pages 6–18.
Springer, 1997.

[6] G. Casale and G. Serazzi. Quantitative system
evaluation with java modeling tools. In Proceedings of
the 2Nd ACM/SPEC International Conference on
Performance Engineering, ICPE ’11, pages 449–454,
New York, NY, USA, 2011. ACM.

[7] G. Casale, M. Tribastone, and P. G. Harrison. Blending
randomness in closed queueing network models.
Performance Evaluation, 82(0):15 – 38, 2014.

[8] R. De Lemos, H. Giese, H. A. Müller, M. Shaw,
J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M.
Villegas, T. Vogel, et al. Software engineering for
self-adaptive systems: A second research roadmap. In
Software Engineering for Self-Adaptive Systems II,
pages 1–32. Springer, 2013.

[9] I. Epifani, C. Ghezzi, R. Mirandola, and
G. Tamburrelli. Model evolution by run-time parameter
adaptation. In International Conference on Software
Engineering ICSE, pages 111–121, 2009.

[10] T. Field. Jinqs: An extensible library for simulating
multiclass queueing networks, v1. 0 user guide, 2006.

[11] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. Computer,
37(10):46–54, Oct. 2004.

[12] M. Kirschnick. The performance evaluation and
prediction system for queueing networks-pepsy-qns.
1994.

[13] M. Kowal, I. Schaefer, and M. Tribastone. Family-based
performance analysis of variant-rich software systems.
In Fundamental Approaches to Software Engineering
(FASE), pages 94–108, April 2014.

[14] H. Koziolek. Performance evaluation of
component-based software systems: A survey. Perform.
Eval., 67(8):634–658, 2010.

[15] T. G. Kurtz. Solutions of ordinary differential
equations as limits of pure jump markov processes.
Journal of Applied Probability, 7(1):pp. 49–58, 1970.

[16] E. D. Lazowska, J. Zahorjan, G. Scott Graham, and
K. C. Sevcik. Computer System Analysis Using
Queueing Network Models. Prentice-Hall, Inc.,
Englewood Cliffs, 1984.

[17] D. A. Menascé, H. Gomaa, S. Malek, and J. P. Sousa.
SASSY: A framework for self-architecting
service-oriented systems. IEEE Software, 28(6):78–85,
2011.

[18] A. Metzger, O. Sammodi, K. Pohl, and M. Rzepka.
Towards pro-active adaptation with confidence:
Augmenting service monitoring with online testing. In
Proceedings of ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS,
pages 20–28, New York, NY, USA, 2010. ACM.

[19] R. Mirandola and C. Trubiani. A deep investigation for
qos-based feedback at design time and runtime. In
IEEE International Conference on Engineering of
Complex Computer Systems ICECCS, pages 147–156,
2012.

[20] J. Musset, É. Juliot, S. Lacrampe, W. Piers, C. Brun,
L. Goubet, Y. Lussaud, and F. Allilaire. Acceleo user
guide, 2006.

[21] P. Saxena and L. Sharma. Simulation tool for queuing
models: Qsim. International Journal of Computers and
Technology, 5(2):74–79, 2013.

[22] W. J. Stewart. Probability, Markov Chains, Queues,
and Simulation. Princeton University Press, 2009.

[23] M. Tribastone. A fluid model for layered queueing
networks. IEEE Trans. Software Eng., 39(6):744–756,
2013.

[24] M. Tribastone. Efficient optimization of software
performance models via parameter-space pruning. In
ACM/SPEC International Conference on Performance
Engineering (ICPE), pages 63–73, 2014.

[25] K. S. Trivedi and R. Sahner. Sharpe at the age of
twenty two. SIGMETRICS Perform. Eval. Rev.,
36(4):52–57, Mar. 2009.

[26] M. Tschaikowski and M. Tribastone. Insensitivity to
service-time distributions for fluid queueing models.
ICST, 1 2014.

[27] A. Van Hoorn, J. Waller, and W. Hasselbring. Kieker:
A framework for application performance monitoring
and dynamic software analysis. In Proceedings of the
3rd ACM/SPEC International Conference on
Performance Engineering, pages 247–248. ACM, 2012.

[28] D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and
T. Ahmad. A survey of formal methods in self-adaptive
systems. In Proceedings of the International Conference
on Computer Science and Software Engineering,
C3S2E, pages 67–79, New York, NY, USA, 2012. ACM.

24

Model-Based Performance Evaluations in
Continuous Delivery Pipelines

Markus Dlugi, Andreas Brunnert
fortiss GmbH

Guerickestr. 25
80805 Munich, Germany

{dlugi|brunnert}@fortiss.org

Helmut Krcmar
Technische Universität München

Boltzmannstr. 3
85748 Garching, Germany

krcmar@in.tum.de

ABSTRACT
In order to increase the frequency of software releases and
to improve their quality, continuous integration (CI) systems
became widely used in recent years. Unfortunately, it is not
easy to evaluate the performance of a software release in
such systems. One of the main reasons for this difficulty is
often the lack of a test environment that is comparable to a
production system. Performance models can help in this sce-
nario by eliminating the need for a production-sized environ-
ment. Building upon these capabilities of performance mod-
els, we have introduced a model-based performance change
detection process for continuous delivery pipelines in a pre-
vious work. This work presents an implementation of the
process as plug-in for the CI system Jenkins.

Categories and Subject Descriptors
C.4 [Performance of Systems]: measurement techniques,
modeling techniques

General Terms
Measurement, Performance

Keywords
Performance Evaluation, Performance Change Detection, Pal-
ladio Component Model, Continuous Delivery

1. INTRODUCTION
The modern software engineering landscape has been re-

shaped significantly in recent years by new paradigms such
as agile software development. This led to a shift from the
traditional model of releasing new features in few, major ver-
sions to rapid release cycles pushing new features and bug
fixes to the user in increasingly shorter intervals. In order
to support such short release cycles and still ensure adher-
ence to all requirements during the entire development pro-
cess, new concepts like continuous integration (CI), continu-
ous delivery (CD) or continuous deployment have emerged.

However, while functional requirements are rigorously eval-
uated in these systems to avoid breaking the application,
non-functional requirements like performance (i.e., response
time, utilization and throughput) are only rarely examined.
In the case of software performance, one frequent reason for
this is the lack of an adequate performance test environment
[3]. Performance models such as the Palladio Component
Model (PCM) [1] bear the potential to help in this scenario.
By automatically generating a performance model and run-
ning a simulation, a prediction of an enterprise application’s
(EA) performance can be made which is independent of the
environment used to generate the model [4]. By integrating
such a model-based performance evaluation process into a
CD deployment pipeline, changes in an EA’s performance
can be detected for every build of the EA. This capability
reduces development costs and risks as performance regres-
sions introduced by new features or bugs can be detected
immediately, thus avoiding expensive fixes once the EA is in
production.

This work presents the integration of an existing per-
formance change detection process [2] into Jenkins1 as an
exemplary CI system. It builds upon the previous work
that demonstrated the feasibility of such an approach and
presents an integrated tool for the whole process.

2. CONTINUOUS INTEGRATION,
DELIVERY & DEPLOYMENT

CI describes the practice of ensuring a usable application
during all stages of the development process [5]. This means
that every time a developer commits their changes, they
are instantly integrated with the rest of the application and
acceptance tests are performed to guarantee the soundness
and stability of the system.

CD takes the idea of CI one step further and demands that
the application not only be usable, but also in a deployable
state for every successful release candidate [5]. A key con-
cept of CD is a so-called deployment pipeline. It consists of
multiple steps such as acceptance testing, capacity testing
or packaging to produce a deployable artifact in the end.

Finally, continuous deployment is the practice of actually
deploying every application version that has passed the nec-
essary tests to production [5].

3. PERFORMANCE CHANGE DETECTION
The tool for performance change detection is realized as

a Jenkins plug-in. The process necessary for providing the

1http://jenkins-ci.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

QUDOS’15, September 1, 2015, Bergamo, Italy
ACM. 978-1-4503-3817-2/15/09...$15.00
http://dx.doi.org/10.1145/2804371.2804376

25

Deployment Pipeline in a
Continuous Delivery Process

Performance Change Detection

M
onitoring

D
ata

P
ersistence

S
ervice

Resource Profile
Generator

Artifact Repository

Simulator Kolmogorov-
Smirnov Test

Hardware
Environ-
ments

Resource
Profiles

Resource
Profile

Resource Profile
Comparator

Commit
Stage

Automated
Acceptance

Test

Manual
Testing Release

Developer
checks in

Notify Developer about Performance Change

Work-
loads

Figure 1: Performance Change Detection Process (adapted from [2, 5])

Figure 2: Mockup of the Web UI

change detection functionality is illustrated in figure 1.
Once the build process and the automated acceptance

tests are completed, the first process step is to generate
specifically formed performance models called resource pro-
files. A resource profile describes the performance-relevant
aspects of an EA by depicting the control flow and resource
demand of single transactions on the level of single com-
ponent operations. Users can specify the workload for a
resource profile on the level of single transactions and the
deployment topology using deployment units. The data
necessary for the generation is gathered using application
performance monitoring (APM) tools. In order to support
different monitoring technologies, the Jenkins plug-in pro-
vides a configuration to define which APM solution is used
to collect the necessary data. Out of the box, the plug-in
provides support for dynatrace2 as well as a custom moni-
toring solution. However, it can be extended to additional
APM tools.

The resulting resource profile is stored in an artifact repos-
itory [2]. The artifact repository is responsible for holding
performance model information about each of the EA’s re-
visions and is realized as EMFStore server. Besides the var-
ious resource profile versions, it also contains the hardware
environments and workloads designed for the performance
evaluation; these artifacts need to be manually created prior
to the change detection. The Simulator retrieves the gen-
erated resource profile as well as the predefined hardware

2http://www.dynatrace.com

environments and workloads and executes a simulation for
each combination. This step is repeated for all resource pro-
file versions to which the latest version should be compared.

After all simulations have finished, the resulting perfor-
mance metrics of all examined application versions are com-
pared using two-sample Kolmogorov-Smirnov tests to deter-
mine whether the samples differ significantly. If a perfor-
mance regression is found during one of the tests, the Re-
source Profile Comparator tries to find the reason for it by
analyzing the control flow of the business transactions con-
taining a regression, comparing the involved resource profiles
using EMFCompare and computing their difference. Finally,
a report is generated containing visualizations of the exam-
ined performance metrics as well as a list of the methods
that are likely to be responsible for the observed regression.
A mockup of the information available to the developer is
depicted in figure 2.

4. CONCLUSION AND FUTURE WORK
This work presented the integration of a model-based per-

formance evaluation process into an exemplary CI system.
While the basic process has been implemented and is work-
ing as described in section 3, there are still many aspects of
the prototype that can be refined and improved. One major
task is the development of a configuration interface to enable
the developer to easily manipulate the various process pa-
rameters as well as the hardware environment and workload
models.

5. REFERENCES
[1] S. Becker, H. Koziolek, and R. Reussner. The palladio

component model for model-driven performance prediction.
Journal of Systems and Software, 82(1):3–22, 2009.

[2] A. Brunnert and H. Krcmar. Detecting performance change in
enterprise application versions using resource profiles. In
Proceedings of the 8th International Conference on
Performance Evaluation Methodologies and Tools,
VALUETOOLS ’14, pages 165–172, ICST, Brussels, Belgium,
2014.

[3] A. Brunnert, C. Vögele, A. Danciu, M. Pfaff, M. Mayer, and
H. Krcmar. Performance management work. Business &
Information Systems Engineering, 6(3):177–179, 2014.

[4] A. Brunnert, K. Wischer, and H. Krcmar. Using
architecture-level performance models as resource profiles for
enterprise applications. In Proceedings of the 10th International
ACM Sigsoft Conference on Quality of Software Architectures,
QoSA ’14, pages 53–62, New York, NY, USA, 2014. ACM.

[5] J. Humble and D. Farley. Continuous Delivery: Reliable
Software Releases Through Build, Test, and Deployment
Automation. Addison-Wesley Professional, 1st edition, 2010.

26

Continous Deployment of Multi-cloud Systems

Nicolas Ferry, Franck Chauvel, Hui Song, Arnor Solberg
Department of Networked Systems and Services, SINTEF, Oslo, Norway

{name.surname}@sintef.no

ABSTRACT
In this paper we present our mechanism and tooling for the continu-
ous deployment and resource provisioning of multi-cloud applica-
tions. In order to facilitate collaboration between development and
operation teams as promoted in the DevOps movement, our de-
ployment and resource provisioning engine is based on the Mod-
els@Runtime principles. This enables applying the same concepts
and language (i.e., CLOUDML) for deployment and resource pro-
visioning at development-and operation-time.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Configuration Management

Keywords
Cloud computing, deployment, model-driven engineering, Mod-
els@Runtime, CloudML

1. INTRODUCTION
Multi-cloud systems are typically large scale, distributed, and

dynamic. The need to evolve and update such systems after de-
livery is often inevitable, for example due to: changes in the re-
quirements, needs for maintenance, or demands for advancing the
quality of service such as scalability and performance. In order to
ensure the quality of the system, validation and analysis tasks have
to be carried out during all development steps towards the deliv-
ery of the system. This includes testing the deployment as well as
the various features of the system in a pre-production environment.
Such testing usually involves both software developers that are re-
sponsible for designing and implementing the system according to
the functional and non-functional requirements, and software sys-
tem operators that are responsible for operating the system at run-
time.

Traditionally, these teams are working separately, typically using
specific languages and tools they feel comfortable with [3]. In ad-
dition, languages and tools typically vary within these teams since
various cloud platforms offer different languages and tools [3]. This
can hinder knowledge sharing, making it difficult: i) for designers

to obtain and understand feedback on the status of the operated
system that would be useful in order to evolve the system, ii) for
operators to analyse and comment on the impact of proposed or
implemented changes to the system, and iii) for operators of differ-
ent cloud platforms to exchange knowledge and specific operation
management decisions. The DevOps movement [4] promotes to
facilitate collaboration between developers and operators, for ex-
ample, through aligning concepts and languages used in develop-
ment and operation and supporting them with automated tools that
help reducing the gap and improving the flexibility and efficiency
of the delivery life-cycle.

In this tool paper we present the CLOUDMF mechanism and
tooling to reduce the gap between development and operation teams
by supporting continuous deployment of multi-cloud applications.
In order to reduce this gap, we apply the same concepts and lan-
guage at development-time and at operation-time. To automate
the continous deployment and resource provisioning, we have de-
veloped an engine based on the principles of the Models@Runtime
approach [1]. The deployment engine "speaks" the language of
CLOUDML [2], thereby, it enables to apply the same concepts
and abstractions for the operators as applied by the developers.
Moreover, it enables seamless operation of multi-cloud deployment
and provisioning since our previously developed CLOUDML mod-
elling language provides abstractions enabling to specify deploy-
ment and resource provisioning in a cloud platform agnostic way.

2. CONTINUOUS DEPLOYMENT USING
MODELS@RUNTIME

Models@Runtime [1] is an architectural pattern for dynamic ad-
aptive systems that leverage models as executable artefacts that can
be applied to support the execution of the system. Thus, Mod-
els@Runtime can be applied to reduce the developer-operator gap
by providing a unique model-based representation of the applica-
tions that can be applied for both design- and run-time activities.
As depicted in Figure 1, Models@Runtime enables to provide ab-
stract representations of the underlying running system, which fa-
cilitates reasoning, analysis, simulation, and adaptation. A change
in the running system is automatically reflected in the model of the
current system. Similarly, a modification to this model is enacted
on the running system on demand. This causal connection enables
the continuous evolution of the system with no strict boundaries
between design-time and run-time activities.

In our tooling we exploit Models@Runtime for the continuous
deployment of cloud-based applications following the process de-
picted in Figure 1. A developer team specifies a model of the de-
ployment and provisioning of its application applying CLOUDML,
and then automatically enacts this deployment and provisioning
in a test environment. Developers exploit the test environment to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

QUDOS’15, September 1, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3817-2/15/09...$15.00

http://dx.doi.org/10.1145/2804371.2804377

27

ICT

Developer Operator

Running
System

Test Environment

Running
System

Production Environment

Model
(of the running system)

Causal
Link

Model
(of the running system)

Causal
Link

Metamodel

conforms

Update,
validate, test

Update,
maintain,
manage

Sharing models

Figure 1: Continuous deployment using Models@Runtime

check, analyse and validate the deployment and resource provision-
ing as well as the system’s features, and continously tune its devel-
opment and redeploy it automatically. Any change made to the
deployment model will be enacted on demand on the running sys-
tem whilst its status will be reflected in the model providing useful
feedbacks. Once the new release is validated, it can be provided to-
gether with the associated CLOUDML model to the operation team.
The latter can in turn exploit the model to deploy the new release
in a production environment. The operators can further tune this
model to maintain, manage and evolve the running system. Be-
cause the models shared by the developers and operators conform
to the same metamodel, at any time they can share and exchange in-
formation. Moreover, any automation of the ‘’hand-over‘’ from the
Test Environment to the Operation Environment can be provided
seamlessly.

3. THE DEPLOYMENT ENGINE
Figure 2 depicts the architecture of our Models@Runtime based

deployment engine. A reasoning engine (e.g., operator, analysis
engine) can read the current model provided by the deployment
engine (step 1), which describes the actual running system, and
then produces a target model (step 2). Then, the deployment en-
gine calculates the difference between the current and the target
model (step 3). Finally, the deployment engine enacts the changes
modifying only the parts of the system necessary to account for the
difference, and the target model becomes the current (step 4).

s Technology for a better society

Models@runtime

15

Deployment engine

Provisioning and Deployment

Current
Deployment

model Adaptation

Target
Deployment

model

Diff

(1)
(2)

(3)
(4)

(5)

Reasoning engine

Figure 2: The Models@Runtime based Deployment Engine

Figure 3 shows the web interface for viewing and manipulating
the deployment and resource provisioning either in the test envir-
onment at design-time or in the operation environment at run-time.

Adaptations in the deployment of a cloud-based application can
be specified by providing a new deployment model describing the

Figure 3: Snapshot of the CLOUDMF Web-based editor

desired deployment. A Comparison engine compares the current
and target models and derives a plan describing how to reach that
deployment. The resulting plan modifies only the parts of the sys-
tem necessary to account for the difference thus minimizing the
impact on the system in production (from a quality point it is im-
portant to not touch the running system more than necessary).

The comparison engine processes the entities composing the de-
ployment models on the basis of their logical dependencies. In this
way, all the components required by another component are de-
ployed first. For each of these components, the engine compares
the two sets of instances from the current and target models. This
comparison is achieved on the matching of both the properties of
the instances and their types as well as on the basis of their de-
pendencies (e.g., if the host of a software component has changed
it might be redeployed). For each unmatched instance from the cur-
rent model a remove action with the instance as argument is cre-
ated. Similarly, for each unmatched instance from the target model
an add action with the instance as argument is generated. In addi-
tion, by analysing the difference between the two models, the com-
parison engine identifies the high level operations to be performed.
For instance, when bursting to a new provider, the engine triggers
a classical deployment, whilst when scaling within the same cloud,
it creates and provisions image of the VM to be scaled and then
reconfigures and restarts the components hosted on it.

4. CONCLUSION
Our Models@Runtime approach leverages upon MDE techniques

and methods at runtime to support the continuous design and de-
ployment of multi-cloud applications. Thanks to the proposed ap-
proach, it becomes possible to exploit the same concepts and lan-
guage for deployment and resource provisioning at both develop-
ment and operation time.

Acknowledgements. The research leading to these results has
received funding from the European Community’s FP7 program
under grant agreement number: 318484 (MODAClouds).

5. REFERENCES
[1] G. Blair, N. Bencomo, and R. France. Models@run.time.

IEEE Computer, 42(10):22–27, 2009.
[2] N. Ferry, H. Song, A. Rossini, F. Chauvel, and A. Solberg.

CloudMF: Applying MDE to Tame the Complexity of
Managing Multi-Cloud Applications. In UCC, 2014.

[3] M. Httermann. DevOps for developers. Apress, 2012.
[4] J. Humble and D. Farley. Continuous Delivery: Reliable

Software Releases through Build, Test, and Deployment
Automation. Addison-Wesley Professional, 2010.

28

SPACE4Cloud: A DevOps Environment for Multi-cloud
Applications

Michele Guerriero
Politecnico di Milano,

Dipartimento di Elettronica,
Informatica e Bioingegneria.
Via Golgi 42 20133, Milano,

Italy
michele.guerriero@polimi.it

Michele Ciavotta
Politecnico di Milano,

Dipartimento di Elettronica,
Informatica e Bioingegneria.
Via Golgi 42 20133, Milano,

Italy
michele.ciavotta@polimi.it

Giovanni Paolo Gibilisco
Politecnico di Milano,

Dipartimento di Elettronica,
Informatica e Bioingegneria.
Via Golgi 42 20133, Milano,

Italy
giovannipaolo.gibilisco@polimi.it

Danilo Ardagna
Politecnico di Milano,

Dipartimento di Elettronica,
Informatica e Bioingegneria.
Via Golgi 42 20133, Milano,

Italy
danilo.ardagna@polimi.it

ABSTRACT
Cloud computing has been a game changer in the design, de-
velopment and management of modern applications, which
have grown in scope and size becoming distributed and ser-
vice oriented. New methodologies have emerged to deal with
this paradigm shift in software engineering. Consequently,
new tools, devoted to ease the convergence between devel-
opers and other IT professional, are required. Here, we
present SPACE4Cloud, a DevOps integrated environment
for model-driven design-time QoS assessment and optimiza-
tion, and runtime capacity allocation for Cloud applications.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided
software engineering (CASE); D.2.9 [Management]: Soft-
ware quality assurance (SQA)

Keywords
Model-Driven, Cloud, QoS, design-time, runtime, DevOps

1. INTRODUCTION
In recent years we have witnessed a paradigm shift in

the software creation and management. Projects have pro-
gressively grown in size and scope, and the legacy model
of standalone applications has lost much of its relevance
in favor of more flexible, distributed, and web-based ar-
chitectures. Another factor to consider in this change is

the emergence and the success of Cloud computing. Over-
all, new ideas for application development and management
have appeared, which resulted in DevOps, i.e., a software
development method based on collaboration, more often on
a real convergence, between software developers, system ad-
ministrators, and performance engineers. Under these cir-
cumstances, tools that simplify the early quality evaluation
at design-time and systems for managing the quality at run-
time have become especially important. In this work we pro-
pose SPACE4Cloud, a collection of tools developed within
the MODAclouds1 EU FP7 project for design-time model-
ing and analysis, and runtime quality management of multi-
Cloud applications.

The rest of the paper is organized as follows: in Section 2
we introduce SPACE4Cloud; some experimental results are
presented in Section 3 whereas conclusions are finally drawn
in Section 4.

2. SPACE4CLOUD
SPACE4Cloud (System PerformAnce and Cost Evalua-

tion on Cloud) is an integrated environment for model-driven
design-time QoS assessment, optimization, and runtime ca-
pacity allocation of Cloud applications. It is composed of
two main tools: at design-time SPACE 4CloudDev takes
in input models in extended PCM format [2] describing the
application under development in terms of functionalities,
Quality of Service (QoS) requirements, and end-user work-
load profile defined over a 24-hour time horizon. Such mod-
els are converted in Layered Queueing Networks [4] and eval-
uated in terms of cost and performance. The tool is also able
to perform, through a local-search-based metaheuristic, a
fully automatized exploration of the space of possible Cloud
offers, seeking for the configuration that minimizes the ex-
ecution costs fulfilling at once the QoS requirements. The
outcome of this module is a new set of models describing
the Cloud deployment and the runtime adaptation actions.
These models are, in turn, fed into SPACE4CloudOps,

1www.modaclouds.eu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

QUDOS’15, September 1, 2015, Bergamo, Italy
ACM. 978-1-4503-3817-2/15/09...$15.00
http://dx.doi.org/10.1145/2804371.2804378

29

Figure 1: Test workload Figure 2: Varying number of VMs

which is the tool in charge of guaranteeing at runtime the
pledged QoS levels by enacting suitable policies. This so-
lutions implements the so-called Receding Horizon Control
paradigm. Simply put, it solves a Mixed Integer Linear Pro-
gramming (MILP) optimization problem over a finite time
window; this process generates a set of scaling actions to
be implemented within the MODAClouds Runtime Plat-
form [3], using a suitable IaaS interface, in order to obtains
a satisfactory QoS during the time window, yet only the
adaptations for the first time step are enforced. Eventually,
the process is repeated considering the second time step as
the beginning of a new time window. The MILP problem,
in its basic formulation, is a capacity allocation problem in
charge to determine the number of VMs suitable to serve the
expected incoming workload, minimizing costs and guaran-
teeing that the QoS requirements are met. The optimization
model, based on queueing theory results, is characterized by
performance parameters that are continuously updated at
runtime by an appropriate monitoring system (see [3]) in
order to cope with the time-varying behavior of the Cloud.
Moreover, since the workload varies over time and it can not
be known in advance, the allocation problem is solved based
on a prediction, also provided by the monitoring system.

The entire SPACE4Cloud environment is implemented in
Java, released under Apache License 2.02 3

3. EXPERIMENTAL RESULTS
In this section we briefly describe some of the experi-

ments performed to prove the soundness of our approach.
The experiments are all performed using a simplified single-
tier web application and leveraging Amazon EC2 services.
Embracing a model-base approach, we start by modeling
our application and the operational environment at design-
time using the extended PCM format. Along this path,
initial estimates of service times are derived by performing
some preliminary experiments on a prototype environment
and relying on state-of-the-art parameter estimation tech-
niques [5]. In this way we could describe the application
and the runtime environment, and feed with the resulting
models SPACE4CloudDev. Once the application has been
automatically deployed in the MODAClouds runtime envi-
ronment, SPACE4CloudOps starts creating the optimiza-
tion model and enacting the runtime control loop with a 5
minute timescale against a synthetic workload generated by
Apache JMeter4. A timescale of 5 minutes has been set up
since it has been proved in [1] to provide better performance
with respect to larger ones, essentially due to more accu-
rate workload predictions available at this scale. Moreover
in [1] a comparison with a heuristic currently implemented
by some IaaS providers is reported, showing that our ap-

2github.com/deib-polimi/modaclouds-space4cloud
3github.com/deib-polimi/modaclouds-autoscalingReasoner
4jmeter.apache.org

proach always provides better solutions. Here, focusing on
the effectiveness of our approach, a basic experiment car-
ried out using the 4-hour workload profile shown in Figure 1
is presented; the incoming workload is basically a ramp up
with a maximum number of users equal to 7,000, followed by
a ramp down. Figure 2 shows the number of running VMs
varying in the range [1, 8] following the shape of the work-
load, proving the effectiveness of the adaptive mechanism
provided by SPACE 4CloudOps.

4. CONCLUSIONS
In this work we presented a joint DevOps environment for

design-time modeling and optimization, and runtime con-
trol for Cloud applications. The aim of the tool is to min-
imize the execution costs of Cloud applications providing
QoS guarantees by design. The most distinguished charac-
teristic of the Cloud, such as variable workload, congestion
due to multi-tenancy, and performance variability, are con-
sidered. Future work will be devoted mainly to extend the
runtime adaptive actions to PaaS platforms and multi-Cloud
applications, both already managed at design-time. More-
over, a feedback mechanism will be implemented in MODA-
Clouds runtime environment to provide a better estimation
of design-time parameters. In this way the user, dealing
with an application model closer to reality, can further im-
prove the deployment, discovering and solving possible per-
formance bottleneck. Finally, the tool will be extended for
design-time modeling and optimization of data intensive ap-
plications within the framework of the DICE5 project.

5. ACKNOWLEDGMENTS
The research reported in this article is partially supported

by the European Commission grants no. FP7-ICT-2011-8-
318484 (MODAClouds) and H2020-ICT-2014-1-644869 (DICE).

6. REFERENCES
[1] D. Ardagna, M. Ciavotta, and R. Lancellotti. A

receding horizon approach for the runtime management
of iaas cloud systems. In SYNASC-MICAS 2014.

[2] D. Ardagna, M. Ciavotta, M. Miglierina, G. Gibilisco,
G. Casale, J. Pérez, F. D’Andria, and R. S. González.
MODAClouds D5.2.2 - MODACloudML QoS
abstractions and prediction models specification, 2014.

[3] G. Iuhasz, S. Panica, G. Casale, W. Wang, P. Jamshidi,
D. Ardagna, M. Ciavotta, D. Whigham, N. Ferry, and
R. S. González. MODAClouds D6.4.2 - runtime
environment final release, 2015.

[4] J. A. Rolia and K. C. Sevcik. The method of layers.
IEEE Trans. Softw. Eng., 21(8):689–700, Aug. 1995.

[5] L. Zhang, X. Meng, S. Meng, and J. Tan. K-scope:
Online performance tracking for dynamic cloud
applications. In ICAC 2013.

5www.dice-h2020.eu

30

Filling the Gap: A Tool to Automate Parameter Estimation
for Software Performance Models

Weikun Wang, Juan F. Pérez, Giuliano Casale
Department of Computing
Imperial College London

UK
{weikun.wang11,j.perez-bernal,g.casale}@imperial.ac.uk ∗

ABSTRACT
Software performance engineering heavily relies on appli-
cation and resource models that enable the prediction of
Quality-of-Service metrics. Critical to these models is the
accuracy of their parameters, the value of which can change
with the application and the resources where it is deployed.
In this paper we introduce the Filling-the-gap (FG) tool,
which automates the parameter estimation of application
performance models. This tool implements a set of sta-
tistical routines to estimate the parameters of performance
models, which are automatically executed using monitoring
information kept in a local database.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures; D.2.2 [Software Engineering]: Design Tools and
Techniques—Computer-aided software engineering

General Terms
Theory

Keywords
Software Performance Engineering; Quality of Service

1. INTRODUCTION
DevOps [5] is a recent trend in software engineering that

bridges the gap between software development and opera-
tions, putting the developer in greater control of the ap-
plication operational environment. To support Quality-of-
Service (QoS) analysis, the developer may rely on software

∗The research leading to these results has received
funding from the European Union Seventh Framework
Programme FP7/2007-2013 under grant agreement no.
318484. and DICE H2020 under grant agreement
no. 644869. The data reported is available at
http://dx.doi.org/10.5281/zenodo.20280.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

FG
Analyzer

FG Report

FG
Actuator

Deployment
Module

Monitoring
Platform

QoS
Model

Monitoring
History DB

FG Local
DB

Computing
Cluster

FG

Figure 1: FG Architecture

performance models. However, to provide reliable estimates,
the input parameters must be continuously updated and ac-
curately estimated. Accurate estimation is challenging be-
cause some parameters are not explicitly tracked by log files,
requiring deep monitoring instrumentation that poses large
overheads, unacceptable in production environments.

In this paper we present the first release of the Filling-the-
Gap (FG) tool, a tool for continuous performance model
parametrization that implements the research agenda set
in [4]. The FG tool implements a set of statistical estima-
tion algorithms to parameterize performance models from
runtime monitoring data. Multiple algorithms are included,
allowing for alternative ways to obtain estimates for differ-
ent metrics, but with an emphasis on resource demand esti-
mation, which has recently been contemplated also in tools
such as LibReDE [6]. FG tool supports advanced algorithms
to estimate parameters based on response times and queue-
length data, which makes the tool useful in particular for
applications running in virtualized environments where uti-
lization readings are not always available.

Figure 1 shows the four main components of the FG Tool.

FG Local DB: This local database periodically acquires
and stores the monitoring data that is relevant for FG
analysis and used by the FG Analyzer. The Local DB
is a Fuseki1 database, which keeps data in RDF format.

FG Analyzer: The FG Analyzer executes the statistical
methods necessary to obtain the estimates of the per-
formance models parameters, relying on the monitor-
ing information available on the Local DB. It has the
ability to connect with a Condor cluster to process es-
timation routines in parallel.

FG Actuator: The FG Actuator updates the parameters

1http://jena.apache.org/documentation/serving_
data/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

QUDOS’15, September 1, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3817-2/15/09...$15.00

http://dx.doi.org/10.1145/2804371.2804379

31

of the models, e.g., resource demands, population, etc.,
obtained from the FG Analyzer. The update is per-
formed on the performance and the deployment model.

FG Reporter: The FG Reporter is in charge of providing
the developers with information regarding the appli-
cation runtime behavior to help them evaluate how
well the application responds under different condi-
tions. The FG Reporter is based on DynamicReports2.

2. SUPPORTED DEMAND ESTIMATION AL-
GORITHMS

Queueing networks are popular abstractions used as ap-
plication performance models. To parametrize these models,
the FG tool uses the monitoring data collected at runtime
and executes statistical methods, improving the accuracy of
the models. Among the set of model parameters, resource
demand is difficult to estimate since extensive monitoring
poses unacceptable overheads. To tackle this problem, the
FG Analyzer implements several algorithms, relying on dif-
ferent monitoring metrics. Here we use Dr to represent the
service demand of request class r.

CI: the Complete Information (CI) method [3] requires a
full trace, that is, the times at which every request ar-
rives and departs from the resource. Consider a class-r
request that arrives at t1 and departs at tI , where I
is the number of observed events (request arrivals or
departures) during the request execution. Then the
demand of that request on that resource is:

Dr =
∑I−1

i=1 (ti+1 − ti) min(n(t+i), V)/n(t+i)

where n(t+i) is the number of requests in execution just
after time ti and V is the number of CPUs.

GQL: the Gibbs sampling with Queue Lengths (GQL) method
[7] uses queue-length samples collected at run time to
estimate the service demand with the Bayes’ theorem:

P (D|N) = P (N |D)P (D)/P (N) ≈
∏
n∈N

P (n|D)P (D),

where P (n|D) is the steady state probability of a prod-
uct form queueing network, N is the observed queue
length dataset and n is one entry of the dataset N , i.e.
nir is the number of class-r jobs at station i. Gibbs
sampling is employed to obtain the demand D.

MINPS/FMLPS: the MINPS method [3] is a maximum
likelihood method based on a Markov Chain represen-
tation of the response time given the observed queue
length. It requires response times and queue lengths
observed upon arrival. Similarly, FMLPS [3] is also a
maximum likelihood estimator but uses a fluid approx-
imation to obtain estimates for large systems.

ERPS: the Extended Regression-Based (RPS) approach [3]
makes use of the response times and queue lengths
observed at arrival times as in the equation

E[Rr] = E[Dr]E[Ār]/min
{
V, 1/I

∑I
i=1 n(ti)

}
,

where Ar is the queue-length seen upon arrival by
class-r jobs, and Rr is their response time. The service
demand is estimated using linear regression.

2http://www.dynamicreports.org/

Algorithms
CI MINPSERPS GQL UBR UBO FMLPS

E
rr

or
 (%

)

0

10

20

30

40

50

60

70

(a) Error (%)

Algorithms
CI MINPSERPS GQL UBR UBO FMLPS

E
xe

cu
tio

n
tim

e
(s

)

10-3

10-2

10-1

100

101

102

103

(b) Execution time (s)

Figure 2: Comparison between demand estimation
algorithms

FCFS: estimations for FCFS servers [1] rely on

E[Rr] = E[Tr] +
∑K

k=1 E[Dr](1k,r + E[Ar
k]),

where 1k,r = 1 if k = c otherwise 1k,r = 0, Tr is the
residual time to completion of a class-r request, and
Ar

k is the queue-length of class-k jobs seen upon arrival
by each class-r request. Demand estimates E[Dr] are
obtained with regression methods given Ar

k and Rr.

2.1 Evaluation
One advantage of the FG tool is the availability of different

estimation algorithms in a common environment. We make
use of the tool to provide a novel comparison of these algo-
rithms. We simulate the underlying Markov chain of a closed
network with 4 request classes, 2 queueing stations, and one
delay node. The queueing stations have 2 servers and the
number of jobs for each class is (7, 7, 1, 5). We simulate a
total of 200000 arrival and departure events, and generate
all the metrics required by the estimation algorithms.

Figure 2 shows the experiment result, including the UBR [8]
and UBO [2] methods, which use CPU utilization measure-
ments. We observe that CI achieves the highest accuracy
while UBR is the most efficient one.

3. REFERENCES
[1] Kraft, S., Pacheco-Sanchez, S., Casale, G., Dawson, S.:

Estimating service resource consumption from response
time measurements. In: VALUETOOLS, 2009.

[2] Liu, Z., Wynter, L., Xia, C.H., Zhang, F.: Parameter
inference of queueing models for IT systems using
end-to-end measurements. Perf. Eval, 63(1):36–60,2006.

[3] Perez, J.F., Casale, G., Pacheco-Sanchez, S.:
Estimating computational requirements in multi
threaded applications. IEEE TSE 41(3): 264–278, 2014.

[4] Perez, J.F., Wang, W., Casale, G.: Towards a devops
approach for software quality engineering. In: WOSP,
2015.

[5] Roche, J.: Adopting DevOps practices in quality
assurance. CACM, 56(11), 2013.

[6] Spinner, S., Casale, G., Zhu, X., Kounev, S.: Librede: a
library for resource demand estimation. In: ICPE, 2014.

[7] Wang, W., Huang, X., Qin, X., Zhang, W., Wei, J.,
Zhong, H.: Application-level cpu consumption
estimation: Towards performance isolation of multi
tenancy web applications. In: IEEE CLOUD, 2012.

[8] Zhang, Q., Cherkasova, L., Smirni, E.: A
regression-based analytic model for dynamic resource
provisioning of multi-tier applications. In: ICAC, 2007.

32

Author Index
Ardagna, Danilo 29

Brunnert, Andreas25

Casale, Giuliano 31
Chauvel, Franck27
Ciavotta, Michele 29
Coutinho, Jose G. F. 1

Dlugi, Markus 25

Ferry, Nicolas 27

Gibilisco, Giovanni Paolo 29
Guerriero, Michele 29

Incerto, Emilio19

Jamshidi, Pooyan 13

Krcmar, Helmut 25

Olszewska, Marta 7

Pérez, Juan F.31

Solberg, Arnor 27
Song, Hui . 27
Stillwell, Mark 1

Tribastone, Mirco 19
Trubiani, Catia19

Ustinova, Tatiana13

Waldén, Marina7
Wang, Weikun 31

