
3rd International Workshop on
Software Development

Lifecycle for Mobile
(DeMobile 2015)

Proceedings

Aharon Abadi, Shah Rukh Humayoun, and Henry Muccini

August 31, 2015
Bergamo, Italy

The Association for Computing Machinery, Inc.
2 Penn Plaza, Suite 701

New York, NY 10121-0701

Copyright c© 2015 by the Association for Computing Machinery, Inc (ACM). Permission to make digital or hard
copies of portions of this work for personal or classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permission to republish from: Publications Dept. ACM, Inc.
Fax +1-212-869-0481 or E-mail permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that
the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923.

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously published by ACM.
If you have written a work that was previously published by ACM in any journal or conference proceedings prior to
1978, or any SIG Newsletter at any time, and you do NOT want this work to appear in the ACM Digital Library, please
inform permissions@acm.org, stating the title of the work, the author(s), and where and when published.

ACM ISBN: 978-1-4503-3815-8

Additional copies may be ordered prepaid from:

Phone: 1-800-342-6626
ACM Order Department (U.S.A. and Canada)
P.O. BOX 11405 +1-212-626-0500
Church Street Station (All other countries)
New York, NY 10286-1405 Fax: +1-212-944-1318

E-mail: acmhelp@acm.org

Production: Conference Publishing Consulting
D-94034 Passau, Germany, info@conference-publishing.com

Foreword
We would like to welcome you to the 3rd International Workshop on Software Development
Lifecycle for Mobile (DeMobile 2015), where we aim at establishing a community of researchers
and practitioners to share their work and lead further research in the mobile software
engineering.	

Mobile application usage and development is experiencing exponential growth. The current
mobile domain presents new challenges to software engineering. Mobile platforms are rapidly
changing, including diverse capabilities as GPS, sensors, and input modes. Activated on mobile
platforms, modern applications must be elastic and scale on demand according to the hardware
abilities. Applications often need to support and use third-party services. Therefore, during
development, security and authorization processes for the dataflow must be applied. Developing
such applications requires suitable practices and tools, e.g., architecture techniques that relate to
the complexity at hand; improved refactoring tools for hybrid applications using dynamic
languages and polyglot development and applications; and testing techniques for applications
that run on different devices. Targeting these concerns, the workshop is dedicated to achieve
several goals, e.g.: to develop relationships to create a vibrant research community in the area of
mobile software development, and to identify the most important research problems for mobile
software development.	

The first two versions of the workshop were held in conjunction with the 21st and 22nd ACM
SIGSOFT International Symposium on the Foundations of Software Engineering (FSE 2013 &
FSE 2014) in Saint Petersburg, Russia and Hong Kong, China respectively. This year, we are
delighted to conduct it in conjunction with the 10th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2015) in Bergamo, Italy on August 31, 2015.

Researchers and practitioners were invited to submit contributions including research papers of 8
pages long, emerging ideas of 4 pages long, and in-practice experience of 2 pages long extended
abstract. Each submission was reviewed by at least three program committee (PC) members,
which led to a total number of four accepted papers (2 long and 2 short papers). The acceptance
rate for research papers in long and emerging ideas was 50%. In addition, we have 2
distinguished keynote speakers, Prof. Mark Harman from academia and Dr. Yael Dubinsky from
industry. Further, we have 7 invited talks with a mixture of academia, research institutes and
industry; who will share their research and experiences in the different areas of mobile software
engineering. We are grateful for the time and effort the PC members spent in the selection
process. Your attendance in the workshop will provide the opportunity for joint discussions
about the solved and unsolved problems in mobile software engineering.

Aharon Abadi, Shah Rukh Humayoun, and Henry Muccini
DeMobile 2015 Organizers

iii

DeMobile 2015 Organization

Organizing Committee

Aharon Abadi IBM Research – Haifa, Israel
Shah Rukh Humayoun University of Kaiserslautern, Germany
Henry Muccini University of L’Aquila, Italy

Program Committee:

Matthias Book University of Iceland, Iceland
Yael Dubinsky IBM Haifa Research Lab, Israel
Yishai A. Feldman IBM Research – Haifa, Israel
Lori Flynn Carnegie Mellon University, USA
Tiziana Catarci Sapienza University of Rome, Italy
Vincenzo Grassi University of Roma "Tor Vergata", Italy
Jeff Gray University of Alabama, USA
Mark Harman University College London, United Kingdom
Grace Lewis Carnegie Mellon Software Engineering Institute, USA
Seng Loke La Trobe University, Australia
Ivano Malavolta Gran Sasso Science Institute, Italy
Sam Malek George Mason University, USA
Shahar Maoz Tel Aviv University, Israel
Vinayak Naik IIIT-Delhi, India
Marco Pistoia IBM T. J. Watson Research Center, USA
Rafael Prikladnicki PUCRS, Brazil
Antonino Sabetta SAP Research Sophia-Antipolis, France
Federica Sarro University College London, United Kingdom
Jocelyn Simmonds Universidad de Chile, Chile
Alin Stefanescu University of Bucharest, Romania
Shingo Takada Keio University, Japan
Shmuel Tyszberowicz The Academic College of Tel-Aviv Yaffo, Israel
Amiram Yehudai Tel Aviv University, Israel

iv

Contents
Frontmatter
Foreword . iii

Keynote Talks
App Store Mining and Analysis (Keynote)

Afnan Al-Subaihin, Anthony Finkelstein, Mark Harman, Yue Jia, William Martin, Federica Sarro, and Yuanyuan Zhang
— University College London, UK . 1

Walking the Model: The Smart Mobile Field Engineer (Keynote)
Yael Dubinsky — IBM Research, Israel . 3

Research Papers
AGRippin: A Novel Search Based Testing Technique for Android Applications

Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, and Porfirio Tramontana — University of Naples Federico
II, Italy . 5

Detecting Android Malware using Sequences of System Calls
Gerardo Canfora, Eric Medvet, Francesco Mercaldo, and Corrado Aaron Visaggio — University of Sannio, Italy;
University of Trieste, Italy . 13

Tailoring Software Architecture Concepts and Process for Mobile Application Development
Felix Javier Acero Salazar and Marco Brambilla — Politecnico di Milano, Italy 21

Optimizing Energy of HTTP Requests in Android Applications
Ding Li and William G. J. Halfond — University of Southern California, USA . 25

Invited Talks
Perspectives on Static Analysis of Mobile Apps (Invited Talk)

Marco Autili, Ivano Malavolta, Alexander Perucci, and Gian Luca Scoccia — University of L’Aquila, Italy; Gran Sasso
Science Institute, Italy . 29

A Mobile Application for Geographical Data Gathering and Validation in Fieldwork (Invited Talk)
Karine Reis Ferreira, Lúbia Vinhas, Cláudio Henrique Bogossian, and André F. Araújo de Carvalho — National Institute
for Space Research, Brazil; Foundation of Science, Technology and Space Applications, Brazil 31

CLAPP: Characterizing Loops in Android Applications (Invited Talk)
Yanick Fratantonio, Aravind Machiry, Antonio Bianchi, Christopher Kruegel, and Giovanni Vigna — University of
California at Santa Barbara, USA . 33

Optimizing Display Energy Consumption for Hybrid Android Apps (Invited Talk)
Ding Li, Angelica Huyen Tran, and William G. J. Halfond — University of Southern California, USA 35

Author Index

v

App Store Mining and Analysis (Keynote)

Afnan Al-Subaihin, Anthony Finkelstein, Mark Harman∗, Yue Jia,
William Martin, Federica Sarro and Yuanyuan Zhang

Department of Computer Science, University College London, London, UK

ABSTRACT
App stores are not merely disrupting traditional software de-
ployment practice, but also offer considerable potential ben-
efit to scientific research. Software engineering researchers
have never had available, a more rich, wide and varied source
of information about software products. There is some source
code availability, supporting scientific investigation as it does
with more traditional open source systems. However, what
is important and different about app stores, is the other
data available. Researchers can access user perceptions, ex-
pressed in rating and review data. Information is also avail-
able on app popularity (typically expressed as the number
or rank of downloads). For more traditional applications,
this data would simply be too commercially sensitive for
public release. Pricing information is also partially avail-
able, though at the time of writing, this is sadly submerging
beneath a more opaque layer of in-app purchasing. This
talk will review research trends in the nascent field of App
Store Analysis, presenting results from the UCL app Anal-
ysis Group (UCLappA) and others, and will give some di-
rections for future work.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.8 [Software Engineering]: Metrics

General Terms
Design, Experimentation, Measurement

Keywords
App stores, Mining Software Repositories

1. APP STORE MINING AND ANALYSIS
We believe that app stores are scientifically, technically,

sociologically and commercially very different from tradi-
tional software deployment mechanisms [7, 19, 20]. In par-
ticular, they create a software ecosystem [14] that provides

∗
This keynote will be given by Mark Harman, but reports the

joint work of the UCLappA group: A. Al-Subaihin, A. Finkelstein,
Y. Jia, W. Martin, F. Sarro, and Y. Zhang. UCLappA website:
http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/home.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DeMobile 2015, Bergamo
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

researchers with exciting opportunities, not previously avail-
able for software engineering research.

In 2012, we set out a research agenda for App Store Mining
and Analysis, motivated as follows:

“never before has there been a nexus of readily
available information that combines the users’ view,
the developers’ claims and the sales information
pertinent to a large corpus of software products
from many different providers. The combination
of these three types of information provides a rich
and inter-related set of data from which we can
analyse and understand this new software engi-
neering paradigm of app development.” [7]

This keynote, will review our progress and future direc-
tions in the development of this research agenda. It will
discuss the importance of features [7, 10] as a suitable level
of abstraction with which to discuss apps and app stores,
presenting initial results about the migration of features
through app stores [24]. The keynote will also consider the
ways in which genetic improvement [8,13], can be used to im-
prove existing software systems semi-automatically. We will
focus on possibilities for improving energy consumption [1],
and dynamic adaptivity, which we believe could be applied
to Mobile devices [6] and the management and extension of
their product lines [5].

Our group is one of many working on App Store Mining
and Analysis. The keynote will also attempt to cover some of
the exciting work by other researchers on App Store mining
and analysis.

Unlike traditional software deployment mechanisms, we
have available, in the App Store, considerable information
in the form of customer feedback. This has allowed a great
deal of App Store Analysis that investigates this feedback
[2, 4, 9, 11, 12, 17, 21, 23, 26]. The keynote will also discuss
some of the issues raised by the inherent sampling bias in
such empirical studies of app stores [18].

There is also considerable potential in the analysis of the
source code [16], requested permissions [22], and API calls [3]
of the apps themselves, which is enriched by the contextual
information from the App Stores in which they reside. Gorla
et al. [3] explore API calls as a cheap and effective proxy for
apps’ semantic behaviour, while Linares-Vasquez et al. [16]
study clones in Android apps, and maintenance [15]. Syer et
al. [25] investigate the platform dependence of app defects.

We hope that this keynote will serve to stimulate fur-
ther interest in the App Store Ecosystems, their mining and
analysis and the new software engineering challenges and
opportunities they create.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

DeMobile’15, August 31, 2015, Bergamo, Italy
ACM. 978-1-4503-3815-8/15/08
http://dx.doi.org/10.1145/2804345.2804346

1

2. REFERENCES
[1] B. Bruce, J. Petke, and M. Harman. Reducing energy

consumption using genetic improvement. In Genetic
and evolutionary computation conference (GECCO
2015), Madrid, Spain, July 2015.

[2] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and
N. Sadeh. Why people hate your app: Making sense of
user feedback in a mobile app store. In Proceedings of
the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’13,
pages 1276–1284. ACM, 2013.

[3] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller.
Checking app behavior against app descriptions. In
36th International Conference on Software
Engineering (ICSE 2014), pages 1025–1035, 2014.

[4] E. Guzman and W. Maalej. How do users like this
feature? a fine grained sentiment analysis of app
reviews. In Requirements Engineering (RE 2014),
pages 153–162, Aug 2014.

[5] M. Harman, Y. Jia, J. Krinke, B. Langdon, J. Petke,
and Y. Zhang. Search based software engineering for
software product line engineering: a survey and
directions for future work (keynote paper). In 18th

International Software Product Line Conference
(SPLC 14), pages 5–18, Florence, Italy, September
2014.

[6] M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H.
Moghadam, S. Yoo, and F. Wu. Genetic improvement
for adaptive software engineering (keynote). In 9th

International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2014),
pages 1–4, New York, NY, USA, 2014. ACM.

[7] M. Harman, Y. Jia, and Y. Zhang. App Store Mining
and Analysis: MSR for App Stores. In Proceedings of
the 9th IEEE Working Conference on Mining Software
Repositories (MSR ’12), pages 108–111, Zurich, Swiss,
June 2012. IEEE.

[8] M. Harman, W. B. Langdon, Y. Jia, D. R. White,
A. Arcuri, and J. A. Clark. The GISMOE challenge:
Constructing the pareto program surface using genetic
programming to find better programs (keynote paper).
In 27th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2012), pages
1–14, Essen, Germany, September 2012.

[9] L. Hoon, R. Vasa, J.-G. Schneider, and J. Grundy. An
analysis of the mobile app review landscape: Trends
and implications, 2014. available on line from
Swinbourne University of Tethnology, Australia.

[10] C. Iacob and R. Harrison. Retrieving and Analyzing
Mobile App Feature Requests from Online Reviews.
In Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR ’13), San
Francisco, California, USA, 18-19 May 2013.

[11] H. Khalid. On identifying user complaints of iOS apps.
In D. Notkin, B. H. C. Cheng, and K. Pohl, editors,
35th International Conference on Software
Engineering (ICSE 2013), pages 1474–1476.
IEEE/ACM, 2013.

[12] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan.
What do mobile app users complain about? A study
on free iOS apps. IEEE Software, 32(3):70–77, 2014.

[13] W. B. Langdon and M. Harman. Optimising existing

software with genetic programming. IEEE
Transactions on Evolutionary Computation (TEVC),
2014. To appear.

[14] S. L. Lim and P. J. Bentley. Investigating app store
ranking algorithms using a simulation of mobile app
ecosystems. In IEEE Congress on Evolutionary
Computation, pages 2672–2679, 2013.

[15] M. Linares-Vásquez. Supporting evolution and
maintenance of android apps. In 36th International
Conference on Software Engineering (ICSE 2014)
Doctoral Symposium, pages 714–717, 2014.

[16] M. Linares-Vásquez, A. Holtzhauer,
C. Bernal-Cárdenas, and D. Poshyvanyk. Revisiting
android reuse studies in the context of code
obfuscation and library usages. In 11th Working
Conference on Mining Software Repositories (MSR
2014), pages 242–251, 2014.

[17] W. Maalej and H. Nabil. Bug report, feature request,
or simply praise? on automatically classifying app
reviews. In Requirements Engineering (RE ’15), 2015.
to appear.

[18] W. Martin, M. Harman, Y. Jia, F. Sarro, and
Y. Zhang. The app sampling problem for app store
mining. In Mining Software Repositories (MSR’15),
Florence, Italy, May 2015.

[19] T. Menzies. Beyond data mining; towards “Idea
Engineering”. In 9th International Conference on
Predictive Models in Software Engineering, PROMISE
’13, Baltimore, MD, USA, Oct. 2013. ACM.

[20] R. Minelli and M. Lanza. Software Analytics for
Mobile Applications - Insights & Lessons Learned. In
Proceedings of the 17th European Conference on
Software Maintenance and Reengineering (CSMR
’13), Genova, Italy, 5-8 March 2013. IEEE.

[21] D. Pagano and W. Maalej. User feedback in the
appstore: An empirical study. In requirements
engineering (RE 2013), pages 125–134. IEEE, 2013.

[22] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie.
WHYPER: Towards Automating Risk Assessment of
Mobile Applications. In Proceedings of the 22nd
USENIX Security Symposium, Washington DC, USA,
14-16 August 2013.

[23] I. J. M. Ruiz, M. Nagappan, A. Bra, T. Berger,
S. Dienst, and A. E. Hassan. On the relationship
between the number of ad libraries in an android app
and its rating, 2014. available on line from Queen’s
University, Canada.

[24] F. Sarro, A. AlSubaihin, M. Harman, Y. Jia,
W. Martin, and Y. Zhang. Feature lifecycles as they
spread, migrate, remain and die in app stores. In
Requirements Engineering (RE’15), Ottawa, Canada,
August 2015. To appear.

[25] M. D. Syer, M. Nagappan, B. Adams, and A. E.
Hassan. Studying the relationship between source code
quality and mobile platform dependence. Software
Quality Journal, 2014. To appear; available online.

[26] S. E. S. Taba, I. Keivanloo, Y. Zou, J. Ng, and T. Ng.
An exploratory study on the relation between user
interface complexity and the perceived quality of
android applications. In International Conference on
Web Engineering (ICWE 2014), 2014. Late Breaking
Result.

2

Walking the Model: The Smart Mobile Field Engineer
(Keynote)

Yael Dubinsky

IBM Research – Haifa, Israel
dubinsky@il.ibm.com

ABSTRACT
Walking the Model (WtM) is a concept that aims to promote the
practice of practitioners and crews by providing on-the-job
interaction between the system model of the business and the
physical world. Among various implementations of this idea,
WtM provides mobile field engineers with the ability to view,
update and simulate by asking what-if questions while in the field.
In this keynote speech, I present the notion and features of
walking the model and show how WtM changes the way we
perceive of different practices for both actual practice and
learning processes.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User interfaces;
H.5.3 [Group and Organization Interfaces]: Theory and models.

General Terms
Performance, Design, Human Factors.

Keywords
Walking the model, on-the-job simulation-based interaction.

1. WALKING THE MODEL CONCEPT
Walking the Model is a concept that aims to promote the practice
of practitioners and crews by providing on-the-job interaction
between the system model of the business and the physical world.
Any industry concerning field service employs a business
infrastructure that is composed of some combination of business
assets, machinery (e.g., sensors, actuators), data, and the
relationship among them. Such infrastructure can be described at
different levels of abstraction – what we call the System Model, or
shortly, the Model. For example, in Energy companies, the power
grid may be referred to as a core part of the model; or in Smart
Cities, the public illumination grid may be referred to as model
part, etc. Regardless of the particular domain, the model itself is
usually maintained using some computerized means that are in the
veins of the business operations. Hence, having a faithful
representation of the actual situations in the real world at all times,
as depicted by the model, is critical to operational efficiency.

Walking-The-Model allows putting the relevant model in the
center, aiming to cut losses by facilitating more efficient
maintenance of the model. The current reality is that it is
cumbersome to keep organizational information systems up to
date in the corresponding operational systems. Our approach
focusing on the interaction with the model implies that various
operations performed by independent practitioners are all
synchronized with the model as the central point of truth. Thus,
model accuracy is kept at all times, and indirectly, the model itself
becomes centric to the synchronization of all other business
operations. Using the model as the baseline, all other aspects
pertaining to the business supply chain and operations can be put
in concert with it e.g., work order prioritization, asset
management, etc.

WtM includes four fundamental interaction operation types that
can be performed by crewmembers as well as by the system
operations:

The View category of operations allows practitioners to inquire
about the characteristics of a certain model component in real-
time while engaging with the corresponding model component in
the physical world.
The Record category of operations enables practitioners to
document the knowledge gathered along physical encounters with
a certain model component, while in the field in a timely manner.
Such knowledge is gathered by associating model components
with various means such as photos, textual annotations, and note
scans.

The Validate category of operations provides practitioners with
the ability to test different “what-if” scenarios that refer to a
certain physical component, and examine, on the model itself, the
possible outcomes of the alternative actions prior to their actual
pursuing.

The Update category of operations allows practitioners to modify
existing knowledge properties already recorded about model
components in the system based on encounters with these
components in the physical world, while conforming to the
approval and related governance mechanisms associated with
such modifications.

2. VALIDATING THE WTM CONCEPT
With an aim to validate the WtM concept, we developed a mobile
application to support the synchronization of field engineers’
actions in the Energy field service. The app provides the use of
the mobile device location service (e.g., GPS), and QR-code
markings of the various components in the physical world.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

DeMobile’15, August 31, 2015, Bergamo, Italy
ACM. 978-1-4503-3815-8/15/08
http://dx.doi.org/10.1145/2804345.2804347

3

2.1 Accuracy of the Energy Distribution Grid
Within the domain of Energy and Utilities, as it may seem almost
obvious, quality of service is a key to the success of the domain
suppliers. Maintaining consistent and valid view of operations is
crucial both for business efficiency and for end user satisfaction.
One such view is the Connectivity model, which is a model
representing the various electricity power sources, distributors,
transformers, consumers, and their inter-connecting power lines,
all comprising the electricity grid. The Connectivity model is the
main working tool according to which all maintenance and
restoration activities are derived. Currently there is insufficient
availability of technical means that would facilitate and ensure the
faithfulness and timely representation of the real system status,
potentially leading to excessive downtime and monetary losses.

WtM application aims at mitigating the burden of consciously
maintaining model accuracy, bridging between the physical and
the virtual model views via a designated mobile application that is
put in the hands of field engineers to seamlessly keep track of
their day-to-day actions. Granting the ability for the entire
ecosystem to work with a reliable connectivity model can
dramatically boost the efficiency of the entire value chain.

Following is one of the representative use cases that were
developed based on close familiarity with processes in Energy
services.

2.2 Field Inspection and Work Initiation
This use case involves field crews performing actual field
inspection work. This work is typically planned and requires a
crew to visit a specific set of components on the network in order
to validate the components, record specific test results as
requested, validate information already known about the
components and provide any further observations. Today this is
performed with limited context of the component in its
relationship to the power network, its geospatial relationship and
any in-field or back-office real-time analytics. Table 1 describes
the details including WtM synthesis that is marked in each step.

2.3 Using the WtM Application
The WtM application aims to support the fundamental interaction
operations for the field engineers to perform their work. Figure 1
shows the simulation view of the WtM mobile app in which the
field crew can ask what-if question whether replacing the
malfunctioned transformer with another one provides a valid
model. This should be checked against domain specific analytics.

Figure 1: WtM simulation view

Table 1: Field inspection using WtM

Actor
Name

Description of Step

Field Crew The crew starts their workday. WtM automatically
downloads all their planned work and present a
geospatial view of the locations of the work, the
power network and its current known state,
locations of emergency services and locations of
other crews. The driving directions from their
current location to the first work location are
shown. [VIEW]

SYSTEM The field crew arrives at the first location. The
device automatically indicates the location. If in
connected mode, WtM constantly provides
location information back to host systems for
operations. [UPDATE]

Field
Crew

The field crew acknowledges that they are going
to proceed with their work. [UPDATE]

SYSTEM The field crew is going to perform a pole
inspection. All the information regarding the pole
such as type (type, date installed, prior inspection
details, etc.) are provided to the crew in both
textual dialogs in a spatial view. The data from
relevant sensors e.g. real time reading from
devices such as transformers that are attached to
the pole, is shown too. [UPDATE]

Field
Crew

The crew repositions the location of the pole
based on the current location of the mobile
device. This immediately changes the location of
the pole in the model view. [UPDATE]

Field
Crew

The crew notes that the pole is encumbered by
vegetation; they take a photo of the pole and the
information is saved using WtM. [RECORD]

Field
Crew

The crew performs a pole test and enters results
into the appropriate work order. [UPDATE]

Advanced
Analytics

Based on the result of the pole test, WtM app
performs some analytics based on prior tests and
current test results and flags to the crew member
that the pole requires immediate replacement.
[VALIDATE]

Field
Crew

The crew acknowledges the pole defect, signals
that the work must be scheduled. [UPDATE]

SYSTEM WtM app completes the work, sends updates and
work request to back end systems, shows the
pole status of replacement pending. [VIEW]

2.4 Learning Processes
The WtM concept and mobile app enhance field engineering by
providing on-the-job mechanisms for learning and improving the
practice. Specifically, using simulation to ask what-if questions
thus consulting with a simulator before performing a certain
action while in the field, provides on-line learning and increases
the confidence and professionalism of practitioners.

3. ACKNOWLEDGMENTS
This keynote speech is based on a joint work with lior Limonad,
Henry Broodney, Uri Shani, Boris Daitch, and Peter Ruppert at
IBM.

4

AGRippin: A Novel Search Based Testing Technique for
Android Applications

Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, Porfirio Tramontana
Department of Electrical Engineering and Information Technologies

University Federico II of Naples
Via Claudio 21, Naples, Italy

{domenico.amalfitano, nicola.amatucci, anna.fasolino, porfirio.tramontana}@unina.it

ABSTRACT
Recent studies have shown a remarkable need for testing au-
tomation techniques in the context of mobile applications.
The main contributions in literature in the field of testing au-
tomation regard techniques such as Capture/Replay, Model
Based, Model Learning and Random techniques. Unfortu-
nately, only the last two typologies of techniques are appli-
cable if no previous knowledge about the application under
testing is available. Random techniques are able to gener-
ate effective test suites (in terms of source code coverage)
but they need a remarkable effort in terms of machine time
and the tests they generate are quite inefficient due to their
redundancy. Model Learning techniques generate more effi-
cient test suites but often they do not not reach good levels
of coverage. In order to generate test suites that are both
effective and efficient, we propose in this paper AGRippin, a
novel Search Based Testing technique founded on the com-
bination of genetic and hill climbing techniques. We carried
out a case study involving five open source Android appli-
cations that has demonstrated how the proposed technique
is able to generate test suites that are more effective and
efficient than the ones generated by a Model Learning tech-
nique.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Experimentation

Keywords
Android, Search Based Testing, Genetic Algorithms

1. INTRODUCTION
The diffusion of smartphones and other mobile devices has

grown exponentially in the last years with a corresponding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

growth of the number and of the complexity of the developed
applications. These applications are often realized in a very
rapid way, with high pressure due to a very small time-to-
market. Moreover, most of the applications are developed by
small teams or single developers, that devoted very limited
time and resources to design and testing activities. A recent
study of Kochhar et al. [14], based on open source Android
projects hosted on GitHub, has shown that practices related
to testing automation are rarely diffused. In particular, they
found that only 14% of the apps they have analyzed contains
executable test cases and only 4 apps out of 627 have test
cases able to cover more than 40% of the source code of the
applications. More generally, Muccini et al. [20] have stated
the need for testing automation techniques applicable to the
context of mobile applications. Joorabchi et al. [13] on the
basis of interviews to 12 senior mobile app developers have
concluded that the practice of manual testing is nowadays
prevalent for mobile applications and that the automation
of GUI testing remains a challenging task.

The main techniques proposed in literature to automate
test cases generation and execution in the context of mo-
bile applications can be classified in Capture/Replay, Model
based, Model Learning and Random techniques [8].

Capture/Replay techniques record user interactions gen-
erated by human testers and convert them into test scripts
that can be automatically replayed. Recent contributions in
this field are the ones of Liu et al. [15] and White et al. [24].
Capture/Replay techniques need a remarkable effort to col-
lect a sufficient number and variety of interactions from users
or testers in order to obtain effective test suites. Moreover,
test cases produced by different testers may be very similar
between them, so the test suites may be quite redundant
and inefficient. Model Based techniques are able to gen-
erate test cases from structural and/or behavioural models
of the application. Examples of model based techniques in
the field of mobile applications are the ones proposed in
[23], [12], [26] and [4]. Model Learning techniques are able
to build their own models by systematically exploring the
behaviour of the GUI of a mobile application. They auto-
matically generate test cases corresponding to sequences of
triggered user and system events. In the context of mobile
applications, recent Model Learning techniques have been
proposed in [6], [17], [5]. Random testing techniques dif-
fer from Model Learning techniques because the sequence
of triggered events is randomly chosen. Random techniques
are very popular in the Android environment. In particular,
Monkey 1 is a command line executable testing tool included

1http://developer.android.com/tools/help/monkey.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DeMobile’15, August 31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3815-8/15/08...$15.00

http://dx.doi.org/10.1145/2804345.2804348

5

in the standard Android Development Toolkit (ADT) that
is able to generate sequences of events on the interface of an
Android application in a totally automatic manner. Other
random techniques have been recently proposed in [10], [16]
and [3]. The popularity of random techniques is due to their
suitability to every application without the need for any spe-
cific knowledge about them and to the good level of effec-
tiveness that they are able to reach. Unfortunately, random
techniques generate test cases that are redundant, inefficient
and very difficult to comprehend and manage (e.g. for de-
bugging purposes).

Search based testing techniques represent a promising trade-
off between Model Learning and Random techniques to gen-
erate effective and efficient test suites. Search Based Soft-
ware Testing [1] is a specialization of Search Based Software
Engineering (SBSE) [11] [9] related to the application of
metaheuristic techniques to the problem of automatic gen-
eration of test cases optimizing the fault finding or the code
coverage with a reasonable effort. In particular, in the set
of metaheuristics algorithms, genetic algorithms are often
used [2]. Genetic algorithms try to imitate the natural pro-
cess of evolution: a population of candidate solutions, called
chromosomes (i.e. test cases) is evolved using search oper-
ators such as selection, crossover, and mutation, gradually
improving the fitness value of the individuals, until an opti-
mal solution has been found or the search is stopped after a
fixed time or a fixed number of evolutions.

At the best of our knowledge, only a single contribution
related to the application of Search Based techniques to mo-
bile application GUI testing can be found in literature. Mah-
mood et al. [17] present a search based technique supported
by the EvoDroid tool for evolutionary testing of Android
applications. EvoDroid automatically extracts two static
models of the application under test, i.e. the Interface Model
and the call Graph Model and generates evolutionary tests
on the basis of these models.

In this paper we propose a novel search based testing tech-
nique called AGRippin (that is an acronym for Android Ge-
netic Ripping) applicable to Android applications with the
purpose to generate test suites that are both effective in
terms of coverage of the source code and efficient in terms of
number of generated test cases. Our technique is based on
the combination of genetic and hill climbing algorithms and
presents some peculiar contributions. In details, we propose:

• a representation based on a GUI test model that is
able to describe test cases in form of chromosomes and
actions on GUI interfaces in form of genes;

• a single cut crossover technique that is able to generate
re-executable test cases;

• a mutation technique based on input equivalence classes;

• a fitness metric based on the measure of the diversity
between the code coverage provided by the test cases;

• a technique to combine the genetic algorithm with a
hill climbing algorithm in order to increase the rapidity
of the algorithm.

The proposed technique has been implemented by a tool
extending our previously presented Android Ripper tool [5]
and tested in a case study involving five open source ap-
plications published on Google Play. Our approach differs

from the EvoDroid one because it is completely automated
and it does not rely on any previous knowledge or model of
the application under test.

The paper is organized in the following way: section 2
reports a description of the the proposed technique while
section 3 shows the results obtained of the case study. Fi-
nally, conclusive remarks and future works are proposed in
section 4.

2. THE AGRIPPIN TECHNIQUE
In this section AGRippin, a Search Based technique for

the generation of test cases optimizing the effectiveness in
terms of coverage of the source code of the applications un-
der test, is described.

According to the terminology of genetic algorithms, the
solution proposed by the algorithm is, at each iteration, an
evolved test suite that is composed of a population of chro-
mosomes corresponding to test cases. Each chromosome is
composed of genes corresponding to basic interactions with
the application under test (AUT).

The effectiveness η of a test suite T is measured (in per-
centage) as the fraction of lines of source code (LOCs in the
following) of the AUT covered by at least one of the test
cases composing the test suite generated by the algorithm.
It can be evaluated by the following formula:

η(T) = 100 ∗ |
⋃

t∈T Cov(t)|
|LOC|

where t ∈ T is a test case included in the test suite T ,
Cov(t) is the set of lines of code that is covered by the test
case t and LOC is the set of lines of code of the AUT.

The efficiency ε of a test suite T can be defined as the
ratio between its effectiveness and the number of generated
test cases:

ε(T) = η(T)
|T |

Our technique adopts a constraint of genetic algorithms
for which the size of the population is constant at each itera-
tion and is equal to the size of the initial population. Due to
this constraint, the maximization of the effectiveness implies
the maximization of the efficiency.

In the next subsection are described the characteristics of
our technique in terms of chromosome representation, met-
rics for fitness evaluation, techniques for crossover, muta-
tion, selection, and combination with a hill climbing tech-
nique.

2.1 Representation
The test suites generated by our technique are composed

of test cases that are sequences of interactions with the GUI
of the AUT. The application GUIs are abstracted according
to the conceptual model shown in Figure 1.

According to this model, the GUI is composed of instances
called GUI Interfaces; a GUI Interface is composed of a set
of visual items called Widgets; each Widget is defined by
a Type and some Properties with their Names and Values.
Examples of Widget properties are its position on the screen,
its identifier and so on. Event Handlers are methods that
can be defined in the context of a GUI Interface or directly
in the context of a Widget and that are executed in response
to the occurrence of an Event. Events may be User Events
if they are triggered by a user interaction on the GUI (e.g.

6

Figure 1: Conceptual Model of a GUI Interface

Figure 2: Crossover Example

the tap on a button), or System Events if they are triggered
by the execution environment (e.g. a pausing of the ap-
plication). An Event may have zero or more Parameters;
each Parameter is identified by a Name and a Value. As an
example, parameters of a tap event are the coordinates of
the point of the GUI Interface where the tap is performed
by the user. An Action is composed by an Event and one
or more User Inputs and is able to trigger a Transition be-
tween two GUI Interface instances (not necessarily different
between them). An User Input consists of the modification
of a Value of a property (e.g. the insertion of a text in a
editable text field) that does not cause the execution of any
event handler (elsewhere it is modeled as an Action).

On the basis of these definitions, a Test Case t is a se-
quence of pairs {G, A}, where A is an Action that can be
performed on the GUI Interface G and that may generate
the GUI Interface of the next pair of the sequence. The
first pair starts from the Home interface of the app G0. A
Test Case can be also defined as t = (G0, A0, ... Gm, Am),
where G0 is the Home interface. A set of such sequences is
a Test-Suite.

2.2 Crossover
The crossover operator we exploited in our implementa-

tion is a Single-Point Crossover. Given two Test-Cases t1
and t2, the operator randomly chooses two pairs {Gi, Ai} ∈
t1 and {Gj , Aj} ∈ t2 and operates the crossover operation
as shown in Figure 2.

A problem of this crossover operator is that it may gen-
erate sequences that do not correspond to executable test
cases. If the generated test cases cannot be executed, they
have to be discarded and the crossover operator has to be

repeated until it generates a pair of executable test cases. In
order to reduce the occurrence of such non-executable test
cases, we propose a technique to candidate pairs of test cases
and cut points for which the crossover operator should be
applicable, based of two heuristic criteria of equivalence be-
tween GUI interfaces and between actions. The two heuristic
criteria of equivalence are defined in the following ways:

EC1 Two GUI interfaces are considered equivalent if they
include the same set of widgets and they define the
same set of event handlers.

EC2 Two actions are considered equivalent if they are as-
sociated to the same user actions and the same event.

Let’s consider two test cases t1 = (G0, ..., Gi, Ai, ...) and
t2 = (G0, ..., Gj , Aj , ...) having the same starting GUI inter-
face G0. The pairs (Gi, Ai) and (Gj , Aj) are a candidate
crossover point for our heuristic technique if they satisfy all
these four criteria:

C1 the two GUI interfaces Gi and Gj are equivalent ac-
cording to the EC1 criterion;

C2 the two actions Ai and Aj are not equivalent according
to the EC2 criterion;

C3 the subsequence of t1 which precedes the GUI interface
Gi and the subsequence of t2 which precedes the GUI
interface Gj are not composed of a sequence of GUI
interfaces and actions that are all respectively equiv-
alent (according to the two criteria EC1 and EC2),
and they are not both empty;

C4 the subsequence of t1 which follows the action Ai and
the subsequence of t2 which follows the action Aj are
not composed of a sequence of GUI interfaces and ac-
tions that are all respectively equivalent (according to
the two criteria EC1 and EC2), and they are not both
empty.

It’s interesting to note that the first criterion avoids to se-
lect crossover points for which the action Aj is not applicable
to the GUI interface Gi or the action Ai is not applicable to
the GUI interface Gj . The other three criteria avoids the se-
lection of crossover points that generate two test cases that
are too similar or identical to the original ones.

As an example, let’s observe the crossover example in Fig-
ure 2, in which equivalent GUI interfaces are labeled with
the same label. We can verify that the selected crossover
point (corresponding to the pairs (G2, A2) and (G2, A6)) is
the unique one that satisfies all the four criteria (the pairs
(G0, A0) and (G0, A4) satisfy the first two and the fourth
criterion but they do not satisfy the third criterion because
they are both preceded by an empty sequence).

The crossover points are randomly chosen in the set of
the ones that satisfy these criteria. The test cases t1 and
t2 are not removed from the test suite after the execution
of the crossover operator, in coherence with the techniques
proposed in the steady state genetic algorithms [22] (in ex-
ample the Genitor one proposed by Whitley [25]). These
techniques cause an increase in the population size that is
restored to its initial size by the selection operator that is
presented in the following. The crossover operator may be
executed multiple times in the same iteration of the algo-
rithm. We define the crossover ratio as the ratio between
the number of test cases generated by the crossover at each
iteration and the number of test cases of the initial solution.

7

2.3 Mutation
The mutation operator we proposed in this technique mod-

ifies the Actions by mutating the values of the User Inputs
or the Event Parameters values. In each mutation, the value
of a single parameter of the action is changed to a new value
belonging to a static set of equivalence classes according to
the parameter type. In example, the value of an editable text
field may be set to a random string, a number or a correct
email address while the location parameter of a GPS event
may be set to coordinates values over or under the equator.
The new test obtained after a mutation could not be exe-
cutable if the GUI interface reached after the execution of
the mutated action is not equivalent to the one reached by
the original action. In this case, we consider that the new
mutated test case terminates with the mutated action and
the new test case is shorter than the original one.

The mutation operator randomly selects the test case and
the action to be mutated in all the test suite. Mutated test
cases are added to the test suite and the original ones are not
removed. We define the mutation ratio as the ratio between
the number of test cases generated by the mutation operator
and the number of test cases of the initial solution.

2.4 Fitness Evaluation
We defined two distinct Fitness measures: the Global Fit-

ness (that is the effectiveness η of the generated test suite
and is measured in terms of the code coverage reached by
the test cases of the test suite as described above in this
section), and the Local Fitness expressing the degree of di-
versity of a single test case with respect to the set of the test
cases of the test suite.

The Local Fitness measure ranks the individuals in terms
of their potential contribution to the Global Fitness of the
solution and of their diversity. To this aim, we propose a
rank measure that is able to order all the test cases of the
test suite. The Local Fitness measure is composed of two
components named F1 and F2. The first component F1 the
following three values, in order of decreasing rank:

• L1, if the test case covers one or more lines that are
not covered by any other test case;

• L2, if the test case has a coverage set that (i) includes
only lines of code that are covered by at least another
test case of the test suite but that (ii) is not included
in the set of lines covered by any other test case of the
current test suite;

• L3, if the test case has a coverage set that is included
in the coverage set of at least another test case of the
solution.

As regards the set of test cases having the same coverage
set, the algorithm conventionally assigns a L2 value to one
test case (randomly selected) of the set and the L3 value
to all the other test cases of the set. Intuitively, test cases
having a L1 value are the ones that should be preserved to
avoid a sure loss of effectiveness, whereas test cases having a
L3 value are the better candidates to be filtered out by the
selection operator.

The second component F2 of the Local Fitness represents
a weighted measure of code coverage and is defined by the
following formula:

F2(t) =
∑
l∈Cov(t) w(l)

Figure 3: Test-Case Fitness Evaluation

where:

• Cov(t) is the set of lines of code that are covered by
the test case t

• w(l) represents the relative weight of the coverage of
the line l. It is defined as:

w(l) = 1∑
u∈T c(u)

where c(u) ∈ {0, 1}. It is 0 if l 6∈ Cov(u), 1 elsewhere.

F2 gives a measure of the relative importance of the cov-
erage provided by a test cases in the context of a test suite
because the coverage of lines that are covered by few test
cases has a higher weight than the coverage of lines covered
by many test cases. F2 is used to order between them test
cases having the same F1 values.

As an example, let’s consider the test suite shown in Fig-
ure 3 in which there is an AUT composed of 10 LOCs labeled
as {l1, ..., l10} and a Test Suite T = {TC1, ..., TC6}. The
coverage of each test case is depicted in Figure 3 where black
boxes corresponds to covered lines whereas white boxes cor-
responds to uncovered lines. In order to evaluate the Local
Fitness we assigned F1(TC1) = L1 and F1(TC4) = L1

because they are respectively the unique test cases cover-
ing the line l1 and the two lines l8 and l9. The values of
F1(TC2) and F1(TC3) are instead set to L3 because their
coverage sets are respectively included in the ones of TC1
and TC5. The F1 value of the remaining test cases (i.e.
TC5 and TC6) is set to L2. In order to evaluate the F2
values for each test case, the weights w of each line l have to
be evaluated. In example, the weight of line l1 is 1 because
it is covered exactly by one test case, whereas w(l2) = 1

4
because the line l2 is covered by four test cases and so on.
The Fitness Function of the test case TC1 is then equal to:

F2(TC1) = w(l1) +w(l2) +w(l4) +w(l5) +w(l6) +w(l7) =
1
1

+ 1
4

+ 1
3

+ 1
5

+ 1
5

+ 1
4

= 2.23

The F2 values for each test case are reported in Table
1. In this table the test cases are ordered for decreasing
values of F1 and, for test cases with the same F1 value, for
decreasing values of F2. The RANK column expresses the
ordering position between all the test cases of the test suite.

8

Table 1: Test-Case Classification Example
RANK t F1 F2

1 TC4 L1 2.98
2 TC1 L1 2.23
3 TC5 L2 1.23
4 TC6 L2 0.91
5 TC2 L3 0.98
6 TC3 L3 0.65

2.5 Selection
The selection operator restores the size of the test suite to

its initial value (corresponding to the size of the initial test
suite) by deleting the test cases having the worst values of
Local Fitness in coherence with the rank selection operator
firstly proposed by Baker [7].

The fraction of test cases that are selected for deletion at
each iteration is named turnover ratio and it is the sum
of the crossover ratio and of the mutation ratio. As an
example, if the crossover ratio is 1/3, then the test cases
TC2 and TC3 shown in Table 1 have to be deleted.

2.6 Combination Technique
By means of the application of the crossover and of the

mutation operator GUI interfaces that are not equivalent
to any of the already visited ones may be discovered. These
GUI interfaces have not yet been visited by any test case and
they contains different sets of widgets and event handlers
with respect to the other ones. This represents a positive
achievement in terms of global fitness because code that has
not yet been covered and that corresponds to the execution
of these event handlers may now be executed.

In the AGRippin technique we propose a combination of
the genetic technique with a model learning technique that
will be started only when a new GUI interface is discovered.
This technique aims at the systematic generation of new test
cases including at least an event of each new discovered GUI
interface and is very similar to the one we have proposed in
the past [5]. This technique can be seen as a Hill Climb-
ing technique because it selects at each iteration the most
promising sequences, i.e. the ones in which at least a new
line, corresponding to a new event handler call is covered. In
order to restore the size of the test suite to its initial value,
a re-execution of the selection operator has to be carried out
after each execution of the model learning technique.

The adoption of hybrid algorithms combining genetic and
hill climbing algorithms have been already presented in liter-
ature, with good results [18] and some criticism. We adopted
this solution for two reasons: (1) because our specific imple-
mentation of the mutation operator is not able to generate
new events but only to mutate their parameters and (2) to
accelerate the process of exploring the interactions related
to portions of the application that are discovered but not
explored by crossover and mutation operators.

3. CASE STUDY
This section reports the results of some case studies that

we carried out with the aim to assess the effectiveness of
the proposed search based testing technique. We have im-
plemented the technique in the context of Android appli-
cations and we have applied it to five open-source Android
applications.

We have compared the test suites generated by our tech-
nique with the ones generated by the Android Ripper Tool
[5] that we developed in the past. It realizes a Model Learn-
ing technique for the exploration of the GUI of Android
applications. Since the Android Ripper explores at each it-
eration the GUIs of an Android application by executing an
event that have never been executed before, we can consider
this technique as a kind of Hill Climbing technique because
an increment in code coverage is surely expected by the ex-
ecution of each new event.

The purpose of our experimentation is to provide an an-
swer for the following research question:

RQ: Are the test suites generated by the proposed tech-
nique more effective than the ones generated by the consid-
ered Hill Climbing technique?

The effectiveness of the generated test suites is measured
(in percentage) as the fraction of lines of code of the AUT
that are covered at least once by at least a test case of the
test suite T:

η(T) = 100 ∗ |
⋃

t∈T Cov(t)|
|LOC|

3.1 Subjects
Five real-world open source Android Applications have

been selected for our study; they are all published and freely
available on the Google Play market. Some details about
these application are reported in Table 2. They are all
medium sized applications, with a number of LOCs vary-
ing from 2308 lines (AUT1) to 6770 lines (AUT3).

Application preconditions can affect the effectiveness of
the generated test cases [5]. For the purpose of this experi-
mentation, we chosen the same set of preconditions for each
application and used it in all the experiments with both the
techniques (as an example, for AUT1 we preloaded the same
dictionary in the SD card before the execution of each test
case).

3.2 Experiment Environment and Setup
The experimentation has been carried out by using two

tools that we have implemented, i.e. the Android Ripper
tool and the AGRippin tool.

The Android Ripper tool 2 [5] has been used to system-
atically explore the GUIs of Android applications with a
breadth-first strategy. Each branch of the exploration car-
ried out by the Android Ripper tool is terminated when a
GUI interface is found that is equivalent (in the sense that
it has the same widgets and event handlers) to a previously
visited one. The Android Ripper tool produces a test suite
composed of test cases corresponding to the explored execu-
tion paths.

The Android Ripper tool is composed of two main compo-
nents. The Driver component is responsible for the execu-
tion of the exploration algorithm and for the generation of
the resulting test cases in form of Android JUnit test cases
exploiting the Robotium library 3. The Device component is
deployed and executed in the context of an Android emula-
tor and is able to execute actions on the AUT, to extract the
obtained GUI interfaces and to send their description to the
Driver component via the Android Debug Bridge (ADB)4

2https://github.com/reverse-unina/AndroidRipper
3https://code.google.com/p/robotium/
4http://developer.android.com/tools/help/adb.html

9

Table 2: Android Applications (AUTs)
Application Description Link LOCs Activities

AUT1 AardDict 1.4.1 A dictionary application https://github.com/aarddict/android 2308 7
AUT2 TomDroid 0.7.1 A manager for notes https://code.launchpad.net/tomdroid 4167 10
AUT3 OmniDroid 0.2.1 A manager for device automated tasks and actions https://code.google.com/p/omnidroid/ 6770 16
AUT4 AlarmClock 1.7 An alarm clock https://code.google.com/p/kraigsandroid/ 2320 5
AUT5 BookWorm 1.0.18 A manager for book collections https://code.google.com/p/and-bookworm/ 3190 10

utility. The code coverage has been measured by means of
the Emma utility 5 included in the Android SDK.

The AGRippin tool6 has been realized on top of the An-
droid Ripper tool by implementing an AGR component re-
sponsible of the execution of the proposed technique. The
AGR component interacts with both the components of the
Android Ripper tool.

The experimentation has been carried out on 6 different
Intel I5 PCs with a clock frequency of 3.0GHz, 4GB of RAM
and Windows 7 64bit operative system. On these machines
we installed an Android Virtual Device 7 (AVD) emulat-
ing the Android Gingerbread 2.3.3 operative system, with
512MB of RAM and an emulated 64MB SD Card.

We started the experimentation by carrying out an explo-
ration of each AUT by means of the Android Ripper tool
that generated a test suite. We considered these test suites
as a result of an Hill Climbing exploration because the Rip-
per strategy consists of the selection, at each step, of the
most promising action, i.e. of an action that has not been
previously executed. The test suite generated by the An-
droid Ripper tool has been used, too, as the initial solution
of the search based testing technique.

The AGRippin technique has been configured in our ex-
perimentation by fixing the parameters shown in Table 3.
The Crossover ratio and the Mutation ratio respectively rep-
resent the fraction of the test cases of a test suite that are
involved in a crossover or in a mutation at a given iteration.
In accordance with the suggestions of Mitchell et al. [19]
we set a higher value for the Crossover ratio with respect
to the Mutation ratio. The Number of Iterations represents
the termination condition of our algorithm in terms of the
number of performed iterations. We fixed an arbitrary value
of 30 in this experimentation. In order to take into account
the randomness of our search based testing technique, we ex-
ecuted the AGRippin technique six times with six different
seeds for any AUT.

Table 3: Configuration Parameters Values
Parameter Value

Crossover ratio 20%
Mutation ratio 5%
Number of Iterations 30

3.3 Results and Discussions
Table 4 reports the results obtained by the execution of

our experimentation on the five AUTs.
The first column of the table reports the effectiveness

η(T0) of the test suite T0 generated by the Hill Climbing
(HC) technique implemented by the Android Ripper tool.

5http://emma.sourceforge.net/
6https://github.com/reverse-unina/agrippin
7https://developer.android.com/tools/devices/index.html

The columns labeled µ(η(T)) and σ(η(T)) respectively re-
port the average and the standard deviation of the effec-
tiveness η of the test suites T generated by the AGRippin
technique (abbreviated in AGR in Table 4) in six different
executions featuring different random seeds. The fourth col-
umn of the table reports the maximum number of interfaces
discovered by AGRippin that have not been discovered by
HC. The fifth column reports the number of test cases com-
posing both the test suites generated by HC and AGRippin.
Finally, the last two columns respectively report the HC ex-
ecution time and the average execution time of AGRippin
(after 30 iterations), measured on the same machines. The
results in this table show that for all the considered AUTs
the AGRippin technique is able to provide an increase in
coverage with respect to the Hill Climbing technique that
varies from 1% (for AUT4) to 24% (for AUT1), so we can
conclude that the proposed RQ has a positive answer. As
regards the execution time, we can observe that the average
time needed to execute 30 iterations with AGRippin varies
from 6 to 12 times the amount of time needed to execute
HC. The values of standard deviation σ(T) show that the
effectiveness of AGRippin depends on the randomness in a
remarkable way. We can hypothesize that the execution of a
larger number of parallel sessions can provide improvements
in the effectiveness of the AGRippin technique without in-
creasing the execution time.

In order to show an example of the dependence of the
effectiveness on the number of iterations, Figure 4 reports
the effectiveness trends observed for the Bookworm applica-
tion (AUT5). The figure shows the trends of the coverage of
the test suites obtained by six different executions (with six
different random seeds) of the AGRippin technique (named
AGR1, AGR2, AGR3, AGR4, AGR5, AGR6 in figure) as the
number of iterations increases. The dashed line shown in fig-
ure represents the coverage percentage provided by the test
suite generated by the HC technique. We can observe that
each execution of AGRippin constantly reaches higher val-
ues of effectiveness than HC. In the Bookworm application,
one interface has been discovered by each AGRippin execu-
tion and in these cases a large portion of unexecuted code
have been systematically been explored by the Hill Climbing
technique. We can note its effect by observing the rapid ris-
ing in the effectiveness that occurs once for each AGRippin
execution. The values of effectiveness after 30 iterations are
slightly different between them. On the basis of this phe-
nomenon we can hypothesize that the execution of a larger
number of iterations may provide better results and a re-
duced dependency on randomness. Similar considerations
can be done for all the other AUTs.

In order to provide more details about the capability of the
AGRippin technique to cover unexplored portions of code,
we examined in details the differences in coverage between
the executions of the HC and AGRippin techniques. We
recognized improvements in coverage due to the Crossover

10

Table 4: Experimental Results

HC AGR
Execution Time

(hours)

η(T0) µ(η(T)) σ(η(T))
Discovered
Interfaces

|T | HC AGR

AUT1 43.07% 67.10% 0.26% 1 51 3.5 22
AUT2 28.08% 32.61% 2.45% 0 51 2.5 30
AUT3 51.58% 58.31% 2.28% 0 162 6 55
AUT4 66.90% 68.00% 1.21% 0 68 2.8 20
AUT5 40.34% 47.22% 0.45% 1 50 3.2 23

Figure 4: Effectiveness Trends for AUT5

operator, to the Mutation operator and to the Combination
technique.

As regards the improvements due to the crossover opera-
tor, we observed that in some cases the mixing of two dif-
ferent test cases produced new execution sequences that are
able to show different behaviors of the AUT. As an exam-
ple, for AUT2 the crossover operator generates a new test
case executing the backup functionality after the changing
of its settings causing the execution of a different backup
scenario. Another example of unexplored code executed by
a crossover operator is, in AUT5, the one related to the se-
quential execution of the insertion of a book in the book
list followed by the visualization of this book list. In the
test suite generated by HC, the visualization was executed
only with an empty book list whereas AGRippin were able
to visualize book lists that are not empty.

As regards the improvements in effectiveness due to the
mutation operator, we report two exemplar cases. An AUT1
functionality is the search in a vocabulary of a string in-
cluded in an input text field. Whereas the HC technique
only provided a random text to this input field, the muta-
tion operator implemented in AGRippin generated a new
test case with an input text value belonging to the equiv-
alence class of the English words. This mutation caused
the execution of a portion of code related to the retrieval of
the word in the dictionary and to the visualization of one
undiscovered interface showing the list including one or more
search results. Another example is the one found in AUT4,
where the insertion of an input value belonging to the nega-
tive numbers equivalence class in a specific text field caused
the execution of a portion of code executing a validating
check that has not been tested by HC.

Finally, the combination technique has been applied in
two cases to explore two interfaces discovered in AUT1 and

AUT5 (corresponding to two of the cases described above).
In these cases the application of the HC technique on these
interfaces caused a great improvement in code coverage (about
5% of improvement in both the cases).

4. CONCLUSIONS AND FUTURE WORKS
In this paper a novel search based testing technique has

been proposed and implemented in the context of Android
applications. We evaluated its effectiveness by carrying out
a case study involving five open source Android applications.
We demonstrated that the technique is more effective than
an Hill Climbing technique based on the systematic explo-
ration of the GUI events executable on an Android applica-
tion, in terms of source code coverage.

In order to generalize the promising results shown by this
preliminary experimentation, in future we will extend our
experimentation to a larger set of Android applications and
we will extend our comparative analysis to random tech-
niques and other techniques for automatic test case genera-
tion proposed in literature.

One of the objectives of the future experimentation will
be the tuning of the algorithm parameters values (such as
the crossover ratio, the mutation ratio, the number of it-
erations and the test suite size) and the evaluation of their
influence on the effectiveness of the generated test suites and
on the number of iterations needed to reach this level of ef-
fectiveness. As regards the crossover and mutation ratio, we
plan to implement a technique based on adaptive variations
(as the one proposed by Srinivas and Ptnaik in [21]) in or-
der to reduce the probability that the generated test suites
maintain the same coverage for many consecutive iterations,
as experienced in some of the case studies. As regards the
number of iterations we will carry out longer experiments in
order to evaluate if some phenomena of convergence of the
coverage to a global maximum may be observed. Finally,
we plan to test a variant of the technique in order to in-
crease the test suite size when new test cases are generated
by the Hill Climbing technique in order to avoid the loss of
important test cases due to the selection operator.

5. ACKNOWLEDGMENTS
The authors would like to thank Carmine Cirillo for his

contribution to the implementation of some components of
the Agrippin tool.

6. REFERENCES
[1] W. Afzal, R. Torkar, and R. Feldt. A systematic

review of search-based testing for non-functional
system properties. Inf. Softw. Technol., 51(6):957–976,
June 2009.

11

[2] S. Ali, L. Briand, H. Hemmati, and
R. Panesar-Walawege. A systematic review of the
application and empirical investigation of search-based
test case generation. Software Engineering, IEEE
Transactions on, 36(6):742–762, Nov 2010.

[3] D. Amalfitano, N. Amatucci, A. R. Fasolino,
P. Tramontana, E. Kowalczyk, and A. Memon.
Exploiting the saturation effect in automatic random
testing of android applications. In The Proceedings of
the 2nd ACM International Conference on Mobile
Software Engineering and Systems (MOBILESoft
2015), 2015.

[4] D. Amalfitano, A. Fasolino, P. Tramontana, B. Ta,
and A. Memon. Mobiguitar – a tool for automated
model-based testing of mobile apps. Software, IEEE,
PP(99):1–1, 2014.

[5] D. Amalfitano, A. R. Fasolino, P. Tramontana,
S. De Carmine, and A. M. Memon. Using gui ripping
for automated testing of android applications. In Proc.
of the 27th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2012, pages
258–261, New York, NY, USA, 2012. ACM.

[6] T. Azim and I. Neamtiu. Targeted and depth-first
exploration for systematic testing of android apps.
SIGPLAN Not., 48(10):641–660, Oct. 2013.

[7] J. Baker. Adaptive selection methods for genetic
algorithms. volume Proceedings of the First
International Conference on Genetic Algorithms and
Their Applications. Erlbaum, 1985.

[8] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon.
Graphical user interface (gui) testing: Systematic
mapping and repository. Information and Software
Technology, 2013.

[9] J. Clarke, J. Dolado, M. Harman, R. Hierons,
B. Jones, M. Lumkin, B. Mitchell, S. Mancoridis,
K. Rees, M. Roper, and M. Shepperd. Reformulating
software engineering as a search problem. Software,
IEE Proceedings -, 150(3):161–175, June 2003.

[10] S. Hao, B. Liu, S. Nath, W. G. Halfond, and
R. Govindan. Puma: Programmable ui-automation for
large-scale dynamic analysis of mobile apps. In
Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and
Services, MobiSys ’14, pages 204–217, New York, NY,
USA, 2014. ACM.

[11] M. Harman and B. F. Jones. Search-based software
engineering. Information and Software Technology,
43(14):833 – 839, 2001.

[12] C. S. Jensen, M. R. Prasad, and A. Møller.
Automated testing with targeted event sequence
generation. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis, ISSTA
2013, pages 67–77, New York, NY, USA, 2013. ACM.

[13] M. Joorabchi, A. Mesbah, and P. Kruchten. Real
challenges in mobile app development. In Empirical
Software Engineering and Measurement, 2013 ACM /
IEEE International Symposium on, pages 15–24, Oct
2013.

[14] P. S. Kochhar, F. Thung, N. Nagappan,
T. Zimmermann, and D. Lo. Understanding the test
automation culture of app developers. In Software
Testing, Verification and Validation (ICST), 2015

IEEE 8th International Conference on, pages 1–10,
April 2015.

[15] C.-H. Liu, C.-Y. Lu, S.-J. Cheng, K.-Y. Chang, Y.-C.
Hsiao, and W.-M. Chu. Capture-replay testing for
android applications. In Computer, Consumer and
Control (IS3C), 2014 International Symposium on,
pages 1129–1132, June 2014.

[16] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid:
An input generation system for android apps. In
Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE
2013, pages 224–234, New York, NY, USA, 2013.
ACM.

[17] R. Mahmood, N. Mirzaei, and S. Malek. Evodroid:
Segmented evolutionary testing of android apps. In
Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
FSE 2014, pages 599–609, New York, NY, USA, 2014.
ACM.

[18] H. Mühlenbein. How genetic algorithms really work:
Mutation and hillclimbing. In R. Männer and
B. Manderick, editors, PPSN, pages 15–26. Elsevier,
1992.

[19] M. Mitchell, S. Forrest, and J. H. Holland. The royal
road for genetic algorithms: Fitness landscapes and ga
performance. In Proceedings of the First European
Conference on Artificial Life, pages 245–254. MIT
Press, 1991.

[20] H. Muccini, A. Di Francesco, and P. Esposito.
Software testing of mobile applications: Challenges
and future research directions. In Automation of
Software Test (AST), 2012 7th International
Workshop on, pages 29–35, June 2012.

[21] M. Srinivas and L. Patnaik. Adaptive probabilities of
crossover and mutation in genetic algorithms.
Systems, Man and Cybernetics, IEEE Transactions
on, 24(4):656–667, Apr 1994.

[22] G. Syswerda. A study of reproduction in generational
and steady-state genetic algorithms. In G. J. Rawlins,
editor, Foundations of genetic algorithms, pages
94–101. Morgan Kaufmann, San Mateo, CA, 1991.

[23] T. Takala, M. Katara, and J. Harty. Experiences of
system-level model-based gui testing of an android
application. In Proceedings of the 2011 Fourth IEEE
International Conference on Software Testing,
Verification and Validation, ICST ’11, pages 377–386,
Washington, DC, USA, 2011. IEEE Computer Society.

[24] M. White, M. Linares-Vásquez, P. Johnson,
C. Bernal-Cárdenas, and D. Poshyvanyk. User guided
automation for testing mobile apps. In 23rd IEEE
International Conference on Program Comprehension,
(ICPC’15), volume 1, page to appear, May 2015.

[25] D. Whitley and K. Kauth. GENITOR: A different
genetic algorithm. In Proceedings of the 1988 Rocky
Mountain Conference on Artificial Intelligence, pages
118–130, 1988.

[26] W. Yang, M. R. Prasad, and T. Xie. A grey-box
approach for automated gui-model generation of
mobile applications. In Proceedings of the 16th
International Conference on Fundamental Approaches
to Software Engineering, FASE’13, pages 250–265,
Berlin, Heidelberg, 2013. Springer-Verlag.

12

Detecting Android Malware
using Sequences of System Calls

Gerardo Canfora
Dept. of Engineering
University of Sannio

Benevento, Italy
canfora@unisannio.it

Eric Medvet
Dept. of Engineering and

Architecture
University of Trieste

Trieste, Italy
emedvet@units.it

Francesco Mercaldo
Dept. of Engineering
University of Sannio

Benevento, Italy
fmercaldo@unisannio.it

Corrado Aaron Visaggio
Dept. of Engineering
University of Sannio

Benevento, Italy
visaggio@unisannio.it

ABSTRACT
The increasing diffusion of smart devices, along with the dy-
namism of the mobile applications ecosystem, are boosting
the production of malware for the Android platform. So far,
many different methods have been developed for detecting
Android malware, based on either static or dynamic analy-
sis. The main limitations of existing methods include: low
accuracy, proneness to evasion techniques, and weak valida-
tion, often limited to emulators or modified kernels.

We propose an Android malware detection method, based on
sequences of system calls, that overcomes these limitations.
The assumption is that malicious behaviors (e.g., sending
high premium rate SMS, cyphering data for ransom, bot-
net capabilities, and so on) are implemented by specific sys-
tem calls sequences: yet, no apriori knowledge is available
about which sequences are associated with which malicious
behaviors, in particular in the mobile applications ecosystem
where new malware and non-malware applications continu-
ously arise. Hence, we use Machine Learning to automati-
cally learn these associations (a sort of “fingerprint” of the
malware); then we exploit them to actually detect malware.
Experimentation on 20 000 execution traces of 2000 appli-
cations (1000 of them being malware belonging to different
malware families), performed on a real device, shows promis-
ing results: we obtain a detection accuracy of 97%. More-
over, we show that the proposed method can cope with the
dynamism of the mobile apps ecosystem, since it can detect
unknown malware.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-

cation -Validation; D.4.6 [Operating Systems]: Security
and Protection—Invasive software

General Terms
Security

Keywords
malware, Android, dynamic analysis, security, machine learn-
ing

1. INTRODUCTION
A number of surveys by specialised companies and commer-
cial press articles provide evidence that the mobile malware
on the Android platform is growing in volume and impact [6,
8, 7]. There are two general approaches to implement mal-
ware detectors based on (a) static analysis or (b) dynamic
analysis. Broadly speaking, the former does not require
many resources, in terms of enabling infrastructure, and is
faster to execute than the latter, but it is more prone to be
evaded with techniques whose effectiveness has been largely
demonstrated in the literature [24, 30, 35]. The latter is
harder to bypass, as it captures the behavior, but it usu-
ally needs more resources and cannot be run directly on the
devices (it is often performed on virtual or dedicated ma-
chines).

We propose a malware detection technique based on dy-
namic analysis which considers sequences of system calls
that are likely to occur more in malware than in non-malware
applications. The rationale behind our choice can be ex-
plained as follows. Often, the process of malware evolution
mainly consists of modifications to existing malware. Mal-
ware writers use to improve mechanisms of infection, ob-
fuscation techniques, or payloads already implemented in
previous malware, or tend to combine them [36]. This in-
deed explains why malware is classified in terms of families,
i.e., malicious apps which share behaviors, implementation
strategies and characteristics [10, 37]. As a consequence,
malicious apps belonging to the same family are very likely
to exhibit strong similarities in terms of code and behavior.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DeMobile’15, August 31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3815-8/15/08...$15.00

http://dx.doi.org/10.1145/2804345.2804349

13

Our assumption is that the behavior similarities among ma-
licious apps could be used to detect new malware. We chose
to characterize behavior in terms of sequences of system calls
as this representation is, on the one hand, specific enough
to capture the app behavior and, on the other hand, it is
generic enough to be robust to camouflage techniques aimed
at hiding the behavior. In other words, we assume that the
frequencies of a set of system calls sequences may repre-
sent a sort of fingerprint of the malicious behavior. Thus,
new malware should be recognized when that fingerprint is
found.

The contributions of this paper can be summarized as fol-
lows:

1. We designed a method for (i) automatically selecting,
among the very large number of possible system calls
sequences, those which are the most useful for mal-
ware detection, and, (ii) given the fingerprint defined
in terms of frequencies of the selected system calls se-
quences, classifying an execution trace as malware or
non-malware.

2. We performed an extensive experimental evaluation
using a real device on which we executed 2000 apps
for a total of 20 000 runs: we found that our method
delivers an accuracy up to 97%. We remark that, in
most cases, previous works based on dynamic analysis
validated their proposals using emulators and modified
kernels, which produce outcomes which are less realis-
tic than the outcomes deriving from real devices, i.e.,
the one used in this experimentation.

3. We assessed our method also in the more challeng-
ing scenario of zero-day attacks, where the detection
is applied to new malware applications or new mal-
ware families, i.e., to applications whose behavior has
never observed before (and hence has not be exploited
to build the fingerprint).

The reminder of the paper is organized as follows: Section 2
thoroughly analyses related work, Section 3 introduces the
approach, and Section 4 illustrates the validation of the ap-
proach. Finally, Section 5 draws the conclusions.

2. RELATED WORK
Malware detection techniques can be characterized in terms
of the features they use to discriminate between malware
and non-malware applications: those features can be ob-
tained by means of static analysis or dynamic analysis. In
general, static analysis captures suspicious patterns within
the code (or artifacts related to code, such as meta informa-
tion), whereas dynamic analysis captures suspicious patterns
related to the behavior observed during the application run-
ning [16, 28]. Here we review recent works based mainly on
dynamic analysis, and specifically on the analysis of system
calls [14, 19, 26, 32, 18, 27, 21, 31, 20, 13].

Canfora et al. [14] propose a method for detecting mobile
malware based on three metrics, which evaluate: the occur-
rences of a reduced subset of system calls, a weighted sum of
a subset of permissions which the application requires, and

a set of combinations of permissions. The experimentation
of this paper considers a sample of 200 real world malicious
apps and 200 real world trusted apps and produced a preci-
sion of 74%. CopperDroid [26] recognizes malware through
a system calls analysis using a customized version of the An-
droid emulator able to tracking system calls. Wang et al. [33]
use an emulator to perform a similar task. The method was
validated on a set of 1600 malicious apps, and was able to
find the 60% of the malicious apps belonging to one sample
(the Genoma Project), and the 73% of the malicious apps
included in the second sample (the Contagio dataset).

Jeong et al. [19] hook system calls to create, read/write op-
erations on files, and intents activity to detect malicious
behavior. Their technique hooks system calls and a binder
driver function in the Android kernel. The authors used a
customized kernel on a real device, and the sample included
2 malicious apps developed by the authors. In [32] the au-
thors characterize the response of an application in terms
of a subset of system calls generated from bad activities in
background when they stimulate apps with user interfaces
events. They use an Android emulator for running experi-
ments and their evaluation is based on 2 malicious samples
of DroidDream family (Super History Eraser and Task Killer
Pro). Schmidt et al. [27] used the view from Linux-kernel
such as network traffic, system calls, and file system logs to
detect anomalies in the Android system. The method pre-
sented in reference [18] consists of an application log and a
recorder of a set of system calls related to management of
file, I/O and processes. They use a physical device, with
an Android 2.1 based modified ROM image. The evaluation
phase considers 230 applications in greater part downloaded
from Google Play and the method detects 37 applications
which steal some kinds of personal sensitive data, 14 appli-
cations which execute exploit code and 13 destructive appli-
cations.

Concerning system call usage in systems other than Android,
authors in [21] developed a system calls collection module
that was installed on ten machines running Microsoft Win-
dows XP, used by people carrying out their normal activi-
ties. They observed 242 trusted different applications, col-
lecting 1.5 billion system calls over a period of several weeks.
Kolbitsch et al. [20] track dependencies among system calls
to match the activity of an unknown program against the
trained behavior models from six different malware families.
They evaluate the technique with 300 Microsoft Windows
worm with a detection effectiveness of 64% (varying from
10% regarding the Agent family from 90% with the Allaple
family). In [13] the authors adopt system calls to detect
malicious JavaScript. They evaluate two techniques for de-
tecting malicious web pages based on system calls: the first
one consists of counting the occurrences of specific system
calls, while the second one consists of retrieving system calls
sequences. The first technique produces an accuracy slightly
higher that the second one (97% vs. 96%).

In summary, the main differences between our work and
other dynamic analysis techniques for malware detection are:

• Our approach takes into account all the system calls
rather than a reduced set and we consider sequences
of system calls, rather than system calls taken in iso-

14

lation.

• We validate our approach on a large set of 2000 appli-
cations. The only papers which consider a very large
dataset [17, 38] do not propose neither assess a detec-
tion method, but evaluate properties of the infection
rate within a specific marketplace.

• We obtain a high detection accuracy (97%). The pa-
pers proposing a method with better performances than
ours have a data set whose size is much smaller than
our data set and, in some cases, malware samples are
written by the authors rather than taken from the real
marketplaces.

• We run the experimentation on a real device, while
quite all the papers make use of emulators, which re-
duces the truthfulness of the experiments.

3. DETECTION METHOD
We consider the problem of classifying an execution trace of
a mobile application as trusted or malicious, i.e., classifying
the corresponding application as non-malware or malware.
An execution trace is a sequence t in which each element
represents a system call being issued by the application un-
der analysis (AUA): we consider only the function name and
discard all the parameters values. We denote by C the set
of all the possible system calls, i.e., the alphabet to which
symbols forming a sequence t belong.

A system call is the mechanism used by a user-level pro-
cess or application layer to request a kernel level service to
the operating system, such as power management, memory,
process life-cycle, network connection, device security, ac-
cess to hardware resources [29]. When performed, a system
call implies a shift from user mode to kernel mode: this al-
lows the kernel of the operating system to perform sensitive
operations. When the task carried out by the invoked sys-
tem call is completed, the control is returned to the user
mode. In [9] Android kernel invocations are sub-grouped
into: (i) system calls which directly invoke the native kernel
functionality; (ii) binder calls, which support the invoca-
tion of Binder driver in the kernel (Binder is a system for
inter-process communication); and (iii) socket calls, which
allow read/write commands and send data to/from a Linux
socket. System calls are not called directly by a user pro-
cess: they are invoked through interrupts, or by means of
asynchronous signals indicating requests for a particular ser-
vice sent by the running process to the operating system. A
Linux kernel (which the Android system builds on) has more
than 250 system calls: our method considers all the system
calls generated by the AUA when running.

The classification method here proposed consists of two phases,
the training phase, in which a classifier is built on a set of la-
beled examples, and the actual classification phase, in which
a trace is classified by the classifier.

In the training phase, we proceed as follows. Let T be a set
of labeled examples, i.e., a set of pairs (t, l) where t is a trace
and l ∈ {trusted,malicious} is a label. We first transform

each trace t in a feature vector f(t) ∈ [0, 1]|C|n , where n is
a parameter. Each element of f(t) represents the relative
occurrences of a given n-long subsequence of system calls in

t. For example, let n = 3 and let f2711(t) represents the rel-
ative occurrences of the subsequence {open, stat64, open}
in t (i.e., in this example, the index of the element of f
which corresponds to the subsequence {open, stat64, open}
is 2711), then f2711(t) is obtained as the number of occur-
rences of that subsequence divided by the sequence length
|t|.

The number |C|n of different features may be remarkably
large: for this reason, we perform a feature selection pro-
cedure aimed at selecting only the k feature which best
discriminate between trusted and malicious applications in
T . The feature selection procedure comprises of two steps.
Let Tt and Tm be respectively the set of trusted and ma-
licious traces, i.e., Tt := {(t, l) ∈ T : l = trusted} and
Tm := {(t, l) ∈ T : l = malicious}.

In the first step, we compute, for each ith feature, the rela-
tive class difference δi as:

δi =

∣∣∣ 1
|Tt|

∑
(t,l)∈Tt

fi(t)− 1
|Tm|

∑
(t,l)∈Tm

fi(t)
∣∣∣

max(t,l)∈T fi(t)

We then select the k′ � k features with the greatest δi
among those for which max(t,l)∈T fi(t) > 0—k and k′ are
parameters of the method.

In the second step, we compute, for each ith feature among
the k′ selected at the previous step, the mutual informa-
tion Ii with the label. We then select the k features with
the greatest Ii. During the exploratory analysis, we also
experimented with a feature selection procedure which took
into account, during the second step, the inter-dependencies
among features: we found that it did not deliver better re-
sults.

Finally, we train a Support Vector Machine (SVM) on the
selected features for the traces contained in T : we use a
Gaussian radial kernel with the cost parameter set to 1.

The actual classification of an execution trace t is performed
by computing the corresponding feature vector f(t), retain-
ing only the features obtained by the aforementioned feature
selection procedure, and then applying the trained classifier.

4. EXPERIMENTAL EVALUATION
We performed an extensive experimental evaluation for the
purpose of assessing our method in the following detection
scenarios:

• Unseen execution trace Ability to correctly classify an
execution trace of an application for which other execu-
tion traces where available during the training phase.

• Unseen application Ability to correctly classify an ex-
ecution trace of an application for which no execution
traces were available during the training phase, but
belonging to a malware family for which some traces
were available during the training phase.

• Unseen family Ability to correctly classify an execution
trace of a malware application belonging to a family
for which no execution traces were available during the
training phase.

15

Clearly, the considered scenarios are differently challenging
(the former is the least challenging, the latter is the most
challenging), since the amount of information available to
the training phase, w.r.t. the AUA, is different. We investi-
gated these scenarios using a single dataset T , whose collec-
tion procedure is described in the next section, and varying
the experimental procedure, i.e., varying the way we built
the training set T and the testing set T ′ from T .

4.1 Baseline
In order to provide a baseline, we designed and evaluated
a detection method based on application permissions. As
discussed in sections 2, permissions have been shown to be
a relevant feature for the purpose of discriminating between
malware and non-malware applications [10, 23, 22, 11, 14,
34, 15, 12].

In particular, in the baseline method we build a feature vec-
tor f for each application where an element fi is 1 or 0,
depending on the respective ith permission being declared
for that application. The list of all the permissions (and
hence the length of the feature vectors) is determined once
in the training phase. The remaining part of the baseline
method is the same as in the proposed method: two steps
feature selection, SVM training and actual classification us-
ing the trained SVM on the selected features. Note that the
only parameter which matters in the baseline method is the
number k of selected features.

4.2 Data collection
4.2.1 Applications

We built a dataset of traces collected from 2000 Android
applications, 1000 trusted and 1000 malware.

The trusted applications were automatically collected from
Google Play [1], by using a script which queries an unofficial
python API [3] to search and download apps from Android
official market. The downloaded applications belong to dif-
ferent categories (call & contacts, education, entertainment,
GPS & travel, internet, lifestyle, news & weather, produc-
tivity, utilities, business, communication, email & SMS, fun
& games, health & fitness, live wallpapers, personalization).
The applications retrieved were among the most downloaded
in their category and they are free. We chose the most popu-
lar apps in order to increase the probability that these apps
were actually trusted. The trusted applications were col-
lected between January 2014 and April 2014 and they were
later analysed with the VirusTotal service [5]. This service
run 52 different antivirus software (e.g., Symantec, Avast,
Kasperky, McAfee, Panda, and others) on the app: the out-
put confirmed that the trusted apps included in our dataset
did not contain malicious payload.

The malware dataset was obtained from the Drebin dataset.
This dataset consists of a total of 5560 applications belong-
ing to 179 different families, classified as malware [10, 30].
To the best of our knowledge, this is the most recent dataset
of mobile malware applications currently used to evaluate
malware detectors in literature.

The malware dataset includes 28 different families, unevenly
represented in the dataset. In order to improve the validity
of the experiment, we randomly selected 1000 applications.

4.2.2 Execution traces
We aimed at collecting execution traces which were realistic.
To this end, (i) we used a real device, (ii) we generated
a number of UI interactions and system events during the
execution, and (iii) we collected 10 execution traces for each
application (totaling 20 000 traces), in order to mitigate the
occurrence of rare conditions and to stress several running
options of the AUA.

More in detail, the executions were performed on a Google
Nexus 5 with Android 4.4.4 (KitKat). The Nexus 5 is pro-
vided with a Qualcomm Snapdragon 800 chipset, a 32-bit
processor quad core 2.3 GHz Krait 400 CPU, an Adreno
330 450 MHz GPU, and 2 GB of RAM. The used model had
16 GB of internal memory.

Concerning the UI interactions and system events, we used
the monkey tool of the Android Debug Brigde (ADB [2])
version 1.0.32. Monkey generates pseudo-random streams
of user events such as clicks, touches, or gestures; moreover,
it can simulate a number of system-level events. Specifically,
we configured Monkey to send 2000 random UI events in one
minute and to stimulate the Android operating system with
the following events (one every 5 s starting when the AUA
is in foreground): (1) reception of SMS; (2) incoming call;
(3) call being answered (to simulate a conversation); (4) call
being rejected; (5) network speed changed to GPRS; (6) net-
work speed changed to HSDPA; (7) battery status in charg-
ing; (8) battery status discharging; (9) battery status full;
(10) battery status 50%; (11) battery status 0%; (12) boot
completed. This set of events was selected because it repre-
sents an acceptable coverage of all possible events which an
app can receive. Moreover, this list takes into account the
events which most frequently trigger the payload in Android
malware, according to [36, 37].

In order to collect the traces for an AUA, we built a script
which interacts with ADB and the connected device and
performs the following procedure:

1. copies the AUA into the storage device;

2. installs the AUA (using the install command of ADB);

3. gets the package name and the class (activity/service)
of the AUA with the launcher intent (i.e., get the AUA
entry point, needed for step 4);

4. starts the AUA (using the am start command of ADB);

5. gets the AUA process id (PID, needed for step 6);

6. starts system calls collection;

7. starts Monkey (using the monkey command of ADB),
instructed to send UI and system events;

8. waits 60 s;

9. kills the AUA (using the PID collected before);

10. uninstalls the AUA (using the uninstall command of
ADB);

11. deletes the AUA from the device.

16

Table 1: Statistics about the length |t| of collected
sequences forming our dataset T .

Subset Mean 1st qu. Median 3rd qu.
Trusted 23 170 6425 15 920 31 820
Malware 12 020 2422 4536 11 160
All 17 600 3397 8198 23 390

Table 2: Percentage of ten most occurring system
calls in our dataset, divided between traces collected
for trusted (left) and malware (right) applications.

Call (trusted) Perc.
clock_gettime 30.66
ioctl 9.00
recvfrom 8.67
futex 7.89
getuid32 4.96
getpid 4.84
epoll_wait 4.78
mprotect 4.67
sendto 4.60
gettimeofday 3.19

Call (malware) Perc.
clock_gettime 28.78
ioctl 8.85
recvfrom 8.85
epoll_wait 7.50
getuid32 6.64
futex 6.61
mprotect 6.34
getpid 5.64
sendto 2.74
cacheflush 2.00

To collect system calls data (step 6 above) we used strace [4],
a tool available on Linux systems. In particular, we used the
command strace -s PID in order to hook the AUA process
and intercept only its system calls.

The machine used to run the script was an Intel Core i5
desktop with 4 GB RAM, equipped with Linux Mint 15.

Tables 1 and 2 show salient information about the collected
execution traces: the former shows the statistics about the
length |t| of collected sequences. It can be observed that
the system calls sequences of trusted apps are, in general,
much longer than those of malicious apps. This suggests that
the behavior of trusted apps is much richer than the one of
malicious apps, which is expected to be basically limited to
the execution of the payload. From another point of view,
malware apps could exhibit poorer variability behavior than
trusted apps and hence recurring sequences, corresponding
to the malware fingerprint, should be identifiable.

Table 2 shows the percentage of the ten most occurring sys-
tem calls in our dataset, divided between traces collected
for the trusted (left) and malware (right) applications. It
can be seen that the simple occurrences of system calls is
not enough to discriminate malicious from trusted apps.
As a matter of fact, both malware and trusted applica-
tions exhibit the same group of most frequent system calls:
clock_gettime, ioctl, recvform are the top three for both
the samples.

4.3 Methodology and results
4.3.1 Unseen execution trace

For this scenario, we built the training set T by including 8
(out of 10) traces picked at random for each application in
T . The remaining 2 traces for each application were used
for testing (i.e., T ′ = T \ T). This way, several traces for
each application and for each family were available for the
training phase of our method. In other words, in this and

Table 3: Results on unseen execution traces.
Method n k Accuracy FNR FPR

System calls

1 25 91.1 11.5 6.2
1 50 92.0 10.0 6.0
1 75 91.8 10.3 6.2
2 250 96.1 3.8 4.1
2 500 96.5 3.4 3.5
2 750 96.3 4.0 3.4
3 250 95.5 4.9 4.1
3 500 96.2 4.4 3.1
3 750 97.0 3.0 3.0

Permissions

25 56.9 97.7 0.2
50 60.4 22.4 53.2

100 69.8 44.6 18.9
250 88.9 17.0 6.5
500 90.4 16.3 4.3
750 90.6 16.0 4.2

the following scenario (Section 4.3.2), we used 80% of the
available data for training and the remaining 20% for testing.

After the training phase, we applied our method to each
trace in T ′ and measured the number of classification errors
in terms of False Positive Rate (FPR)—i.e., traces of trusted
applications classified as coming from malware applications—
and False Negative Rate (FNR)—i.e., traces of malware ap-
plications classified as coming from trusted applications.

We experimented with different values for the length n of the
calls subsequences and the number k of selected features—
k′ was always set to 2000. We varied n in 1–3 and k in
25–750, when possible—recall that k is the number of se-
lected features among the |C|n available features, hence we
tested only for the values of k > |C|n, with a given n. In
order to mitigate lucky and unlucky conditions in the ran-
dom selection of the traces used for the training phase, we
repeated the procedure 3 times for each combination of n, k
by varying the composition of T and T ′.

The parameters n and k represent a sort of cost of the
detection method: the larger their values, the higher the
amount of information available to the classifier and, hence,
the effort needed to collect it. However, provided that some
system mechanism was available to collect the system calls
generated by each process, we think that no significant dif-
ferences exist in an implementation of our method among
different values for n and k which we experimented within
this analysis.

Table 3 shows the results obtained with our method applied
with several combinations of n and k values: for each combi-
nation, the table shows the average values of accuracy, FNR,
and FPR across the 3 repetitions. The table also shows the
results obtained with the baseline method (see Section 4.1).
It emerges that the proposed method is largely better than
the baseline, as we obtained a best-in-class accuracy of 97%
with the former and 91% with the latter. It is important
to notice that FNR is low for the highest values of n and k,
and that such a value is balanced with FPR.

On the other hand, we note that 91% is a pretty high ac-

17

curacy: this figure suggests that permissions indeed play
an important role in Android malware detection. Yet, they
are not enough to effectively discriminating malware, as the
rate of false negative keeps high (16%). As a matter of fact,
this value can be also explained by the common practice of
“overpermissions” (malware writers tend to write a long list
of permissions, including those which are not necessary to
the app for hiding “suspect” permissions to users). More-
over, the permissions list is an indicator at a coarse grain
for identifying malicious behavior, as it could happen that
a malicious behavior requires the same permissions of a licit
behavior.

Concerning the impact of n and k on the detection accu-
racy, it can be seen that, for both parameters, the higher the
better. For n, this means that longer sequences of system
calls better capture the application behavior, and are hence
more suitable to constitute a fingerprint. On the other hand,
k represents the number of sequences which the method
deems relevant, i.e., the fingerprint size: results show that
the longer the sequences, the larger the size needed to fully
enclose the information represented by the sequences. How-
ever, we verified that larger values for k did not deliver im-
provements in the accuracy. It can be seen that increasing
n the accuracy grows and it grows also faster with k.

With n = 1, our method just uses frequencies of system
calls, rather than sequences: results of Table 3 show that
this variant exhibits a lower detection rate, compared to
the case in which sequences are considered. This finding
suggests that the simple frequency of system calls can be
a misleading feature: indeed, there are system calls which
are more likely to be used in a malware rather than in a
trusted app (e.g., epoll_wait and cacheflush, as reported
in Table 2), but they do not allow to build a highly accurate
classifier.

Concerning the execution times, the training phase of our
method took, on the average for n = 3 and k = 750, 1183 s,
of which 61 s for the feature selection procedure and 1122 s
for training the SVM classifier: we found that these times
grow roughly linearly with k′ and k, respectively. The actual
classification phase of a single trace took, on the average for
n = 3 and k = 750, 18 ms: we found that this time is
largely independent from n and grows roughly linearly with
k. Finally, the trace processing (i.e., transforming a trace
t in a feature vector f(t)) took, on the average for n = 3,
135 ms: we found that this time grows roughly exponentially
with n. We obtained these figures on a machine powered
with a 6 core Intel Xeon E5-2440 (2.40 GHz) equipped with
32 GB of RAM: we remark that we used a single threaded
prototype implementation of our method.

4.3.2 Unseen application
For this scenario, we built the training set T by including
all the traces of 1600 (among 2000) applications picked at
random and evenly divided in trusted and malicious.

Then, after the training phase, we applied our method to
the traces of the remaining 400 applications and measured
accuracy, FPR and FNR. This way, no traces for a given
AUA were available for the training; however, traces for ap-
plications different from the AUA yet belonging to the same

Table 4: Results on unseen applications, with n = 3.
k Accuracy FNR FPR

250 94.1 7.0 4.8
500 94.7 6.4 4.3
750 94.9 6.1 4.2

family could have been available for the training.

Since the results of previous experiments show that the best
effectiveness can be obtained with n = 3, we varied only k in
250–750, in order to investigate if the ideal fingerprint size
changes when unseen applications are involved. We repeated
the procedure 3 times for each value of k by varying the
composition of T and T ′.

Table 4 shows the results. The main finding is that our de-
tection method is able to accurately detect (≈ 95%) also un-
seen malware, provided that it belongs to a family for which
some execution traces were available. This finding further
validates that our method can build an effective malware
fingerprint. Moreover, it supports our assumption that se-
quences of system calls capture the similarity of behavior
among malware applications of known families.

Concerning the impact of k on the accuracy, it can be seen
that 750 remains the value which delivers the best accuracy.
Moreover, we found the upper limit of k value beyond which
no significant accuracy improvement occurs, is lower than in
the former scenario. We speculate that this depends on the
fact that less families are represented in the training set,
hence a slightly smaller fingerprint size is enough to fully
exploit the expressiveness of sequences of n = 3 system calls.

4.3.3 Unseen family
For this scenario, we repeated the experiment for each mal-
ware family of our dataset.

In particular, for a given family, we built the training set T
by including all the traces of all the malicious applications
not belonging to that family and all the traces of all the
trusted applications.

Then, after the training phase, we applied our method to
all the traces of all the applications of the considered family
and measured FNR. This way, no traces for a given AUA
were available for the training; moreover, no traces for any
application belonging to the same family of the AUA were
available for the training. We executed this experimentation
with n = 3 and k = 750.

Table 5 shows the results for the 10 families most repre-
sented in our dataset. We remark that, since we were in-
terested in assessing our method ability in detecting mal-
ware belonging to unseen families, we did not tested it on
trusted traces, which we instead used all for the training.
It can be seen that FNR greatly varies among these fam-
ilies: it spans from a minimum of 3.5% to a maximum of
38.5%. Hence, there are some unseen families which could
have been detected by our method (GinMaster and zHash);
conversely, for other families the detection rate is remarkably
lower. We think that this happens because some malware

18

Table 5: FNR on unseen families, with n = 3 and
k = 750.

Family FNR
DroidKungFu 31.8
GinMaster 3.5
BaseBridge 4.6
Geinimi 18.6
PJApps 23.7
GloDream 38.5
DroidDream 32.9
zHash 4.3
Bgserv 12.6
Kmin 27.4

family is more different, in terms of behavior, than others:
hence, a fingerprint built without that family could not be
effective enough to detect malware applications belonging to
that family. We conjecture that a larger and more represen-
tative training set—as the one which could be available in
a practical implementation of our approach—could address
this limitation.

5. CONCLUDING REMARKS AND FUTURE
WORK

We presented a method for detecting Android malware which
is based on the analysis of system calls sequences. The un-
derlying assumption is that a fingerprint of malware behav-
ior can be built which consists of the relative frequencies of
a limited number of system calls sequences. This assump-
tion is supported by the fact that the typical evolution of
Android malware consists in modifying existing malware,
and hence behaviors are often common among different ma-
licious apps. Moreover, capturing app behavior at such a
fine grain allows our method to be resilient to known eva-
sion techniques, such as code alteration at level of opcodes,
control flow graph, API calls and third party libraries.

We used Machine Learning for building the fingerprint using
a training set of execution traces. We assessed our method
on 20 000 execution traces of 2000 apps and found that it is
very effective, as it obtained a malware detection accuracy
of 97%, which is high compared to previous works, most of
which have been assessed on a much smaller dataset. Fur-
thermore, our validation differs from the most discussed in
literature, as it makes use of real devices rather than emu-
lators or modified kernel, which makes the experiment more
realistic. As future work, we plan to investigate the following
concerns:

• Evaluate to which extent our method can withstand
common evasions techniques [24, 25].

• Consider longer sequences (i.e., greater values of n),
since this could allow to capture even better the mal-
ware behavior. Unfortunately, since the actual number
of possible sequences grows exponentially with n, this
also implies coping with a very large problem space.

• Improve the quality of the training data by labelling
only those portions of the execution traces of malware
applications which actually correspond to malicious
behaviors.

• Extend our method to not only classify an entire exe-
cution trace as malicious or trusted, but also to specify
exactly where, in the trace, there appears to occur the
malicious behavior.

6. REFERENCES
[1] Google play. https://play.google.com/store?hl=it,

last visit 24 November 2014.

[2] Android debug bridge. http:
//developer.android.com/tools/help/adb.html, last
visit 25 November 2014.

[3] Google play unofficial python api.
https://github.com/egirault/googleplay-api, last
visit 25 November 2014.

[4] strace-linux man page.
http://linux.die.net/man/1/strace, last visit 25
November 2014.

[5] Virustotal. https://www.virustotal.com/, last visit
25 November 2014.

[6] B. krebs. mobile malcoders pay to google play.
http://krebsonsecurity.com/2013/03/mobile-
malcoders-pay-to-google-play/, last visit 31
November 2014.

[7] Damballa labs. damballa threat report first half 2011.
technical report, 2011.
https://www.damballa.com/downloads/r_pubs/
Damballa_Threat_Report-First_Half_2011.pdf, last
visit 31 November 2014.

[8] Nqmobile. mobile malware up 163% in 2012, getting
even smarter in 2013.
http://ir.nq.com/phoenix.zhtml?c=243152&p=
irol-newsArticle&id=1806588, last visit 31
November 2014.

[9] A. Armando, A. Merlo, and L. Verderame. An
empirical evaluation of the android security
framework. In Security and Privacy Protection in
Information Processing Systems IFIP Advances in
Information and Communication Technology Volume
405, 2013, pp 176-189, 2013.

[10] D. Arp, M. Spreitzenbarth, M. Huebner, H. Gascon,
and K. Rieck. Drebin: Efficient and explainable
detection of android malware in your pocket. In
Proceedings of 21th Annual Network and Distributed
System Security Symposium (NDSS), 2014.

[11] A. Aswini and P. Vinod. Droid permission miner:
Mining prominent permissions for android malware
analysis. In Proceedings of 5th International
Conference on the Applications of Digital Information
and Web Technologies (ICADIWT), 2014.

[12] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and
A. Somayaji. A methodology for empirical analysis of
permission-based security models and its application
to android. In Proceedings of 17th ACM Conference on
Computer and Communications Security, 2010.

[13] G. Canfora, E. Medvet, F. Mercaldo, and C. A.
Visaggio. Detection of malicious web pages using
system calls sequences. In Proceedings of the 4th
International Workshop on Security and Cognitive
Informatics for Homeland Defense (SeCIHD 2014), in
conjunction with the International Cross Domain
Conference and Workshop (CD-ARES 2014) pp.
226-238, 2014.

19

[14] G. Canfora, F. Mercaldo, and C. A. Visaggio. A
classifier of malicious android applications. In
Proceedings of the 2nd International Workshop on
Security of Mobile Applications, in conjunction with
the International Conference on Availability,
Reliability and Security, 2013.

[15] F. Di Cerbo, A. Girardello, F. Michahelles, and
S. Voronkova. Detection of malicious applications on
android os. In Proceedings of 4th international
conference on Computational forensics, 2011.

[16] M. Egele, T. Scholte, E. Kirda, and K. C. A survey on
automated dynamic malware-analysis techniques and
tools. ACM Computing Surveys (CSUR), 44(2), Feb
2012.

[17] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
Riskranker: scalable and accurate zero-day android
malware detection. In Proceedings of the 10th
international conference on Mobile systems,
applications, and services, pages 281–294, 2012.

[18] T. Isohara, K. Takemori, and A. Kubota.
Kernel-based behavior analysis for android malware
detection. In Proceedings of Seventh International
Conference on Computational Intelligence and
Security, pp. 1011-1015, 2011.

[19] Y.-s. Jeong, H.-t. Lee, S.-j. Cho, S. Han, and M. Park.
A kernel-based monitoring approach for analyzing
malicious behavior on android. In Proceedings of the
29th Annual ACM Symposium on Applied Computing,
2014.

[20] C. Kolbitsch, P. Milani Comparetti, C. Kruegel,
E. Kirda, X. Zhou, and X. F. Wang. Effective and
efficient malware detection at the end host. In
Proceedings of the 18th conference on USENIX
security symposium, pp. 351-366, 2009.

[21] A. Lanzi, D. Balzarotti, C. Kruegel,
M. Christodorescu, and E. Kirda. Accessminer: using
system-centric models for malware protection. In
Proceedings of the 17th ACM conference on Computer
and communications security, pp. 399-412, 2010.

[22] X. Liu and J. Liu. A two-layered permission-based
android malware detection scheme. In Proceedings of
2nd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering, 2014.

[23] A. Porter Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In
Proceedings of 18th ACM Conference on Computer
and Communications Security, 2011.

[24] D. M. T. M. M. Protsenko. Divide-and-conquer: Why
android malware cannot be stopped. In Proceedings of
International Conference on Availability, Reliability
and Security (ARES), pp. 30-39, 2014.

[25] V. Rastogi, Y. Chen, and X. Jiang. Catch me if you
can: Evaluating android anti-malware against

transformation attacks. Information Forensics and
Security, IEEE Transactions on, 9(1):99–108, Jan
2014.

[26] A. Reina, A. Fattori, and L. Cavallaro. A system
call-centric analysis and stimulation technique to
automatically reconstruct android malware behaviors.
In Proceedings of EuroSec, 2013.

[27] A.-D. Schmidt, H.-G. Schmidt, J. Clausen, K. A.
Yuksel, O. Kiraz, A. Camtepe, and S. Albayrak.
Enhancing security of linux-based android devices. In
Proceedings of 15th International Linux Kongress,
2008.

[28] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer.
Detection of malicious code by applying machine
learning classifiers on static features: A
state-of-the-art survey. Information Security Tech.
Report, 14(1), Feb 2009.

[29] G. Sheran. Android apps security, apress.

[30] M. Spreitzenbarth, F. Echtler, T. Schreck, F. C.
Freling, and J. Hoffmann. Mobilesandbox: Looking
deeper into android applications. In 28th International
ACM Symposium on Applied Computing (SAC), 2013.

[31] A. Sung, P. Chavez, and S. Mukkamala. Accessminer:
using system-centric models for malware protection. In
Proceedings of the 20th Annual Computer Security
Applications Conference, pp. 326-334, 2004.

[32] F. Tchakounté and P. Dayang. System calls analysis of
malwares on android. In International Journal of
Science and Tecnology (IJST) Volume, 2 No. 9, 2013.

[33] X. Wang, V. Jhi, S. Zhu, and P. Liu. Detecting
software theft via system call based birthmarks. In
Proceedings of the Computer Security Applications
Conference, pp. 149-158, 2009.

[34] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P.
Wu. Droidmat: Android malware detection through
manifest and api calls tracing. In Proceedings of 7th
Asia Joint Conference on Information Security, 2012.

[35] R. Xu, H. Säıdi, and R. Anderson. Aurasium:
practical policy enforcement for android applications.
In Proceedings of the 21st USENIX conference on
Security symposium, pp. 27-27, 2012.

[36] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Proceedings of 33rd
IEEE Symposium on Security and Privacy (Oakland
2012), 2012.

[37] Y. Zhou and X. Jiang. Android malware,
springerbriefs in computer science, 2013.

[38] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you,
get off of my market: Detecting malicious apps in
official and alternative android markets. In
Proceedings of the 19th Annual Network and

Distributed System Security Symposium, 2012.

20

Tailoring Software Architecture Concepts and Process
for Mobile Application Development

Felix Javier Acero Salazar, Marco Brambilla
Politecnico di Milano. Dipartimento di Elettronica, Informazione e Bioingegneria.

Piazza Leonardo da Vinci, 32. 20133 Milan, Italy
felixjavier.acero@mail.polimi.it, marco.brambilla@polimi.it

ABSTRACT
Enabled by the continuous improvement of the hardware and
software in mobile devices, mobile applications have evolved
into very complex pieces of software. Yet, such increase in
complexity has not been paired by an increased awareness,
among developers, of the important role that some software
engineering processes play in managing such complexity.

In this paper we focus on the architectural design of mobile
applications: we show how this aspect is still overlooked by
mobile app developers; we present a high level process and
several concepts that aim to guide developers in the creation
of suitable architectures for their apps; and we describe the
advantages of integrating architectural thinking within the
mobile app development process.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.2.29 [Software Engineering]: Management

Keywords
Software architecture, mobile applications, architectural de-
sign, mobile software architecture.

1. INTRODUCTION
Mobile applications today are not any more simple con-

tent fruition interfaces that present data on the screen and
capture user interactions. Instead, they also manage compli-
cated business logic, enable mechanisms for accessing and
synchronizing data stored in local and remote data sources,
gather contextual information, enable communication paths
to access external service providers and orchestrate the opera-
tion of a growing set of wearable devices and sensors to which
they offer processing power and communication capabilities
with the cloud and other networked systems.

Two important consequences of such increase in complexity
are: 1) mobile applications now need to be developed by

larger developer teams; 2) the processes used to develop and
maintain these applications have become more relevant.

Given the rather narrow advice offered by platform de-
velopers like Apple and Google in this regard, a particular
process in which we want to concentrate in this paper is
the architectural design; for it is through it that mobile
applications can achieve important quality attributes like
modifiability, testability and reusability.

Following this line of thought, this paper aims to reinforce
architectural thinking among mobile developers by mapping
some architectural concepts on to the mobile world, and
presenting a high level process that developers can follow to
design suitable architectures for their apps.

2. ARCHITECTURE: THE MISSING CON-
CERN OF MOBILE DEVELOPMENT

Over the past decades, software architecture has consoli-
dated as an important sub-field of software engineering [7].
Its importance and value has resonated across practitioners
to the point where it is hard to think of any reasonably com-
plex software project that does not give special attention to
the architecture of the system. In the mobile world, however,
it seems that much remains to be done.

Mobile application developers typically obtain a good part
of the guidance for how to implement their applications di-
rectly from platform developers. Apple and Google, for exam-
ple, continuously publish design and programming guidelines
that are meant to instruct developers in the creation of high
quality apps. But when it comes to software architecture, the
advice offered by some platform developers is rather narrow.

In the case of iOS, for example, Apple advises a particular
flavor of the MVC pattern as the best way for programming
iOS apps [10]. Following this vision, iOS applications are
typically organized in Model-View-ViewController triplets
that collaborate using the communication mechanisms that
are endemic to the platform — i.e Delegates, Target/Actions,
Outlets, Key-Value Observers and Segues. Using the MVC
architectural pattern to structure an entire iOS application
comes handy when developing simple applications; for it only
requires a handful of classes to support all the application
use cases. In contrast, following the same path when creating
non-trivial applications may lead to known problems like the
Massive View Controllers 1 issue.

While the Massive View Controllers issue can be consid-
ered as a phenomenon endemic to the iOS platform, it does
serve to illustrate one of the challenges that software archi-

1http://www.objc.io/issue-1/lighter-view-controllers.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DeMobile’15, August 31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3815-8/15/08...$15.00

http://dx.doi.org/10.1145/2804345.2804350

21

Archtiectural
Design

Identify
Architectural

Drivers

Survey
Architectural

Assets

Design
Software

Architectures

Figure 1: Mobile Architecture Process

tecture faces in the mobile world: the false intuition that
the software architecture of mobile applications is a
solved issue and that following the guidelines of platform
developers is enough to guarantee that a mobile application
would have a good architectural design.

3. MOBILE SOFTWARE ARCHITECTURE
PROCESS

To address this issue, our paper highlights the important
role that the architectural design plays in the development of
complex mobile applications. Our aim is not to propose a new
architectural methodology; instead, we present a high-level
process that can guide application developers in the
task of designing a suitable software architecture for
their mobile apps.

Several publications discuss the architectural design pro-
cess [1]. We extract the most relevant stages of the architec-
ture process for mobile applications, as shown in Figure 1:
Identify Architectural Drivers, Survey Architectural Assets
and Design Software Architecture. We will describe each
of them in the following sections. Moreover, to provide a
better idea of how each of the activities in the process maps
onto a real life project, we will reflect over the experience
that the software engineering team of Coursera2 had while
re-designing the architecture of their Android and iOS apps,
based on two presentations given to the developer community
[5] [14].

3.1 Identify Architectural Drivers
The first stage of the process is the identification of the

main architectural drivers of the application. According
to [1], the architectural drivers of an application are the
collection of functional, quality and business requirements
that shape the architecture of the application.

Though different mobile applications will likely have dif-
ferent architectural drivers, two quality attributes that may
define the shape of the architecture of a large subset of mobile
applications are: modifiability and testability.

Mobile applications today need to be designed for change.
On the one hand, they need to adapt to the shifting business
requirements that frequently imply the addition, update and
deletion of some features of the application. On the other
hand, since mobile applications frequently rely on third party
libraries and Web APIs, and these are bound to change [4],
having an architecture that allows for the easy replacement,
deletion and addition of functionality, while managing the
cost and scope of change, is an important goal.

Update cycles of mobile applications, on the other hand,
are lengthier than those of web applications. Patching an

2https://www.coursera.org/

<<uses>> <<is a>>

*

*

0..1

0..1Legacy
Architecture Pattern

Design
Pattern

Architectural
Pattern

Reference
Architecture

Application
Framework

*

Figure 2: Architectural Assets Metamodel adapted
from [3]

application bug implies the release of an update for the appli-
cation which needs to go through the revision and approval
process of platform developers. Identifying and catching
errors before an application is released is, therefore, an im-
portant concern of mobile software engineers. In consequence,
having an application structure that enables easy testing for
as many components as possible, is an increasingly important
architectural driver.

In the case of Coursera, for example, the main quality
attributes that shaped the structure of their architecture were:
modifiability, reusability and testability. On the one hand,
they needed to allow developer teams to work independently
on different features of the application, which required a
highly modular structure. On the other hand, they wanted
to allow external developers to create their own features
while leveraging the capabilities of the existing infrastructure,
which in turn required that some of the core functionalities
of the application had to be reusable and easily shared across
developer teams. Finally, the software engineering team also
wanted to enable more testing across the different components
of the application to reduce the probability of shipping faulty
applications.

3.2 Survey Architectural Assets
Once application developers have identified the architec-

tural drivers that may have an important influence on the
final structure of the application, they should survey the
field looking for inspiration that can help them solve the
challenges imposed by these drivers. Since the final goal
is to create a suitable software architecture for a mobile
application, this survey should focus on architectural assets.

Architectural assets are defined by [3] as a set of reusable
resources that can significantly help architects in their work
since it reduces the number of things that the architect needs
to be concerned with. Architectural assets are, therefore a
good source of inspiration for mobile software engineers.

Although [3] provides an exhaustive list of the architectural
assets that may be used by a software architect, in the
following sections we present a subset that have special value
in the mobile context. Figure 2 shows an adaptation of the
metamodel presented by [3] that highlights the relationships
that exist between some of these assets.

3.2.1 Architectural Patterns
An architectural pattern3 is a coarse grained pattern that

provides an abstract framework for a family of systems [13].

3also referred to as an architectural style in [7]

22

They help define the fundamental structure of the application
[2] and specify a design vocabulary, constraints on how that
vocabulary is used, and semantic assumptions about that vo-
cabulary [7]. Examples of architectural patterns are: Layers,
Pipe and Filter, Client/Server, N-Tier, Service Oriented and
Message Bus [13, 7].

An architectural pattern of special relevance for rich mo-
bile applications is the Layers pattern. The Layers pattern
is described by [2], as an strategy to effectively divide the
responsibilities of an application across the objects that com-
pose it. Figure 3 (adapted from [13]), for example, shows
a reference model of a rich mobile application organized
according to the Layers pattern.

Presentation Layer

Services

Data
Sources

Local Data
Store

Business Layer

Data Layer

S
ec

ur
ity

C
on

fig
ur

at
io

n

C
om

m
un

ic
at

io
n

C
ro

ss
 C

ut
tin

g
C

on
ce

rn
s

Support
Mobile
Platform

Mobile Client
Application

Figure 3: Layers Pattern adapted from [13]

Another pattern of notable importance for mobile appli-
cations is the MVC architectural pattern. However, as we
discussed in Section 2, this pattern needs to be applied with
caution as an architectural style, for it seems to be better
suited for structuring thin or simple mobile apps, rather than
rich or complex ones.

3.2.2 Reference Architectures
A reference architecture captures the basic building blocks

and architectural design decisions of a system in certain
application or technology domain [6]. They also represent
reusable architecture knowledge in the form of generic ar-
tifacts, standards, design guidelines, architectural styles or
domain vocabulary [6].

A particular reference architecture that has been widely
discussed within the iOS developer community is VIPER [9].
VIPER is a reference software architecture, introduced by
Mutual Mobile4, with the aim of facilitating the design of
software architectures for rich iOS apps. The main compo-
nents of VIPER are: Views, Presenters, Interactors, Routers,
Entities and Data Stores, and the relationships between them
are shown in the Figure 4.

Although VIPER was introduced within the context of iOS
development, nothing in its structure ties the architecture
to a particular technology or mobile platform. In fact, when
designing the architecture of their mobile apps, the software
engineering team of Coursera used VIPER as the initial
point from where the specific architectures for their iOS and
Android applications were then extracted.

3.2.3 Application Frameworks

4http://www.mutualmobile.com/

View Presenter Interactor Entity

Router Data
Store

performAction

navigateTo

update

retrieveEntities

handleEvent

updateUI

Figure 4: VIPER Architecture adapted from [9]

An application framework, as defined by [3], represents the
partial implementation of a specific area of an application.
In the mobile context, application frameworks play a funda-
mental role since they allow developers create sophisticated
applications providing only the code that implements the
differential aspects of their apps.

An application framework serves as an extensible skeleton
that is customized by the methods defined by the user [11].
In consequence, when developing a mobile application, de-
velopers often find themselves writing code that is called by
the methods within the frameworks. In iOS, for example,
this will be the case of the code that developers write in
UIViewController methods like viewDidLoad, viewWillAp-
pear, viewDidAppear and similar. In Android, instead, the
code written in Activity methods like onCreate, onResume
or onPause would be equivalent examples.

In conclusion, since in the mobile context application frame-
works are almost unavoidable, they are an important archi-
tectural asset and one that application developers need to
get to know very well.

3.2.4 Legacy Architectures
Legacy architectures are an asset that can be defined as

any kind of existing architecture. In the mobile world, this is
an asset that is frequently available as software organizations
typically publish different versions of their apps, and even
have more than one application on the stores. The archi-
tectures used to develop all of these applications represent
an important source of inspiration for mobile software archi-
tects, because all of them provide a privileged window to the
structure of the system, help identify which strategies were
effective, and hihglight some of the constraints imposed by
the organization for granting coherency among its products.

3.3 Design the Software Architecture
The final step of the process, consists in the creation of

a software architecture that is suitable for the mobile ap-
plication. Inspiration for this task may come from different
places, but according to [12], theft, method and intuition are
among the most relevant. Theft refers to the inspiration
that software architects may take from existing architectures,
architectural patterns, reference models, application frame-
works, and other sources (as we did in previous section);
Intuition refers to the experience and skills of the software
architect; and method refers to the systematic process by
which the final architecture of an application is derived from
its requirements.

Though several methods have been proposed in the re-
search community, a particular method that aligns with the
concepts that we have introduced so far is the Attribute
Driven Design method, which decomposes a system or sys-

23

Architectural Assets Software ArchitectureArchitectural Drivers

Cocoa Touch

Android
Application
Framework

VIPER +
Coursera

VIPER +
Coursera
for iOS

VIPER, Layers,
MVVM,
Legacy

Architecture

VIPER +
Coursera

for Android

Modifiability,
Testability

and Reusability

Figure 5: Coursera Mobile Software Architecture
Process

tem element by applying architectural tactics and patterns
that satisfy its driving requirements [1].

Applying this, or other method, in the mobile context
however, should be done bearing in mind that the application
frameworks used by the different mobile platforms may have
an important influence over the shape of the final architecture.
In consequence, a mobile software engineering team should
first attempt to create a general architecture that satisfies
the main architectural drivers at a platform independent
level, and then apply some refinements over this general
architecture to obtain the platform specific architecture for
each of the target platforms. This is, in fact, the strategy
used by the engineering team of Coursera, as discussed next.

4. THE COURSERA CASE
To see more clearly how the different steps of the process

can provide a clearer view of the architectural design, we
present the main drivers and assets that lead to the final
architectural design of the Coursera application for Android
and iOS.

In Figure 5 we can see how the VIPER reference architec-
ture was a core asset that informed the final architectural
design of the Coursera application. Other assets like Lay-
ers pattern, the MVVM architectural pattern [8], and the
experience had with the previous architectural design of the
application also help shape the final structure. On the other
hand, requirements like allowing external developers to cre-
ate features for the application, as well as allowing internal
developer teams to work on different features independently
were some of the architectural drivers that helped brew the
final solution. Another aspect that is evident in Figure 5 is
that the application frameworks used in Android and iOS
also affected the architectural design process and led to the
creation of platform specific architectures for each of the
target platforms.

5. DISCUSSION AND CONCLUSIONS
In this paper we aimed to broaden the perspective of ap-

plication developers regarding mobile software architectures,
which become more relevant as mobile applications increase
their complexity. Besides highlighting the importance of
the architectural design, we presented a high-level process
composed of three stages, aiming to guide developers in the
creation of suitable architectures for their mobile apps.

The proposed process has three benefits: 1) it is based on
well known architectural processes [1, 3]; 2) it maps the main
concepts and knowledge of software architecture on to the
mobile world; 3) it advocates for a different view of mobile
software architectures in which process and methodology
are favored over predefined solutions. Finally, though the
process represents a step towards the definition of architec-
tural design practices for the mobile world, we think it is
still too general when it comes to the actual design of the
software architecture, and thus this work paves the way for
further research to tailor some of the existing architectural
methodologies for the mobile context.

6. REFERENCES
[1] Len Bass, Paul Clements, and Rick Kazman. Software

Architecture in Practice. Addison Wesley, second
edition, 2003.

[2] Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, and Michael Stal. Pattern Oriented
Software Architecture - A System of Patterns. John
Wiley & Sons, Inc, 1996.

[3] Peter Eeles. Understanding architectural assets. 7th
IEEE/IFIP Working Conference on Software
Architecture, WICSA 2008, pages 267–270, 2008.

[4] Tiago Espinha, Andy Zaidman, and Hans-Gerhard
Gross. Web API growing pains: Loosely coupled yet
strongly tied. Journal of Systems and Software,
100:27–43, 2015.

[5] Mustafa Furniturewala. Building Modular iOS Apps.
Using Swift, iOS 8 and MVVM to maintain a complex
mobile app with a large team.
https://realm.io/news/modular-ios-apps/, 2015.

[6] Matthias Galster. Software Reference Architectures :
Related Architectural Concepts and Challenges. pages
5–8, 2015.

[7] David Garlan. Software architecture: a travelogue.
Proceedings of the on Future of Software Engineering,
pages 29–39, 2014.

[8] Raffaele Garofalo. Building Enterprise Applications
with Windows Presentation Foundation and the Model
View ViewModel Pattern. Microsoft Press, Mar 2011.

[9] Jeff Gilbert and Conrad Stoll. Architecting iOS Apps
with VIPER. http://www.objc.io/issue-13/viper.html,
Jun 2014.

[10] Apple Inc. Cocoa Core Competencies.
https://developer.apple.com/library/ios/
documentation/General/Conceptual/DevPedia-
CocoaCore/MVC.html, Sep 2013.

[11] Ralph E. Johnson and Brian Foote. Designing
Reusable Classes. Journal of Object-Oriented
Programming, 1(2):22–35, 1988.

[12] Philippe Kruchen. Mommy, Where Do Software
Architectures Come From? 1st International Workshop
on Architectures for Software Systems, Seattle, 1995.

[13] J.D. Meier, Alex Homer, David Hill, Jason Taylor,
Lonnie Wall, Prashant Bansode, Akshay Bogawat, and
Rob Boucher Jr. Mobile Application Architecture Guide.
Microsoft, 2008.

[14] Yixin Zhu. Mobile Architecture and Android Design.
https://youtu.be/iWf11tRRBB4, 2014.

24

Optimizing Energy of HTTP Requests
in Android Applications

Ding Li and William G. J. Halfond
University of Southern California

Los Angeles, California, USA
{dingli,halfond}@usc.edu

ABSTRACT
Energy is important for mobile apps. Among all operations
of mobile apps, making HTTP requests is one of the most
energy consuming. However, there is not sufficient work
in optimizing the energy consumption of HTTP requests in
mobile apps. In our previous study, we found that making
small HTTP requests was not energy efficient. Yet, we did
not study how to optimize the energy of HTTP requests. In
this paper, we make a preliminary study to bundle sequential
HTTP requests with a proxy server. With our technique, we
had a 50% energy saving for HTTP requests in two market
Android apps. This result indicates that our technique is
promising and we will build on the result in our future work.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Diagnostics

General Terms
Performance

Keywords
Energy optimization, HTTP requests, Mobile systems

1. INTRODUCTION
Energy is a critical resource for battery supported devices,

such as smartphones and tablets. Improving the energy ef-
ficiency of mobile apps could improve the user satisfaction
of the apps and potentially improve the revenue of develop-
ers. Recently, researchers have proposed many techniques
to save energy for mobile apps. However, none of these ap-
proaches focus on the optimization of HTTP request energy
consumption.

Unfortunately, overlooking HTTP requests is problematic.
According to our previous study [8], making HTTP requests
is the most expensive type of API call in mobile applica-
tions. On average, making HTTP requests can consume

more than 32% of the total non-idle state energy of an app.
Thus, researchers and developers can miss a significant area
to optimize energy if they omit HTTP requests.

To study energy consumption of HTTP requests, we per-
formed a preliminary study [7] and found that making small
HTTP requests is not energy efficient. However, in that
preliminary study, we did not propose a method to optimize
HTTP energy.

In this paper, we introduce a preliminary study on how
to optimize the energy consumption of HTTP requests in
mobile apps. Our approach is to combine multiple HTTP
requests that will definitely be made together. By doing
this, our approach could reduce the number of HTTP re-
quests and reduce the overhead of initiating and sending
each individual HTTP request. In our evaluation, we found
that there was an up to 50% reduction in the HTTP energy
consumption in two market Android apps when using our
approach.

The structure of this paper is as follows. In Section 2,
we introduce some background information about making
HTTP requests and our previous results. In Section 3, we
introduce our ideas of how to optimize the HTTP request
energy. In Section 4, we report the results of our evaluation.
Finally, in Section 5, we discuss related work and conclude
in Section 6.

2. BACKGROUND AND MOTIVATION
In our previous empirical study [8], we found that making

HTTP requests is one of the most energy consuming opera-
tions in Android apps. In the empirical study, we measured
the energy consumption of different packages of APIs in 405
Android market apps. We found that, on average, making
HTTP requests could represent 32% of the total non-idle
state energy consumption of mobile apps. For certain apps,
this percentage could be even higher than 60%. Compared
with other operations, making HTTP requests consumes sig-
nificantly more energy.

Another one of our previous studies [7] further showed
that making small HTTP requests is not energy efficient.
In that study, we found that downloading one byte of data
consumed the same amount of energy as downloading 1,024
bytes of data through HTTP requests. Furthermore, we
found that downloading 10,000 bytes of data only consumed
twice the amount of energy as downloading 1,000 bytes of
data. In this case, making small HTTP requests consumes
more energy per each byte transmitted through the network.

This inefficiency is due to the protocol of sending HTTP
requests. Making an HTTP request needs three steps: es-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DeMobile’15, August 31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3815-8/15/08...$15.00

http://dx.doi.org/10.1145/2804345.2804351

25

tablishing the connection, transmitting data, and closing the
connection. In the steps of establishing the connection and
closing the connection, the client side needs to have a 3-way
or 4-way handshake protocol, which spend energy in trans-
mitting practically empty packets. In the step of transmit-
ting data, energy overhead will be introduced by the headers
of the HTTP request and its lower-level network protocols,
such as TCP and IP. Thus, most energy of a small HTTP
request will be consumed by the handshake-protocol and
headers.

3. APPROACH
Our approach focuses on optimizing the HTTP energy

consumption of mobile apps with sequential HTTP requests.
By sequential HTTP requests, we mean the HTTP requests
that are always made together, in sequence, despite the user
input or execution condition of the program. One example of
sequential HTTP requests is in Program 1, where the HTTP
requests at line 6, line 10, and line 14 are sequential HTTP
requests. Since these HTTP requests will always be sent
in sequence, their tasks can be accomplished in one HTTP
request.

1 public void print html()
2 {
3 URL url1, url2, url3;
4 URLConnection urlConnection1,urlConnection2,

urlConnection3;
5 //query current weather
6 url1 = new URL("http://weather");
7 urlConnection1 = url1.openConnection();
8 ParseStream(urlConnection1.getInputStream());
9 //query weather forcast

10 url2 = new URL("http://daily");
11 urlConnection2 = url2.openConnection();
12 ParseStream(urlConnection2.getInputStream());
13 //query location info
14 url3 = new URL("http://location");
15 urlConnection3 = url3.openConnection();
16 ParseStream(urlConnection3.getInputStream());
17 }

Program 1: Example of sequential HTTP requests

To optimize the energy consumption of sequential HTTP
requests, we propose an approach that combines sequential
HTTP requests into a larger HTTP request. This approach
can reduce the number of HTTP requests and increase the
size of data transmitted by a single HTTP request. Our
basic idea is to redirect the original HTTP requests to a
proxy server that combines the sequential HTTP requests
into a single one request. The work-flow of our approach
is shown in Figure 1, where the dashed-line boxes represent
the code from the original app and solid-line boxes represent
the components that are developed in our approach. In our
workflow, we first use code rewriting techniques to replace
the Android HTTP APIs with the Agent HTTP APIs in
an Android app. Then the Agent HTTP APIs will redirect
the HTTP requests to the Proxy, which is a process that
intercepts the HTTP requests from the client to the server.
It contains two components, the Bundling Calculator and
the Redirector.

When the client starts to send an HTTP request, it sends
the request through the Agent HTTP APIs. Then, the
Agent HTTP APIs redirect the request to the Proxy. When
the Proxy gets the HTTP request, it passes the request to
the Bundling Calculator, which calculates if there are any

other HTTP requests should be bundled. Its decision is
based on the rules provided by developers of the app. After
that, the Bundling Calculator uses the Redirector to query
for the data of all of the HTTP requests that need to be bun-
dled from the server. When the responses are retrieved, the
Bundling Calculator bundles the responses for all HTTP re-
quests in one package and replies with it to the Agent HTTP
APIs. Then, when the bundled responses return, the Agent
HTTP APIs unpack the bundled responses and recover the
response for each request. These responses are then store
in a local cache or returned for the current HTTP request.
Finally, when other HTTP requests in the same set of se-
quential HTTP requests are invoked, the responses will be
returned directly from the local storage.

3.1 Example
We use the example in Program 1 to explain our approach.

In Program 1, we first replace the HTTP APIs at line 8,
line 12, and line 16 with our Agent HTTP APIs. When the
HTTP request at line 8 is made, it is sent to the Proxy.
Then the Proxy finds the incoming request is the first one
of a set of sequential HTTP requests, which contains three
HTTP requests of the link weather at line 6, forecast at
line 10, and location at line 14. Such a decision is based on
rules provided by the developers manually with their domain
specific knowledge. Then the Proxy queries for the response
to weather, forecast, and location from the server and returns
them all in a single packet to the client.

When the Proxy sends back the packed response, our
Agent HTTP APIs will capture this response at line 8 in
Program 1. The Agent HTTP API first unpacks the re-
sponse from the Proxy, retrieves the response for forecast
and location from the packed response, and stores them in
the local cache. Then it retrieves the response for weather,
which is the target URL of the HTTP request at line 8, and
returns the response as an InputStream, which is the same
data structure as the original Android HTTP request.

After the Agent HTTP API at line 8 returns, the code
makes the HTTP request to forecast at line 12 with the
Agent HTTP APIs. At line 12, the Agent HTTP API checks
the local cache and finds that the response is already stored,
so it returns the response of forecast directly. This is the
same for the case for location.

In this case, Program 1 only makes one HTTP request
to the Proxy at line 8, which retrieves the responses for
weather, forecast, and location together. This compared to
the original version of Program 1, in which there are three
HTTP requests made to retrieve the responses for weather,
forecast, and location.

3.2 Code Rewriting
Our approach first needs to replace the original Android

HTTP APIs with the Agent HTTP APIs. In this process,
our approach parses the bytecode of each method in the
original app and detects the signature of each invocation
instruction. If there is an invocation instruction invoking an
Android HTTP API, our approach redirects the invocation
instruction to the corresponding Agent Android APIs.

3.3 The Agent HTTP APIs
The Agent HTTP APIs are static methods that replace

the original HTTP APIs in Android SDK, such as URL-
Connection.getInputStream. The parameters of the Agent

26

Figure 1: The work flow of our approach

HTTP APIs are the target object and the parameters of the
original HTTP API. The return values of the Agent HTTP
APIs are the same as the original API.

The Agent APIs have three main functions. First, check
if the response for the current HTTP request is stored in the
local cache, and if so, return it directly. Second, redirect the
HTTP request to the Proxy instead of the server if the cur-
rent HTTP request is not stored in the local cache. Third,
unpack the bundled responses for a set of sequential HTTP
requests, store the responses for them in the local cache, and
return the response for the current HTTP request.

3.4 The Proxy
The Proxy is the process on the server side that intercepts

the incoming HTTP requests between the client and the
server. The first responsibility of the Proxy is to check if
the incoming HTTP request is the first request in a sequence
of HTTP requests and its second responsibility is to bundle
the sequential HTTP requests. The Proxy accepts HTTP
requests from the client and returns the bundled responses
for those requests. The Proxy is normally deployed on the
same machine or in the same network domain of the server.
Thus, it can have a very high-speed connection to the server
and will not significantly increase the latency between the
server and the client. We believe this requirement is realistic
because the user of our approach, who are the owners or
developers of the app under optimization, generally have
control of the app’s server.

The first task is accomplished by the Redirector, which ac-
cepts the incoming HTTP request, retrieves the URLs of the
corresponding sequential requests and, sends those requests
to the server to get the responses.

The second task is accomplished by the Bundling Calcu-
lator, which accepts the URL and parameters of an incom-
ing HTTP request and determines which requests should
be bundled. This decision is made based on rules provided
by the app developers with their domain specific knowledge
about the app. For example, in Program 1, the develop-
ers can provide the rule “bundle the requests to weather,
forecast, and location together” to the Bundling Calculator.
Then, when the request of weather comes, the Bundling Cal-
culator would query this rule and then bundle the response
of weather, forecast, and location in one package.

3.5 The Communication Protocol
The Agent HTTP APIs and the Proxy use a specific proto-

col for communication. In this protocol, responses for sev-
eral HTTP requests can be returned in a single packet in
JSON format. When the Proxy returns data to the Agent
HTTP APIs, it contains three types of information: first,
the number of responses; second, the current request and its
response; and third, all of the bundled requests and their
responses.

When the Agent HTTP APIs get the response, they pro-
cess the data with the following steps. First, they retrieve
the response for the current request, this response will be
used as the return value. Second, they iterate over all of the

bundled requests, and retrieve their responses. Third, they
cache the responses of all of the bundled requests in a local
cache.

4. EVALUATION
In our evaluation, we answer the research question: how

much HTTP energy could be saved by bundling the sequen-
tial HTTP requests as one HTTP request?

4.1 Test Apps
To answer our research question, we found 2 market An-

droid apps from the Google Play Market that contain se-
quential HTTP requests. These two apps are bob’s weather
and LIRR Schedule. These apps have 22,517 and 4,408
lines of Java bytecodes, respectively.

4.2 Implementation
In the implementation, we used dex2jar and apktool to de-

compile the Dalvik bytecode of Android apps to Java byte-
code. Then we used the BCEL library to replace the APIs
that make HTTP requests with our Agent HTTP APIs. We
used Node.js to implement the proxy server.

4.3 Evaluation Protocol
For our evaluation, we could not obtain the server side

code of the apps since they were not open source apps. Thus,
to evaluate our technique, we mimicked the behavior of the
original server with a Node.js based mock-server. In our
mock-server, we recorded and stored the responses of all
HTTP requests that could be made by our two apps. When
there was any incoming HTTP request, the mock-server sim-
ply replied with stored data according to the URLs and pa-
rameters of the requests. The mock-server and the proxy
were all deployed on the Amazon EC2 cloud platform.

To evaluate the energy savings, we used our previous tech-
nique, vLens [9], to measure the HTTP energy consumption
of the two apps. We compared the HTTP energy of the un-
optimized version, which accessed the mock-server directly,
with the HTTP energy of the optimized version, which ac-
cessed the proxy server, and reported the energy savings of
our approach

4.4 Result
In our experiment, we found that there were energy sav-

ings of 50% for both apps for making HTTP requests. We
believe this result is significant because as reported in our
previous study, on average, making HTTP requests can con-
sume 30% of the total non-idle state energy [8], we expect
that bundling sequential HTTP requests could have a 10-
15% reduction in the energy at the application level.

5. RELATED WORK
A large group of current studies on optimizing energy for

mobile devices focus on detecting resource leakage of sensors
(e.g., [13, 1]). Pathak and colleagues [15] proposed a tech-

27

nique to detect if an app fails to release a wake-lock of in a
smartphone app.

Another group of energy optimization techniques focus on
optimizing the display energy of mobile apps. Our previous
work, Nyx [10], optimizes the energy consumption of mobile
web apps by automatically transforming the color scheme
of the apps. Mian and colleagues proposed dLens [17] to
detect the display energy hotspots. Dong and colleagues also
proposed a tool, Chameleon [3], to change colors of mobile
web apps manually.

Besides detecting sensor resource leakage and display en-
ergy optimization, another group of techniques optimizes
the energy consumption of mobile apps. Our previous work,
EDTSO [11], optimizes the energy consumption of in-situ
test suits by mapping the test suit optimization problems
to an integer linear programming problem. Bruce and col-
leagues [2] used Genetic Improvement technique to optimize
the energy consumption of MiniSat programs. Manotas and
colleagues proposed a framework, SEEDS [14], to automat-
ically make energy optimization decisions.

Although all approaches mentioned in the above three
paragraphs achieved significant effect on energy optimiza-
tion of mobile apps, none of them focus on optimizing the
energy consumption of HTTP requests. As we discussed in
Section 2, making HTTP requests is the most energy con-
suming operation in mobile apps.

Besides energy optimization, many techniques are also
proposed to measure and estimate the energy consumption
of mobile apps. In our previous work, we proposed two
tools, eLens [5] and vLens [9], to estimate and measure the
energy consumption of mobile apps at the source line level.
Hindle [6] proposed a frame work, Green Mining, to mea-
sure energy consumption of mobile apps and related it with
app code changes. eProf [15] models energy with a state
machine. All of these approaches only measure the energy
consumption of mobile apps, but do not do any optimiza-
tion.

The last group of our related work is empirical studies.
Our previous studies [7, 8] investigated how energy is gen-
erally consumed in mobile apps. Gui and colleagues per-
formed an empirical study [4] about the hidden costs of
mobile ads. Their hidden costs also included energy con-
sumption. Linares-Vasquez and colleagues [12] conducted
an empirical study on analyzing API methods and mining
API usage patterns in Android apps. Li and colleagues [11]
studied the energy consumption of different storage systems.
Sahin and colleagues [16] proposed an empirical study about
energy impact of code ossification.

6. CONCLUSION AND FUTURE WORK
Making HTTP requests is one of the most energy consum-

ing operation in mobile apps. In this paper, we performed a
preliminary study on how to optimize the energy consump-
tion of HTTP requests in Android apps. Our approach is
to bundle sequential HTTP requests into a single request.
By doing so, we achieved 50% energy savings in HTTP re-
quests in two Android market apps. Based on this result,
we conclude that our technique is promising.

In our feature work, we will develop new techniques to
automatically generate the bundling rules in the proxy and
evaluate our technique with more market apps. Further,
in this paper, our technique only optimizes the sequential
HTTP requests in a single thread. In our future work, we

will also optimize HTTP requests across different threads.

7. ACKNOWLEDGMENTS
This work was supported by NSF grant CCF-1321141.

8. REFERENCES
[1] A. Banerjee, L. K. Chong, S. Chattopadhyay, and

A. Roychoudhury. Detecting energy bugs and hotspots
in mobile apps. In FSE, 2014.

[2] B. R. Bruce, J. Petke, and M. Harman. Reducing
energy consumption using genetic improvement. In
17th Annual Conference on Genetic and Evolutionary
Computation. ACM, 2015.

[3] M. Dong and L. Zhong. Chameleon: A Color-Adaptive
Web Browser for Mobile OLED Displays. IEEE
Transactions on Mobile Computing, 2012.

[4] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J.
Halfond. Truth in advertising: The hidden cost of
mobile ads for software developers. In ICSE, 2015.

[5] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating Mobile Application Energy Consumption
Using Program Analysis. In ICSE, 2013.

[6] A. Hindle. Green mining: A methodology of relating
software change to power consumption. In MSR, pages
78–87. IEEE Press, 2012.

[7] D. Li and W. G. Halfond. An Investigation Into
Energy-Saving Programming Practices for Android
Smartphone App Development. In GREENS, 2014.

[8] D. Li, S. Hao, J. Gui, and H. William. An Empirical
Study of the Energy Consumption of Android
Applications. In ICSME. IEEE, 2014.

[9] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan.
Calculating Source Line Level Energy Information for
Android Applications. In ISSTA, 2013.

[10] D. Li, H. Tran, Angelica, and G. J. Halfond, William.
Making Web Applications More Energy Efficient for
OLED Smartphones. In ICSE, 2014.

[11] J. Li, A. Badam, R. Chandra, S. Swanson, B. L.
Worthington, and Q. Zhang. On the energy overhead
of mobile storage systems. In FAST, pages 105–118,
2014.

[12] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
R. Oliveto, M. Di Penta, and D. Poshyvanyk. Mining
energy-greedy api usage patterns in android apps: an
empirical study. In MSR, 2014.

[13] Y. Liu, C. Xu, and S. Cheung. Where has my battery
gone? finding sensor related energy black holes in
smartphone applications. In PerCom, 2013.

[14] I. Manotas, L. Pollock, and J. Clause. Seeds: A
software engineer’s energy-optimization decision
support framework. In ICSE, 2014.

[15] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff.
What is keeping my phone awake?: characterizing and
detecting no-sleep energy bugs in smartphone apps. In
MobiSys, 2012.

[16] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and
J. Clause. How does code obfuscation impact energy
usage? In ICSME, 2014.

[17] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond.
Detecting display energy hotspots in android apps. In
ICST, April 2015.

28

Perspectives on Static Analysis of Mobile Apps
(Invited Talk) ∗

Marco Autili1, Ivano Malavolta2, Alexander Perucci1, Gian Luca Scoccia2

1University of L’Aquila, Department of Information Engineering, Computer Science and Mathematics (Italy)
2Gran Sasso Science Institute, L’Aquila (Italy)

marco.autili@univaq.it, alexander.perucci@graduate.univaq.it,
{ivano.malavolta | gianluca.scoccia}@gssi.infn.it

ABSTRACT
The use and development of mobile apps is growing at a tremen-
dous rate in the last years. Even if this growth is making the mo-
bile apps market very attractive for software developers, it is also
continuously presenting new challenges. Indeed, mobile platforms
are rapidly and continuously changing, with the addition of diverse
capabilities like the support for new sensors, APIs, programming
abstractions, etc. In this respect, a number of static analysis meth-
ods and techniques have been proposed in research as a powerful
instrument for developing more qualitative mobile apps.In this in-
vited talk we report on the results of a preliminary survey we con-
ducted on static analysis methods and techniques of mobile apps.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

Keywords
Mobile applications, Static analysis, Systematic study

1. INTRODUCTION
Motivation – Programming languages and tools for developing
mobile apps are platform-specific (e.g., Java code for Android apps,
and Objective-C code for Apple iOS apps), and present many chal-
lenges that may hamper the success of a mobile app as a whole. In-
deed, recently, an empirical study indicates a strong need of mobile
app developers for better analysis and testing support, with a focus
on important features like mobility, location services, sensors, as
well as different gestures and inputs [3]. Under this perspective,
static program analysis [4] can be an effective and viable instru-
ment to predict and evaluate (precise or approximated) quantitative
and qualitative properties related to the run-time behaviour of a mo-
bile app without actually executing it. Static analysis of mobile
apps can be a valuable instrument for both app developers an app
store moderators (e.g., Google, Apple) because it helps in creating
products with better quality in a world where a low-quality release
can have devastating consequences [3]. In this respect, a number
∗This work is partially supported by the MIUR, prot.
2012E47TM2, Prin project IDEAS.

of static analysis approaches have been proposed in the literature,
each of them with specific peculiarities, features, and capabilities.
Contribution – In this invited talk we report on the results of a
preliminary survey we conducted on methods and techniques for
static analysis which estimate specific properties and features of
mobile apps. The main outcomes of this study are: (i) a reusable
comparison framework for understanding, classifying, and compar-
ing techniques for static analysis of mobile apps, and (ii) an initial
overview of the current state of the art about existing methods and
techniques for static analysis of mobile apps.

2. STUDY DESIGN
We designed this study by borrowing some principles from the
well-known guidelines for performing systematic mapping studies
in software engineering [5]. This kind of empirical strategy is ex-
tremely powerful in structuring a given research area (static analy-
sis for mobile apps in our case) by collecting and analysing existing
work in it, while minimizing as much as possible the chances of
bias [5]. To the best of our knowledge, this study presents the first
systematic investigation into static analysis for mobile apps.

Research questions. Goal of our study is to identify and clas-
sify the characteristics and evaluation quality of methods and tech-
niques for static analysis of mobile apps. This goal can be refined
into the following research questions:
RQ1. What are the existing methods and techniques for static anal-
ysis of mobile apps?
RQ2. What are the characteristics of existing methods and tech-
niques for static analysis of mobile apps?
RQ3. What is the quality of the evaluation performed on existing
methods and techniques for static analysis of mobile apps?

Studies search and selection. As the research area of static analy-
sis for mobile apps is very recent (the concept of mobile app exists
only since 2007) and given the preliminary nature of this study, we
decided to focus exclusively on high-quality publications in top-
level scientific venues in the software engineering area. Based on
this, we performed a manual search on the top-level software en-
gineering conferencesand international journals. The time span of
our search is from January 2007 to March 2015, summing up to
6541 potentially relevant studies. Once identified the data sources,
we considered all the selected studies and filtered them according
to a set of well-defined inclusion and exclusion criteria. As rec-
ommended in the guidelines for performing systematic literature
reviews [5], the selection criteria of this study have been decided
upfront, so to reduce the likelihood of bias. In order to reduce bias,
two researchers performed the studies selection independently. At
the end of this stage we obtained the 9 primary studies.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

DeMobile’15, August 31, 2015, Bergamo, Italy
ACM. 978-1-4503-3815-8/15/08
http://dx.doi.org/10.1145/2804345.2804352

29

Data extraction. The first goal of this stage is to create a compari-
son framework that fits well with the studies under analysis. We fol-
lowed a systematic process called keywording [5] for defining the
various parameters of our comparison framework. Once the com-
parison framework has been setup, we considered all primary stud-
ies and we populated the comparison framework with the extracted
data. In order to mitigate the presence of biases, (i) two researchers
extracted the data from all the primary studies independently, and
(ii) we performed a sensitivity analysis to analyse whether the re-
sults are consistent independently from the researcher performing
the analysis.

Data synthesis. We performed content analysis, mainly for cate-
gorizing and coding approaches under broad thematic categories.
Then, we performed narrative synthesis for explaining in details
and interpreting the findings coming from the content analysis.

3. RESULTS
In the following we report a selection of the main results of our
survey and briefly discuss them. To allow easy replication and ver-
ification of our study, we make publicly available the replication
package containing all the extracted data of the study1.

Analysis Goal. Most of the primary studies focus on energy con-
sumption. The second most common goal is to improve the se-
curity of mobile apps with techniques aimed at detecting malware
and leaks of sensitive information. Other goals are (i) the detection
of bugs that undermine performances, (ii) the reduction of memory
consumption, and (iii) the detection of bugs.

Hybrid. In two cases the proposed static analyses are comple-
mented with some kind of dynamic analysis. More specifically,
in the first case the authors “execute the instrumented code on the
emulator and record the system calls invoked for each event trace
”, whereas in the other case the approach is complemented with a
“runtime measurement”.

Analysis Presteps. Three are the primary studies requiring prelim-
inary steps before the static analysis. In the first one “the Workload
Generator is responsible for converting the user-level actions, for
which the developer wants an estimation, to the path information
used by the Analyzer and Source Code Annotator”; in the second
one “preprocessing of application can be divided into three steps:
(i) EFG [Event Flow Graph] extraction (ii) Event trace genera-
tion (iii) Extraction of system calls sequence for each event trace”;
finally, in the third one a preliminary run-time measurement is per-
formed before the static analysis.

Abstraction Level. Static analyses may operate at different lev-
els of abstraction: bytecode, source code, and intermediate model.
Most of proposed approaches work on the bytecode or source code
level of the app. Only one approach runs on an intermediate model
of the app, which specifies the signature of malware families via a
Datalog-based language. Interestingly, in two other case the byte-
code of the app is used in conjunction with its source code in order
to produce source code annotations for the developer.

Platform. The majority of the approaches are specific to the An-
droid platform. A possible interpretation of this trend may be due
to the open-source nature of the Android platform. Also, Android
app binaries can be straightforwardly disassembled with off-the-
shelf software libraries and their internal structure and contained
static resources are easily analyzable in an automatic manner. In-
terestingly, the approaches presented in three cases are generic and

1http://cs.gssi.infn.it/demobile_2015

applicable to a variety of platforms (e.g., Android, iOS, Windows,
Blackberry), however their tool is implemented for the Android
platform only.

4. RELATED WORK
In [2] a survey about static analysis and model checking approaches
for searching patterns and vulnerabilities within a software sys-
tem is proposed. Peculiarity of this research is the comparison of
static analysis algorithms against mathematical logic languages for
model checking. The authors of [6] conducted a survey about static
analysis for identifying security issues and vulnerabilities in soft-
ware systems in general (not specific to mobile apps). For each
type of security vulnerability the authors present both relevant stud-
ies and the implementation details of the used static analysis algo-
rithms. A systematic mapping study has been conducted in[1] for
classifying and analysing approaches that combine different static
and dynamic quality assurance technique. The study included a
discussion about reported effects, characteristics, and constraints
of the various existing techniques. In conclusion, even if there are
studies about static analysis and some aspects of mobile apps, none
of them is actually focussing on the analysis of mobile apps. Since
the need of analysis of apps has been raised in some recent works
(e.g., in [3]), our study falls exactly in this area of research by pro-
viding an initial overview of existing approaches for static analysis
of mobile apps.

5. FUTURE WORK
As future work, we are working on the design and conduction of a
full-fledged systematic mapping study about static analysis of mo-
bile apps, with the chief aim, among the others, of performing a
more systematic search and selection activity and a more thorough
analysis of the obtained data. Also, according to the research gaps
we will likely identify in our systematic map, we will focus on a
specific research challenge in the area and we will propose meth-
ods and techniques for addressing it.

6. REFERENCES
[1] F. Elberzhager, J. Münch, and V. T. N. Nha. A systematic

mapping study on the combination of static and dynamic
quality assurance techniques. Information and Software
Technology, 54(1):1–15, 2012.

[2] I. Garcıa-Ferreira, C. Laorden, I. Santos, and P. G. Bringas. A
survey on static analysis and model checking. In International
Joint Conference SOCO’14-CISIS’14-ICEUTE’14: Bilbao,
Spain, June 25th-27th, 2014, Proceedings, volume 299, page
443. Springer, 2014.

[3] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges
in mobile app development. In Empirical Software
Engineering and Measurement, 2013, pages 15–24, 2013.

[4] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
program analysis. Springer, 2015.

[5] K. Petersen, S. Vakkalanka, and L. Kuzniarz. Guidelines for
conducting systematic mapping studies in software
engineering: An update. Information and Software
Technology, 64:1–18, 2015.

[6] M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav. A survey of
static analysis methods for identifying security vulnerabilities
in software systems. IBM Systems Journal, 46(2):265–288,
2007.

30

A Mobile Application for Geographical Data Gathering and
Validation in Fieldwork (Invited Talk)

Karine Reis Ferreira,
Lúbia Vinhas,

National Institute for Space Research (INPE), Brazil
{karine, lubia}@dpi.inpe.br

Cláudio Henrique Bogossian,
André F. Araújo de Carvalho

Foundation of Science, Technology and Space
Applications (FUNCATE), Brazil

{claudio.bogossian, andre.carvalho}@funcate.org.br

ABSTRACT
Mobile devices, such as smartphones and tablets, are useful tools
for in situ collecting information about spatial locations. In this
paper, we describe the architecture of a mobile application for
geographical data gathering and validation in fieldwork. This
application is being developed based on well-established
standards in order to assure spatial data interoperability between
existing Spatial Data Infrastructures (SDI) and mobile systems.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture – domain-
specific architectures.

Keywords
Mobile application, spatial data, interoperability

1. INTRODUCTION
The recent advancements of GPS, wireless communication
network and portable technologies have motivated the use of
mobile devices for in situ gathering information about spatial
locations and validating geographical data [1][2]. Tsou [1] defines
the term mobile Geographical Information System (mobile GIS) to
refer to an integrated technological framework for accessing
geospatial data and location-based services through mobile
devices, such as smartphones and tablets. He argues that there are
two major application areas of mobile GIS, field-based GIS and
location-based services. This work focuses on mobile field-based
GIS, that is, mobile systems for geographical data collection and
validation in the field.

Two examples of projects that need mobile field-based GIS are
PRODES (Monitoring of Brazilian Amazon Rainforest) and
DETER (Real Time Deforestation Detection System), developed
by Brazilian Institute for Space Research (INPE) [3]. PRODES
has been yearly monitoring deforestation since 1988 whereas
DETER has been producing near real-time deforestation and
forest degradation alerts for more than 5 million Km2 in the
Brazilian Legal Amazon. Specialists of these two projects require
mobile systems to collect extra information about deforested
regions (e.g. photos) and validate them in the field, including
places where there is limited or any network connectivity
available.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
DeMobile'15, August 31-31 2015, Bergamo, Italy
ACM 978-1-4503-3815-8/15/08.
http://dx.doi.org/10.1145/2804345.2804354

Therefore, an essential feature of geographical data collection and
validation mobile systems is the capability of working offline. To
meet the demands of these two projects, this paper presents an
ongoing work on designing and implementing a mobile
application for geographical data gathering and validation in
fieldwork. Section 2 presents its architecture and section 3, its
implementation issues.

2. ARCHITECTURE
TerraMobile App is the name of the mobile application for
geographical data gathering and validation in fieldwork developed
in this work. Figure 1 presents its general architecture.

TerraMobile App has two modules for accessing geographical
data, “Online Data Access” and “Offline Data Access”. The
“Online Data Access” module accesses geographical data from
Spatial Data Infrastructures (SDI) through two kinds of well-
known Open Geospatial Consortium (OGC) web services, Web
Map Server (WMS) and Web Feature Server (WFS) [4] [5]. This
module only works online and will be used when there is network
connectivity available in the fieldwork.

SDI is a sharing platform that facilitates the access and integration
of multi-source spatial data in a holistic framework with a number
of technological components including policies and standards [6].
Nowadays, many data providers throughout the world have
created their own SDIs, organizing and disseminating their
geospatial data sets and metadata on the Internet via OGC web
services. Accessing spatial data sets from distinct SDIs can
improve the geographical data collection and validation task.

The “Offline Data Access” module works offline and is
responsible for accessing geographical data in the mobile storage
memory. We propose to store them in OGC Geopackage files [7].

The Geopackage specification defines a SQL database schema
designed for the SQLite software library. This schema contains a
set of pre-defined tables with integrity assertions, format
limitations and content constraints to store spatial data sets and
their metadata. GeoPackage files are platform-independent
SQLite database files that contain vector and tiled raster data sets
as well as their metadata. They are interoperable across different
platforms, including personal computing environments and
mobile devices.

To prepare GeoPackage files to be used in the mobile application,
we are developing a plugin, called TerraMobile plugin, for the
Geographical Information System (GIS) TerraView. TerraView is
a general-purpose GIS developed using the TerraLib GIS library
[8]. TerraView supports the development of plugin to enhance its
functionalities.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

DeMobile’15, August 31, 2015, Bergamo, Italy
ACM. 978-1-4503-3815-8/15/08
http://dx.doi.org/10.1145/2804345.2804354

31

Figure 1 – TerraMobile architecture

TerraMobile plugin allows users to delimit an interesting area,
access spatiotemporal data sets from different kinds of data
sources and generate Geopackage files from these data sets. The
generated files will be available through the TerraMobile server.
Besides that, users can define the forms for acquiring data on
fieldwork and synchronize the gathering data with the SDI using
the TerraMobile plugin.

3. IMPLEMENTATION
TerraMobile App is being implemented for Android operation
systems. We are using Android SDK (Software Development Kit)
and Java language. Figure 2 shows the TerraMobile App.

In most cases, we are using native Android graphic components.
However, we are also using some third party libraries to show
components like maps and access geospatial data. We are using
the following technologies:

• Android SDK Api 15+ (4.0.3 ICS): the lowest version
of the Android SDK.

• OSMDroid Map Library: an open source mapping
library that replaces Android Native MapView. It allows
users to implement an abstract tile provider for offline
or online data and also to plot overlays over the map,
like icons, tracking locations and drawing geometries.

• Java Open Mobility Library: an open source library
that allows the creation, insertion, query and update of
geospatial vector features and raster tiles on OGC
GeoPackage Standard for Android applications. It uses
JTS Topology Suite and GeoAPI to stores data on OGC
Simple Features Specification.

4. ACKNOWLEDGMENTS
Our thanks to Boeing Research and Technology – Brazil
(BR&TB) that is funding the development of the TerraMobile
App under the INPE-Boeing project “Geotechnologies for
Efficient Energy Crop Management”.

Figure 2 – TerraMobile App.

5. REFERENCES
[1] Tsou, M. H. 2004. Integrated mobile GIS and wireless

internet map servers for environmental monitoring and
management. In: Special issue on Mobile Mapping and
Geographic Information Systems, Cartography and
Geographic Information Science 31 (3): 153–165.

[2] Poorazizi, E., Alesheikh, A. A. and Behzadi, S. 2008.
Developing a Mobile GIS for Field Geospatial Data
Acquisition. Journal of Applied Sciences, 8(18), 3279-3283.

[3] INPE. 2014. Monitoramento da Floresta Amazônica
Brasileira por Satélite (Monitoring the Brazilian Amazon
Forest by Satellite). Available at www.obt.inpe.br/prodes.

[4] OGC. 2006. “OpenGIS Web Map Server Implementation
Specification”. Available at: http://www.opengeospatial.org/

[5] OGC. 2010. “OpenGIS Web Feature Service 2.0 Interface
Standard”. Available at: http://www.opengeospatial.org/

[6] Rajabifard, A., Feeny and M. E., Williamson, I. 2002. Future
Directions for SDI Development. International Journal of
Applied Earth Observation and Geoinformation 4 (1), 11-22.

[7] OGC. 2014. GeoPackage Encoding Standard. Available at:
http://www.opengeospatial.org/

[8] Camara, G.; Vinhas, L.; Queiroz, G. R.; Ferreira, K. R.;
Monteiro, A. M. V.; Carvalho, M. T. M. and Casanova, M.
A. 2008. TerraLib: An open-source GIS library for large-
scale environmental and sócio-economic applications. Open
Source Approaches to Spatial Data Handling. Berlin:
Springer-Verlag

32

CLAPP: Characterizing Loops in Android Applications
(Invited Talk)

Yanick Fratantonio
UC Santa Barbara, USA
yanick@cs.ucsb.edu

Aravind Machiry
UC Santa Barbara, USA

machiry@cs.ucsb.edu

Antonio Bianchi
UC Santa Barbara, USA

antoniob@cs.ucsb.edu
Christopher Kruegel
UC Santa Barbara, USA
chris@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara, USA
vigna@cs.ucsb.edu

ABSTRACT
When performing program analysis, loops are one of the
most important aspects that needs to be taken into account.
In the past, many approaches have been proposed to analyze
loops to perform different tasks, ranging from compiler opti-
mizations to Worst-Case Execution Time (WCET) analysis.
While these approaches are powerful, they focus on tackling
very specific categories of loops and known loop patterns,
such as the ones for which the number of iterations can be
statically determined.
In this work, we developed a static analysis framework

to characterize and analyze generic loops, without relying
on techniques based on pattern matching. For this work,
we focus on the Android platform, and we implemented a
prototype, called Clapp, that we used to perform the first
large-scale empirical study of the usage of loops in Android
applications. In particular, we used our tool to analyze a to-
tal of 4,110,510 loops found in 11,823 Android applications,
and we gained several insights related to the performance
issues and security aspects associated with loops.

Categories and Subject Descriptors
D.4.6 [Software Engineering]: Security and Protection

Keywords
Android, Static Analysis, Loop Analysis

1. INTRODUCTION
Over the past few decades, there has been an explosion in

the development and application of program analysis tech-
niques to achieve a variety of goals. Program analysis has
been used for compilation and optimization purposes, for
studying a variety of program properties, for detecting bugs,
vulnerabilities, malicious functionality, and, ultimately, for
understanding program behavior. When performing pro-
gram analysis, one of the most important aspects that needs

to be taken into account are loops, which are undoubtedly
one of the most useful and essential constructs when writing
programs. However, they are also one of the most challeng-
ing ones to handle: In fact, even answering the simplest
questions (e.g., “Is a given loop going to terminate?”) is, in
the general case, an undecidable problem.

When applying program analysis, loops also have partic-
ular importance for optimization or security purposes: the
execution of a performance-intensive operation (e.g., a GUI-
related operation) or of a security-relevant operation (e.g.,
file deletion) might not constitute a problem when executed
only occasionally, but it could be deemed as problematic
when executed multiple times within a loop. In the past,
much research has been focused on the analysis of loops,
mainly to perform Worst-Case Execution Time (WCET)
analysis [2], which aims to statically determine how many
times a loop can be executed in the worst possible case, and
to perform loop unrolling [1], which aims to unwind loops’
execution to gain a performance boost. While these ap-
proaches are powerful, they rely on pattern matching or fo-
cus on handling only very specific types of loops.

In this work1, we developed a novel loop analysis frame-
work (based on static analysis) to characterize loops un-
der many different aspects, such as how they are controlled,
which operations they perform, and their impact under both
the performance and security aspects. In particular, we fo-
cused on the analysis of Android applications, and we devel-
oped a tool, called Clapp, which works directly on Dalvik
bytecode, and it therefore does not rely on having access
to the application’s source code. The key advantage of our
approach is that it is completely generic and can be applied
to any kind of program. Moreover, our approach does not
rely on the identification of known cases through techniques
based on pattern matching.

We used Clapp to perform the first large-scale empiri-
cal study on 4,110,510 loops contained in 11,823 distinct
Android applications. The results allowed us to study the
different use cases for writing loops in Android applications,
and, more in general, to characterize the usage of loops un-
der two main perspectives, performance and security.

2. LOOP ANALYSIS FRAMEWORK
Our loop analysis framework is constituted by several anal-

ysis steps. First, the analyzer unpacks the given Android

1The full version of this paper has been published in FSE
2015 [3].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

DeMobile’15, August 31, 2015, Bergamo, Italy
ACM. 978-1-4503-3815-8/15/08
http://dx.doi.org/10.1145/2804345.2804355

33

application, and it parses the Dalvik bytecode into a cus-
tom intermediate representation (in SSA form) suitable for
performing static analysis. As a second step, the analyzer
identifies all loops defined in the application, and it then
performs the analyses at the core of our approach, control
analysis and body analysis.

Control Analysis. This analysis aims to determine whether
the number of loop’s iterations is bounded, and, more in
general, to characterize the factors that control it. This is
achieved by first identifying all exit paths and exit condi-
tions. Then, for each register involved in each condition,
the analyzer constructs an expression tree that encodes the
operations that initialize the register’s value before the first
iteration of the loop, and that update it during each itera-
tion. Then, the analysis performs selective abstract inter-
pretation to determine what is the trend of each register’s
value, attempting to answer questions such as “Is the value
constant?” and “Is the value going to eventually increase?”.
As we discuss in the full version of this paper [3], the an-
swers to these questions proved to be of key importance to
answer termination-related questions, and to characterize
which kind of external factors can influence the number of
iterations of a given loop.

Body Analysis. This analysis aims to characterize the op-
erations executed for each loop’s iterations. For each loop,
the analysis computes the set of framework APIs that could
be potentially invoked within the loop’s body. This is done
by first computing an over-approximation of the callgraph,
and by then performing reachability analysis. This set of
methods characterizes the intent of a given loop, and it al-
lows us to perform subsequent powerful analyses, such as
the identification of problematic loops.

3. EVALUATION
This section discusses the large-scale empirical study we

performed, the results we obtained, and the insights we
gained.

Dataset. Our dataset is constituted by 15,240 applications
selected, at random, from the ones collected by the Play-
Drone project [4].

Overall Results. Among the 15,240 applications selected
for the experiments, our prototype was able to successfully
analyze 11,823 (77.57%) of them. The analysis of the re-
maining 3,417 applications did not terminate before the time-
out (30 minutes per app). For the applications that were
successfully processed, our tool analyzed a cumulative to-
tal of 4,110,510 loops, and identified a total of 118,190,014
API framework methods that could potentially be invoked
in these loops. On average, analyzing each application takes
96.77 seconds, and analyzing each loop takes 50.86 seconds.

Control Analysis Results. We now report the results re-
lated to the control aspect of loops. Our analysis identified
3,196,119 (77.70%) simple loops (i.e., loops with only one
exit path with one condition) and 910,841 (22.22%) complex
loops (i.e., loops with one or more exit paths with several
exit conditions). For the 3,550 (0.08%) remaining loops, our
analysis determined that there were no explicit exit paths,
which might indicate the presence of infinite loops. As an-
other interesting statistic, we found that 266,667 (6.48%) of
the loops contain at least one nested loop. Our analysis also

determined that 2,601,240 (63.28%) of the loops are guar-
anteed to terminate, and that all the exit paths associated
to 6,256 loops do not seem to be satisfiable, thus once again
indicating the presence of potentially-infinite loops. Our
analysis also classified 24,842 (0.60%) loops as risky, with
which we refer to loops that, independently from whether
they terminate or not, a subtle change in their body might
cause them to become infinite. As a clarifying example, con-
sider the loop“for (i=0; i != 12; i+=3){...}”: this loop
will iterate exactly four times. However, a modification to
how the variable i is updated could suddenly introduce an
infinite loop.

Body Analysis Results. The results of the body analysis
show that, in most cases, developers make use of loops to in-
voke low-risk APIs. For example, they use loops to perform
simple iterations over app-specific objects, perform cryp-
tographic operations, generating random numbers, parsing
data, and iterating over different data structures. How-
ever, our analysis also identified 1,057,628 loops that could
potentially invoke network-related API functions, 764,240
of which could be executed by the app’s main UI thread.
The Android official documentation clearly states that no
potentially-blocking operations should be ever performed
within the main UI thread, since, in certain scenarios, the
app might be terminated with the infamous Application Not
Responding (ANR) error message. This aspect is so prob-
lematic that a recent version of Android introduced Strict-

Mode, which is, quoting the official documentation, a tool to
“catch accidental disk or network access on the application’s
main thread.” However, this mechanism can be explicitly
disabled by an Android application, and, interestingly, we
found 207,888 loops that potentially do so. We invite the
interested reader to consult the detailed results reported in
the full version of this paper [3].

4. CONCLUSIONS
We presented Clapp, a tool that implements a general

loop analysis framework (based on static analysis) to study
a variety of aspects related to the usage of loops in Android
applications. We used Clapp to perform the first large-
scale empirical study on 4,110,510 loops contained in 11,823
Android apps, and we gained several insights related to their
control, body, performance, and security aspects.

5. REFERENCES
[1] D. Berlin, D. Edelsohn, and S. Pop. High-level Loop

Optimizations for GCC. In Proceedings of the GCC
Developers Summit, 2004.

[2] A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde,
and B. Lisper. Loop Bound Analysis based on a
Combination of Program Slicing, Abstract
Interpretation, and Invariant Analysis. In Workshop on
Worst-Case Execution Time Analysis (WCET), 2007.

[3] Y. Fratantonio, A. Machiry, A. Bianchi, C. Kruegel,
and G. Vigna. CLAPP: Characterizing Loops in
Android Applications. In Proceedings of the ACM
Symposium on the Foundations of Software Engineering
(FSE), 2015.

[4] N. Viennot, E. Garcia, and J. Nieh. A Measurement
Study of Google Play. In ACM International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRIC), 2014.

34

Optimizing Display Energy Consumption for
Hybrid Android Apps (Invited Talk)

Ding Li, Angelica Huyen Tran, and William G. J. Halfond
University of Southern California

Los Angeles, California, USA
{dingli, tranac, halfond}@usc.edu

ABSTRACT
Energy has emerged as an important quality metric for apps
that run on mobile platforms. This talk describes our ap-
proach for reducing display energy by automatically chang-
ing the color schemes used by a web app so that the pages
consume less energy when displayed on an OLED based
smartphone.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Diagnostics

General Terms
Performance

Keywords
Energy optimization, display energy, mobile systems, web
applications

1. INTRODUCTION AND MOTIVATION
Energy has become an important quality metric for mo-

bile apps. Recent studies have shown that energy related
complaints can represent a significant source of user unhap-
piness with an app [2]. However, developers have tradition-
ally not had extensive guidance for how to reduce the energy
consumption of their apps. New techniques (e.g., [3, 4, 8])
have started to address this problem by providing develop-
ers with tools to understand, at a source line level, what is
consuming energy in their apps.

These techniques have enabled us to gain new insights
into how energy is consumed by apps and identify areas for
improvement [7]. In particular, these results show that al-
most 62% of an app’s energy is consumed when it is either
sleeping or waiting for input. The primary cause of that non-
execution time energy consumption is display energy, which
can consume 40–60% of an app’s total energy [9]. These
results motivate attention to reducing display energy.

Many popular modern smartphones use OLED based dis-
plays. An interesting characteristic of these displays is that
they consume less energy when displaying dark (e.g., black)
colors than light colors (e.g., white). Intuitively, a way to
take advantage of this is to modify an app’s colors to use a
color layout with black as the dominant color instead of the
ever popular light or white backgrounds. However, this is
challenging because the UIs of an app can be dynamically
generated and colors must be adjusted in a way that bal-
ances energy efficiency and aesthetics. Prior work has either
required developers to manually generate these new color
schemes, which is labor intensive, or simply used color in-
version, which reduces aesthetics since color differences are
not maintained in the transformed app [1].

In this talk, we present our prior work in developing an
approach that can help developers in making their web apps
more energy efficient when displayed on an OLED based
smartphone [9]. The way this is done is that the approach
analyzes the implementation of the target web application
to identify its UI layout and colors. Then the approach uses
this information to find a new energy efficient color scheme
that tries, as much as possible, to maintain color differences
between neighboring elements. An example before and after
image of a transformed web app is shown in Figure 1.

Figure 1: Example output of the Nyx approach

2. APPROACH
Our approach can be roughly described as having five

steps. The first step is a static analysis that examines the
server-side code of the web app and builds a model represent-
ing the potential HTML content that it could generate. In

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

DeMobile’15, August 31, 2015, Bergamo, Italy
ACM. 978-1-4503-3815-8/15/08
http://dx.doi.org/10.1145/2804345.2804356

35

the second step, the approach parses this model to identify
the visual relationships between tags, such as “contained by”
and“next to.” After identifying these relationships, the third
step of the approach is to determine the colors of the text and
background of the different HTML elements and abstract
this information into a Color Conflict Graph (CCG) that
only shows colors and their visual relationships with each
other. Each edge of the CCG is weighted to signify a prior-
ity in maintaining the corresponding relationship. Once the
CCG is complete, the approach solves for a recoloring that
is more energy efficient but maintains, as closely as possible,
the color differences between edges in the CCG. Since solv-
ing for the best recoloring is an NP problem, in the fourth
step, the approach uses a search-based approximation to find
an optimal solution. Finally, in the fifth step, the approach
uses bytecode rewriting and parsing-based transformations
to insert the new color scheme into the application.

3. EVALUATION
To evaluate the effectiveness of our approach, we imple-

mented it in a prototype tool, Nyx [10]. Our implementation
is for Java-based web applications and we evaluated it on a
set of seven web applications that ranged in size from 5K to
154K SLOC and used a variety of frameworks, such as JSP,
Velocity, and Turbine. For all of the apps it was possible to
analyze and transform them in under three minutes.

In terms of energy savings, we found that energy con-
sumption of the display, once it had loaded and rendered
the page, decreased by 40%. We also saw a power decrease
of 25% while the page was loading and rendering. This oc-
curred because modern mobile browsers start to render a
page before it has finished loading. Overall, these are sig-
nificant results and show the potential of our technique to
reduce energy consumption.

We also performed a study to assess the aesthetics of the
transformed web pages. To do this, we gave a group of
20 grad students the original and optimized versions of the
subject apps and asked them to rate their attractiveness,
readability, and acceptability. Overall, the students rated
the transformed web pages as 17% less attractive and 14%
less readable (using a 10 point scale). However, when given
a summary of the energy savings that could be achieved
for each page, 67% of the students indicated it would be
acceptable for normal usage, and 97% indicated it would be
acceptable when the battery level was critical.

4. SUMMARY
The energy consumed by the display component of a smart-

phone device represents a significant portion of the overall
energy expended by the device. This talk focused on re-
cent work ([9]), Nyx, that optimizes energy consumption by
automatically transforming the colors used by an app’s UI
so that the UI consumes less energy when displayed on an
OLED based smartphone. The evaluation results of Nyx
were very positive and show that it was able to reduce dis-
play energy by an average of 40%. Nyx was able to generate
these results in an average time of under three minutes and
the aesthetics of its color schemes were acceptable to users
when they were made aware of the power savings.

In future work, we are investigating the use of Nyx to
detect display energy hotspots (e.g., [?]) and refine the
Nyx mechanisms to improve on the aesthetics for parts of

the transformation that were considered less attractive by
end users. We will also investigate other areas for energy
improvement in mobile apps, such as network communica-
tion [5, 6].

5. ACKNOWLEDGMENTS
The work described in this talk was supported by National

Science Foundation grant CCF-1321141.

6. REFERENCES
[1] M. Dong and L. Zhong. Chameleon: A Color-adaptive

Web Browser for Mobile OLED Displays. In MobiSys,
2011.

[2] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J.
Halfond. Truth in advertising: The hidden cost of
mobile ads for software developers. In Proceedings of
the 37th International Conference on Software
Engineering (ICSE), May 2015.

[3] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating android applications’ cpu energy usage via
bytecode profiling. In Proceedings of the First
International Workshop on Green and Sustainable
Software (GREENS), pages 1–7, May 2012.

[4] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating mobile application energy consumption
using program analysis. In Proceedings of the 35th
International Conference on Software Engineering
(ICSE), May 2013.

[5] D. Li and W. G. Halfond. Optimizing energy of http
requests in android applications. In Proceedings of the
Third International Workshop on Software
Development Lifecycle for Mobile (DeMobile) – Short
Paper, September 2015. To Appear.

[6] D. Li and W. G. J. Halfond. An investigation into
energy-saving programming practices for android
smartphone app development. In Proceedings of the
3rd International Workshop on Green and Sustainable
Software (GREENS), June 2014.

[7] D. Li, S. Hao, J. Gui, and W. G. Halfond. An
empirical study of the energy consumption of android
applications. In Proceedings of the International
Conference on Software Maintenance and Evolution
(ICSME), September 2014.

[8] D. Li, S. Hao, W. G. Halfond, and R. Govindan.
Calculating source line level energy information for
android applications. In Proceedings of the
International Symposium on Software Testing and
Analysis (ISSTA), July 2013.

[9] D. Li, A. H. Tran, and W. G. J. Halfond. Making Web
Applications More Energy Efficient for OLED
Smartphones. In Proceedings of the International
Conference on Software Engineering (ICSE), June
2014.

[10] D. Li, A. H. Tran, and W. G. J. Halfond. Nyx: A
display energy optimizer for mobile web apps. In
Proceedings of the 10th Joint Meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE) – Tool Track, September
2015. To Appear.

36

Author Index
Al-Subaihin, Afnan1
Amalfitano, Domenico 5
Amatucci, Nicola 5
Autili, Marco29

Bianchi, Antonio33
Bogossian, Cláudio Henrique . .31
Brambilla, Marco 21

Canfora, Gerardo 13

De Carvalho, André F. Araújo . .31
Dubinsky, Yael3

Fasolino, Anna Rita5
Ferreira, Karine Reis 31

Finkelstein, Anthony 1
Fratantonio, Yanick 33

Halfond, William G. J. 25, 35
Harman, Mark 1

Jia, Yue . 1

Kruegel, Christopher 33

Li, Ding .25, 35

Machiry, Aravind 33
Malavolta, Ivano29
Martin, William 1
Medvet, Eric 13

Mercaldo, Francesco 13

Perucci, Alexander 29

Salazar, Felix Javier Acero 21
Sarro, Federica 1
Scoccia, Gian Luca 29

Tramontana, Porfirio 5
Tran, Angelica Huyen 35

Vigna, Giovanni 33
Vinhas, Lúbia 31
Visaggio, Corrado Aaron 13

Zhang, Yuanyuan1

