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ABSTRACT

Temporal logic based approaches that automatically gener-
ate controllers have been shown to be useful for mission level
planning of motion, surveillance and navigation, among oth-
ers. These approaches critically rely on the validity of the
environment models used for synthesis. Yet simplifying as-
sumptions are inevitable to reduce complexity and provide
mission-level guarantees; no plan can guarantee results in a
model of a world in which everything can go wrong. In this
paper, we show how our approach, which reduces reliance on
a single model by introducing a stack of models, can endow
systems with incremental guarantees based on increasingly
strengthened assumptions, supporting graceful degradation
when the environment does not behave as expected, and
progressive enhancement when it does.

Categories and Subject Descriptors
D.2 [Software Engineering)]

General Terms
Design

Keywords
Self-adaptive Systems, Controller Synthesis

1. INTRODUCTION

Controller synthesis and planning approaches based on
temporal logic have proven useful for generating discrete
event-based robot behaviours from high-level specifications
(e.g. [4, 30, 29]). Such approaches rely on finite-state mod-
els that purport to represent the operating environment and
how the robot can interact with it. However, any such model
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is by definition an abstraction of the real environment and
its dynamics, and any such model entails a risk that it is
not a true representation of the environment as encountered
at runtime. In some scenarios, this risk, when materialised,
may lead to catastrophic failure of the mission.

One means to cope with this uncertainty [12] is to use
machine learning techniques that revise (or indeed generate
from scratch) the models on which synthesis relies so that,
over a period of time, the models converge upon a “realistic”
description of the environment [27, 11, 14]. One drawback of
using such techniques is the computational cost of learning,
and the delay before the mission can begin in earnest, which
may be prohibitive in some domains (e.g. safety-critical sys-
tems). Another drawback is that the learned model may be
of such complexity that synthesis becomes computationally
infeasible, and in the worst case nothing can be guaranteed
in a world where anything can go wrong. There is therefore
a benefit in having an element of manual abstraction in-
volved in synthesising robotic behaviours. To that end, we
have proposed an approach [7] in which models at different
levels of abstraction are used to synthesise a controller capa-
ble of gracefully degrading its guarantees when the runtime
environment diverges from one of the more abstract models,
and progressively enhancing its guarantees when the envi-
ronment behaves as envisaged in the more idealised models.

Our approach uses a stack of models where higher models
are more idealised and can be simulated by the lower mod-
els. A mission requirement is associated with each tier of
the stack. Higher tiers allow to produce controllers guaran-
teeing stronger requirements, while lower tiers only allow for
controllers with weaker requirements because of their more
realistic description of the environment dynamics. Each tier
of the stack can be regarded as an independent controller
synthesis problem, but our approach combines the resulting
controllers in such a way that a failure in a higher controller
can be handled by a graceful degradation to the controller
of a lower tier, resulting in a lower guaranteed ‘service level’.
Likewise, if the environment conforms to a higher tier, we
may attempt to synthesise a controller for a higher tier and
so enhance the guaranteed service level.

In this paper, we show how synthesised controller stacks
can be used to provide robust behaviour for robot missions
from high-level temporal logic specifications. We apply it
to an existing case study involving a robot engaged in a
surveillance mission [28] and show how, in addition to au-
tomatic synthesis for cyclic missions (i.e. missions in which
the goals are achieved infinitely many times, our approach
enables the robot to handle invalid environment models. In



other words, in this paper we report on an application of
our previous technique to a known case study to evaluate
its applicability and asses some of its properties.

In Section 3 we give an overview of our approach and
the guarantees it makes. Section 4 describes our particular
implementation of the general approach and how it achieves
the general requirements. Sections 5 and 6 discuss how the
approach has been applied to an existing surveillance case
study. Finally, Section 7 comments on some of the related
work, before Section 8 concludes.

2. BACKGROUND

We start with labelled transition systems a canonical rep-
resentation of reactive components and systems.

DEFINITION 2.1. (Labelled Transition Systems) A Labelled

Transition System (LTS) is E = (S, A, A, so), where S is a
finite set of states, A is its communicating alphabet, A C
(S x A x S) is a transition relation, and so € S is the
initial state. We denote A(s) = {€ | (s,4,8") € A} and
A(s, ) ={s" | (s,4,s") € Ag}. A trace of E ist=4o, {1, ...,
where for every i > 0 we have (s, 4, si+1) € A, We denote
the set of traces of E by TR(E). We say that an LTS is de-
terministic if (s, £,s") and (s,¢,s") are in A implies s' = s".

Reactive systems are built as compositions of multiple re-
active components. Such composition is formalised as fol-
lows:

DEFINITION 2.2. (Parallel Composition) Let M = (Si,
A]w, AM, S]y[o) and E = (SE, AE,AE, SEO) be LTSS.
The Parallel Composition (||) is a symmetric operator such
that EHM is the LTS EHM = (SE X S]V[, Agp U AM, A,
($Ey, SMy)), where A is the smallest relation that satisfies
the rules below, where £ € Ag U A

(s,4,s)EAE

(t,6,t")EANM
(G0),6(7,0)€en L€ AR\ AM

(G0, 6,(s,t))€en L€ AM\AB

(s.6,s)EAR, (t,Lt)EAN
((s,8),,(s",t")) €A

LEARNAy

We restrict attention to states in Sg X Sy that are reachable
from the initial state (sg,, Sm,) using transitions in A.

There are various restrictions that can be imposed on the
LTS to be composed using parallel composition. These re-
strictions vary in order to adequately capture different inter-
action models. We are interested in reasoning about what a
controller can achieve in a possibly adversarial environment.
Hence, the distinction between actions that are controlled
or monitored by the controller is relevant. Thus we adopt
the notion notion of legal LTS from Interface Automata [5]
where a component may not block their environment from
performing actions that they monitor.

DEFINITION 2.3. (Legal LTS) Given LTSs M = (S, A,
A, sum,) and E = (Sg, A, Ag, sg, ), where A is partitioned
into actions controlled and monitored by M (A = AcUAwm ),
we say that M is a legal LTS for E if for all (sg,sm) € E||M
it holds that Ap(sg) N Ac 2 Am(sm) N Ac and also that
AE(SE) N A - AM(S}\{) NAum.

Simulation relation between two LTSs is formally defined
as follows.

27

DEFINITION 2.4. (Simulation) Let o be the universe of all
LTSs with communicating alphabet A. Given E and F' in g,
we say that E simulates F, written E > F, when (E,F) is
contained in some simulation relation R C o X o such that

or a € an s € we have — mplies
for all £ € A and (E,F) € R we have E —~ E' impli

that there is F’ such that F — F' AVsp € init(E’) - 3sp €
init(F') - (E', F') € R.

We fix Fluent Linear Temporal Logic (FLTL) [15] as the
language for describing properties. A fluent Fl is defined as
Fl = (I, Try, Initm), where Ip C A is the set of initiating
actions, T C A is the set of terminating actions and Im N
Tr = 0. A fluent may be initially true or false as indicated
by Initp. FEvery action £ € A induces a fluent, namely

0= <é7 A \ {é},false).

Let F be the set of all fluents over A. An FLTL formula
is defined inductively using the standard Boolean connec-
tives and temporal operators X (next), U (strong until) as

follows:
pu=Fl| ooV | Xp| Uy

where Fl € F. Additionally, as it is usual, we define p A as
-V, Op (eventually) as TUgp, Oy (always) as =O-p,
and oW1 (weak until) as (@Uv) V Op.

Let IT be the set of infinite traces over A. The trace m =
Lo, £q, . .. satisfies a fluent Flat position 4, denoted 7,7 = Fl,
if and only if one of the following conditions holds:

o Initm A(Vj EN-0<j<i—{; ¢ Tr)

e jeN-(J<iNlelImANVEEN j<k<i =4, ¢
Tr1)

In other words, a fluent holds at position 7 if and only if it
holds initially or some initiating action has occurred, but no
terminating action has yet occurred.

For an infinite trace 7, the satisfaction of a (composite)
formula ¢ at position i, denoted m,i = ¢, is defined as
follows:

w1 = Fl 2 milEFl

i e £ =(m i p)
miEeVYy £ (miEe)V(miEY)
miEXpe 2 mitllEe
mikEeUp 2 3 >iomjEgA

Vi<k<j-mkEe

We say that ¢ holds in 7, denoted 7 |= ¢, if 7,0 = . A
formula ¢ € FLTL holds in an LTS E (denoted E = ¢) if it
holds on every infinite trace produced by E.

An LTS control problems aims to find, given an LTS F
modelling the environment to be controlled and a goal ¢ to
be achieved, a controller M in the form of an LTS such that
E||M does not restrict uncontrollable actions of E, does not
have deadlocks and satisfies ¢

DEFINITION 2.5. (LTS Control [6]) Given a domain model
in the form of an LTS E = (S, A, A, s0), a set of controllable
actions A, C A, and an FLTL formula ¢, a solution for the
LTS control problem € = (E,p, Ac) is an LTS M = (Su,
Anr, Anr, Sop,) such that M is a legal LTS for E, E||M is
deadlock free, and every trace w in E||M is such that = = .

3. APPROACH



The central concept in our approach is that of the control
stack, which has in each tier a controller synthesis problem
for a particular mission requirement and environment model.
Overall the control stack specifies the robot’s mission.

The key requirements the approach imposes in order to
guarantee graceful degradation and progressive enhancement
are that (see Figure 1): (i) higher-level environment mod-
els must be simulated by lower-level environment models,
capturing a notion of idealisation of higher-level models; (ii)
higher-level controllers used to achieve enhanced function-
ality must be simulated by lower levels controllers, ensuring
a consistent overall strategy; (iii) the runtime infrastructure
must be capable of detecting when an inconsistency between
an environment model (in any tier) and the runtime envi-
ronment occurs; (iv) a sound automated replanning proce-
dure for each tier that is expressive enough to deal with the
system requirements for its tier must be provided, allowing
progressive system enhancement after inconsistencies have
been detected. Our implementation of the approach pro-
vides the runtime infrastructure (iii) and planning proce-
dure (iv), guarantees controller simulation (ii), and checks
that the models given in a control stack specification satisfy

(i)

strong assumptions
& guarantees

idealised

o |
simulatest
M < |
S 1
w2 || o

Figure 1: Multi-tier control problem

]
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& guarantees

The environment models are expected to be ranked in
terms of the degree of idealisation of the environment they
represent. The environment model My is the least ide-
alised and require that environment models further up the
hierarchy allow strictly less behaviour. This can be for-
mally captured via a simulation relation [23], M; > M; for
i < j. We require environment models to have the same
communicating alphabets partitioned identically into con-
trolled and monitored actions. Controlled actions are those
that the robot may choose to perform, while monitored ac-
tions are events that the robot observes in the environment.
In summary, the less idealised the environment model is, the
more behaviour (in terms of unexpected actions and non-
determinism) may arise.

Each tier ¢ has an associated requirement (G;) to be achieved

by the system assuming that the runtime environment con-
forms to the environment model for that tier (M;).

Each tier introduces a control problem & = (M;,G;). A
solution to a control problem (a controller) is a deterministic
LTS that, when composed with its environment, guarantees
requirement G; (i.e. M;||C; = G;). The control stack in-
troduces an additional constraint: each controller must be
simulated by controllers in lower tiers (C; > C; for i < j).
Intuitively, this requires that a controller never do something
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that a lower-tier controller would not do, thus ensuring that
if a controller must be stopped, because the assumptions for
its tier are discovered not to hold, decisions made by it up to
that point have been consistent with lower-tier controllers.
This allows for graceful degradation, falling back to lower-
tier controllers when needed. Section 4 describes how this
constraint is satisfied.

Control stack synthesis is executed bottom-up through
the tiers. The operation attempts to build a controller that
solves the control problem in a tier while being simulated
by the controller for the tier immediately below. We do
not require that control problems for all tiers have solution.
It is possible that the system starts in a degraded mode,
with controllers solving problems up to level i. The system,
as the current state evolves, may progressively enhance its
behaviour by synthesising controllers for tiers beyond tier 4.

After synthesis, the enactment procedure continuously mon-
itors the environment and concurrently executes the stack
of controllers giving priority to the controller of the upper-
most enabled tier. It continuously updates the current state
based on monitored actions and sensed state, disabling tiers
at level ¢ and above should an inconsistency be detected at
tier ¢ (Section 4 shows how this is achieved). At any point,
to progressively enhance functionality, a replanning attempt
may be made for the lowest disabled tier. Based on the cur-
rent state of the enabled tier immediately below, the state
of the disabled tier is automatically approximated and an
attempt is made to build a controller that will work despite
the uncertainty about the current state of the tier. This
demands that the controller synthesis procedure be capable
of solving problems exhibiting non-determinism. Should a
controller exist, it is put into the controller hierarchy and
the tier is enabled. The approach does not prescribe when
replanning must be attempted. In principle this can be done
at any time, however in practice replanning may be associ-
ated with a clock or with heuristics related to the problem
domain. For a detailed explanation of the enactment proce-
dure the reader is referred to [7].

4. IMPLEMENTATION

The implementation of our framework consists of two main
components: a planner, which implements the controller
synthesis algorithms, and an enactor, which handles run-
time execution of the control stack.

4.1 Planner

The Modal Transition System Analyser (MTSA) [8], is a
tool for developing and analysing compositional models of
concurrent systems, using the Finite State Processes (FSP)
process algebra. Importantly for our approach, MTSA im-
plements controller synthesis algorithms for Generalised Re-
activity(1) (GR(1)) goals, which cover an expressive subset
of linear temporal logic including safety and liveness proper-
ties [8]. Our general approach is agnostic as regards the syn-
thesis procedure, but GR(1) is expressive enough for many
domains. We extended MTSA to support the specification
and synthesis of complete control stacks A control stack C is
specified in MTSA as follows:

controlstack ||C@{Controlled} {
tier (ENV, REQ)

}



where Controlled refers to a set of controlled actions, and
where each tier consists of environment model ENV and mis-
sion requirement specification REQ. A control stack may con-
sist of any number of tiers ordered such that the last tier has
the most realistic environment model.

Environment models and requirements are defined using
existing support in MTSA for process and property specifi-
cation in FSP and FLTL (fluent linear temporal logic), and
examples of them can be found in Section 5.

Synthesis of the control stack is achieved by solving the
controller synthesis problem of each tier bottom-up from
the lowest tier. If no solution is found for the problem in
a particular tier, synthesis of the stack terminates at that
tier. The procedure also includes a sanity check that the
environments of tiers simulate the one immediately above.

Synthesis for a single tier ¢ consists of the following steps:

1. Compose the tier’s environment model FE; in parallel
with the controller C;_; generated by the tier below
(if there is a tier below) to create E;. This ensures
that the controller for tier ¢ will be simulated by the
controller of the tier below.

2. Solve the GR(1) controller synthesis problem for the
tier’s requirement on E;, to produce controller C;.

3. Complete controller C; to produce C;. The completion
consists of considering the monitored actions enabled
in each state of the controller, and adding transitions
to a designated exception state for any monitored ac-
tions which are not enabled. These transitions capture
behaviours of the environment that have not been an-
ticipated in the present tier’s environment model. If
the runtime environment does not behave as the model
describes, one of these transitions will be taken to the
exception state. A single extra transition, which we
call an exception marker, is added at the exception
state which indicates to the enactor that a particu-
lar tier has been disabled. It is these transitions that
enable the enactor to detect inconsistencies

The final control stack state machine C'S is a parallel
composition of the completed controllers C, i.e. CS =
complete(Ch)|)...|[complete(Crn) = Ci|...||Cy,. This compo-
sition guarantees the requirements of every tier of the stack
until the exception marker for tier ¢ occurs, at which point
it only guarantees the requirements of the tiers up to i — 1.

4.2 Enactor

The enactor extends [3] to execute control stacks rather
than individual controllers. It keeps track of the stack’s cur-
rent state, executing controlled actions (via domain-specific
action implementations as in [3]) and responding to moni-
tored environment events. When the current state is con-
trolled, the enactor selects an enabled action at random.
When the state is uncontrolled, the enactor waits to receive
an environment event. In states where the only enabled ac-
tion is an exception marker for some tier 7, the enactor notes
the degradation of the service to ¢ — 1 and reports this to
the rest of the framework. In effect, this disables the con-
troller for tier . The planner may attempt at any point
an enhancement by re-synthesising a controller for tier ¢ (or
above).
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S. CASE STUDY

In this section we apply our approach to an autonomous
robot given the mission of surveying a set of regions of a
city. This case study is inspired by that given in [28]. The
environment consists of five regions of interest, and when
each region is visited the robot may receive a reward or incur
some damage. In the original problem, the environment also
contained a number of obstacles but the task of avoiding
these is handled with lower-level control, and so we omit
them from our discrete specification here.

Our overall mission goal is to have the robot repeatedly
collect a specific reward (reward[1]), and collect the other
rewards if possible. Unfortunately, it is not possible to guar-
antee achievement of this goal in the environment due to two
sources of uncertainty. The first concerns the motion of the
robot, which is not always reliable, and the second concerns
the rewards and damage that the environment may provide
in each region. In the worst case, the robot may move to
the wrong region and receive unexpected rewards or damage.
This would make our overall goal unachievable. However, we
can decompose the mission into a series of requirements, the
weakest of which can be satisfied in the most realistic envi-
ronment in the lowest tier, and then introduce further tiers
above for stronger requirements in more idealised environ-
ments.

The tier 1 (most realistic) environment model available to
us is given in FSP syntax below.

SLIPPY_ROBOT = (arrive[’r5]->ENV->ROBOT[’r5]),
ROBOT [p:Locations] =
(goto[q:Locations]->arrive [q] ->ENV->R0OBOT [q] |

goto[’r3]->arrive [’r3]->ENV->ROBOT[’r3] |
goto[’r3]->arrive[’r4]->ENV->ROBOT[’r4]).

ORIGINAL_MAP = MAP,
MAP = (
arrive[’r1]->(reward[1]->MAP | reward[2]->MAP) |

arrive[’r4]->(reward[2]->MAP | damage[2]->MAP) |
arrive[’r5] -> base -> MAP)+{ENV}.
| ISLIPPY_DOMAIN = (ORIGINAL_MAP| |SLIPPY_ROBOT).

The model states that the robot (which starts in r5) can
perform a controlled goto action, which is followed by a
monitored environment event arrive, which indicates ar-
rival at the destination. This model displays a degree of
non-determinism representing unreliable motion of the robot
(it can equally represent unreliable sensing of location). In
particular, there are two groups of adjacent regions. When
the robot moves towards one such region, it may arrive in
a different region that is adjacent to the destination. For
example, moving to r3 may lead to arrival in r3 or r4.

As specified in the MAP process, after arrival, the environ-
ment can respond with one of several events representing
rewards or damage. For instance, in region ri, the envi-
ronment may provide reward[1] or reward[2]. Different
regions provide different rewards, and region r5 provides
event base to represent the base location. The unpredictable
motion in this environment model means that we cannot
guarantee the strong properties that we are interested in.
However, in the worst case we want the robot to ensure its
physical safety and so our tier 1 requirement AVOID_DAMAGE
is to avoid receiving damage[2]. This property is specified
as follows:



fluent DAMAGE[i:Damages] = <damage[i], base>
1tl_property NO_DAMAGE2 = []!DAMAGE[2]
controllerSpec AVOID_DAMAGE = {

safety = {NO_DAMAGE2}

controllable = {CONT} }

The controller satisfying this requirement will never allow
the robot to attempt a goto[’r3] as it may arrive to r4
which can result in damage.

If we assume reliable motion it is possible to guarantee
stronger requirements. We specify such an assumption by
removing the non-determinism from the ROBOT process:

ROBOT = (arrive[’r5] -> ENV -> ROBOT[’r5]),
ROBOT [p:Locations] =
(gotol[q:Locations]->arrive[q]

-> ENV -> ROBOT[q]).
| IORIGINAL_DOMAIN =
(ORIGINAL_MAP| |ROBOT) .

We are now able to introduce a more interesting mission
requirement. We are particularly interested in having the
robot collect reward[1], and hence our tier 2 requirement
REWARD_LIVE_GOAL is to collect reward[1] infinitely often
(i.e. OO reward:), and to visit the base infinitely often
(O base). It is specified as follows:

fluent
fluent
assert

REWARD[i:Rewards] = <reward[i], base>
AT_BASE = <base, goto[Locations]>
REWARDS = (REWARD[1])
assert VISITBASE = AT_BASE
assert REWARDFAULTS = REWARD[2]
controllerSpec REWARD_LIVE_GOAL = {
failure = {REWARDFAULTS}
liveness = {REWARDS,VISITBASE}
controllable = {CONT} }

The desired reward is only available in region r1, and the
environment model states that, instead of reward[1], the
environment may, with some probability, give reward[2].
Provided that these hidden probabilities are non-zero, they
can be abstracted with the assumption that arriving in r1 in-
finitely often will yield reward[1] infinitely often. Encoding
this kind of assumption in GR(1) has been demonstrated in
[8] where probabilistic failures (i.e. reward[2]) are treated
non-quantitatively.

It would now be possible to create a control stack consist-
ing of two tiers using the above models and requirements.
However, the synthesised controller only guarantees that
eventually the desired reward will be received. In a prac-
tical setting with a robot’s limited power supply, this is too
weak a guarantee. Instead, we wish to have a bound on
how long it will take to receive the reward. In order to do
this we must strengthen our assumptions about the environ-
ment and create an idealised model of it, resulting in a third
tier in our stack. In this case, we estimate that the envi-
ronment has a low probability of repeatedly failing to give
reward[1] (e.g. if the probability of reward[1] is 0.5 then
the chance of failing in four attempts falls rapidly to 0.0625).
We therefore introduce the assumption that the environment
will comply within a small bound on the number of attempts,
accepting that there is a small risk that this bound may
be broken at runtime. In our idealised tier 3 environment
model BOUNDED_FAILURE_DOMAIN we introduce an FSP pro-
cess that restricts the previously given ORIGINAL_MAP such
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that the number of reward actions before the desired reward
is bounded.

BOUNDED_FAILURES (Reward=1,Bound=2) = BF[0],

BF[i:0..Bound] = (reward[Reward] -> BF[O0]

| when (i < Bound)

{{reward[Rewards] }\{reward[Reward]}} -> BF[i+1]).

| |IBOUNDED_FAILURE_DOMAIN =
(ORIGINAL_MAP| | BOUNDED_FAILURES(1,5) | [ROBOT) .

We are now in a position to specify the stronger require-
ment for tier 3. The REWARD_BOUNDED_GOAL states that the
reward must be received within a count of 7 controlled ac-
tions.

fluent ENDED = <ended, reset>
fluent REWARD_BOUNDED[i:Rewards] =
<reward[i], reset>
1tl_property BOUNDREWARDS =
[] (ENDED ->
(REWARD_BOUNDED[1] && AT_BASE))
| |BOUNDEDREWARDS (Bound=8) =
(RUNNING || COUNT(Bound)
| | BOUNDREWARDS) .
| IBR = BOUNDEDREWARDS(7) .
controllerSpec REWARD_BOUNDED_GOAL = {
safety = {BR}
controllable = {CONT} }

The tier 3 controller will ensure that reward[1] is received
within at most 7 controlled actions (resetting the count when
received), assuming that the runtime environment behaves
like the tier 3 model. If, however, the runtime environment
does not behave in this idealised manner, the control stack
will ensure graceful degradation from tier 3 to tier 2. More
specifically, if reward[1] is not received within the bound,
an exception marker transition (inserted by the completion
of the tier 3 controller) will be taken, and the subsequent
behaviour of the control stack will no longer conform to the
tier 3 controller. Instead it will guarantee only the require-
ments of tiers 1 and 2.

In the final, uppermost tier we have a mission require-
ment which relies on the most idealised model of the envi-
ronment. We would like, if the environment turns out to be
an ideal one, that the robot collect any other rewards avail-
able. Hence, our tier 4 requirement is for the robot to have
received reward[1] and either of the other rewards infinitely
often (i.e. OO (reward: A (rewards V rewards))):

assert ALL_REWARDS =
(REWARD[1] && (REWARD[2] || REWARD[3]))
controllerSpec ALL_REWARD_LIVE_GOAL = {
liveness = {ALL_REWARDS}
controllable = {CONT} }

This requirement can only be achieved by assuming an
environment which gives rewards deterministically:

PREDICTABLE_MAP = MAP,

MAP = (

arrive[’r1] -> (reward[1] -> MAP) |
arrive[’r2] -> (reward[2] -> MAP) |

arrive[’r5] -> base -> MAP)+{ENV}.



The specification of the mission control stack composed of
the four tiers is as follows:

controlstack ||STACK@{CONT}= {
tier (PREDICTABLE_DOMAIN,ALL_REWARD_LIVE_GOAL)
tier (BOUNDED_FAILURE_DOMAIN,REWARD_BOUNDED_GOAL)
tier (ORIGINAL_DOMAIN,REWARD_LIVE_GOAL)
tier (SLIPPY_DOMAIN,AVOID_DAMAGE)

The resulting control stack state machine, of 2427 states,
was synthesised in 2951ms on a laptop with an Intel Core i5
2.3GHz CPU and 4Gb memory.

5.1 Graceful Degradation

The four tiers of our control stack mean that the level of
service can be degraded, in response to uncertainty in the
environment, three times before failing completely (provided
that the assumptions of the higher tiers are violated before
those of lower tiers). A controller synthesised for a single
model and single goal will fail completely the first time an
unexpected event is encountered.

When the control stack is operating in tier 4, one of the
possible traces leading to degradation is:

arrive[’r5], base, goto[’r1], count[0], arrive[’ri1],
reward[2], tier_disabled4

The tier_disabled4 event is the exception marker used
by the enactor to track the current service level. The excep-
tion occurs in this case because the tier 4 environment model
does not allow reward[2] in region ri1, and yet this is what
happened in the runtime environment. After this exception,
the control stack is operating in tier 3, achieving the tier 3
requirement. It may continue in this tier indefinitely, in the
case where the runtime environment matches the tier 3 ab-
straction. On the other hand, one possible trace (continuing
from the above trace) leading to further degradation is:

goto[’r1], count[1], arrive[’ri1], reward[2],

goto[’r1], count[5], arrive[’ri1], reward[2],
tier_disabled3

This exception occurs because the runtime environment
has broken the bound given in the model, which states that
region r1 must provide a reward[1] within 5 attempts.

The control stack continues to operate in tier 2. Again,
execution may continue from this point achieving the tier 2
requirement indefinitely. There is however the possibility of
a further degradation as follows:

goto[’r1], arrive[’r3], tier_disabled2

This leaves the control stack operating in tier 1. A further
sequence of events that lead to an exception is as follows:

reward[3], goto[’r2], arrive[’r2], damagel[2],
tier_disabledil

Note that although we have presented the degradation
from tier to tier, it is possible that the tier 1 assumptions
are violated immediately, bypassing the intermediate tiers.
After all tiers are disabled, the control stack cannot guaran-
tee any goals until progressive enhancement takes place.
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5.2 Progressive Enhancement

Suppose now that the stack is operating in tier 2, that is,
the bound related to reward[1] has been broken, but the
motion of the robot remains reliable. A progressive enhance-
ment may now be considered in order to raise the service
level back into tier 3. Suppose that the rewards given by
the environment while in tier 2 have been observed, either
automatically under a machine learning scheme or through
manual intervention. Suppose further that it has been de-
termined that, after the transient disturbance which caused
the degradation from tier 3 to tier 2, the environment does in
fact provide reward[1] within the required bound!. In such
a situation, the initial state of the tier 3 model would be ap-
proximated. For instance, if the last executed action (in tier
2) was goto[’r1] then the state of the tier 3 model must
be one where arrive[’r1] can occur. An attempt would
then be made to synthesise a controller, and if successful
the service level would be raised to tier 3.

6. EXPERIMENT

Figure 2: Nao executing mission

We have experimented with our synthesis and enactment
infrastructure [3] in various robotic settings, including an
AR Drone 2.0, a Katana robotic arm and a Nao H25 hu-
manoid robot. A video of the latter executing a synthesised
mission control stack similar to the one described above can
be found at
http://www.doc.ic.ac.uk/"das05/quadrotor3.avi.

Controller enactment for these settings requires imple-
menting each of the controlled actions in the control stack
specification in terms of the existing behaviours provided by
the robot’s API. For instance, for the control of the Nao
robot, the detection of various types of reward is achieved
by recognising balls of different colours using the Nao’s on-
board camera. The balls are presented to the Nao upon
arrival in each region. The location of the Nao within the en-
vironment (an office) is determined using trilateration with
respect to a number of landmarks in positions known a pri-
ori (i.e. a structured environment). The landmarks them-
selves are recognised using the on-board camera. Similarly,
rewards and locations can be recognised on the AR Drone
using its front and bottom cameras respectively.

'In the case of manual intervention, it would be reasonable
to amend tier 3 to match a different observed bound.



The synthesised mission control stack is executed by the
enactor, which starts by assuming the runtime environment
behaves like the model in the upper tier. Initially, in the
video, we allow this assumption to hold by providing the Nao
with the reward it is expecting. Later, we break the bound
on the number of damage events expected in the uppermost
tier, forcing the enactor to gracefully degrade the level of
service. Execution continues seamlessly such that the Nao
immediately seeks a repair, as demanded by the lower tier
requirement.

The experiments demonstrate that our general approach
can be deployed in a robotics setting on top of a high-level
API that encapsulates the complexities of, for instance, con-
trol of the system dynamics that allows stable movement of
the AR Drone or the localisation of the Nao robot. The re-
sulting system can then ensure that mission-level guarantees
can be gracefully and automatically degraded (or enhanced)
when necessary to cope with unexpected mission-level events
in the environment.

7. RELATED WORK

There has been an increasing interest in the development
of robot planning motion techniques based on temporal logic
(TL) specifications [30, 4, 29, 19, 4, 28, 21]. One of the main
features such techniques provide is the ability to guarantee
satisfaction of the goals if the environmental assumptions
are met. This is especially relevant in robotics where strict
safety conditions must be ensured by robot motion plans,
which has been acknowledged by the community as a key
problem to be tackled [13].

In addition to safety properties, TL-based approaches pro-
vide efficient algorithms for generating plans for liveness
goals that allows a wide range of mission objectives to be
specified such as surveillance and navigation, among many
others. Techniques such as [29] and [6] automatically synthe-
sise high-level motion plans from discrete-event descriptions
of the environment and goals described as GR(1) [24] prop-
erties. In [28] goals are specified as co-safety formulas [20]
to be satisfied by a non-deterministic model of the environ-
ment.

Other approaches [21, 22, 30, 4] consider settings where
the environment is represented with stochastic transition
systems such as Markov decision processes and the goals are
expressed with temporal logic supporting probabilistic rea-
soning such as probabilistic computation tree logic (PCTL).
The resulting plans guarantee the satisfaction of the goals
up to a certain probability or expected reward.

However, all the aforementioned techniques have a single
environment model with a fixed level of risk. Hence, if the
real environment diverges from its model the plan would
fail with unforeseen consequences. Thus, engineers must
balance carefully the increased risk of introducing strong
assumptions that allow achieving sophisticated goals against
the robustness of having weak assumptions at the expense
of only being able to achieve simpler goals.

Controller hierarchies have been studied (e.g [16]), how-
ever focus is on synthesis-time scalability rather than run-
time robustness to invalid environment models.

Although we have implemented our approach in the MTSA
toolset [9], this is not the first tool in implementing LTL-
based controller synthesis. Tools such as Lily [17], Aca-
cia+ [2] or Unbeast [10] implement techniques for synthesis-
ing controller from general LTL specifications. Such spec-
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ifications are known to be 2EXPTIME Complete. Con-
sequently, we restrict attention to GR(1) as it allows for
tractable synthesis procedures. A number of tools support-
ing synthesis from GR(1) specifications have been devel-
oped [18, 25, 1, 26]. However, none of them work for event-
based models which are central to our specification proce-
dure.

8. CONCLUSIONS

In this paper we have presented an approach for robust
high-level control synthesis for robot missions, and applied it
in a various scenarios. In contrast to the ‘all or nothing’ ap-
proach of other work based on temporal logic, our approach
allows a mission specification to include a range of require-
ments of different ‘strengths’ which entail different levels of
risk when operating in the runtime environment. Our imple-
mentation ensures that when the stronger requirements of
higher tiers cannot be met due to environmental uncertainty,
the level of service degrades gracefully to a level at which
requirements can be guaranteed. It then permits progressive
enhancement at a later stage.

In future work we are interested in quantifying the level
of risk associated with the tiers of our control stack, and
combining the approach with techniques that can learn ap-
propriate environment models for disabled tiers in the stack
before progressive enhancement.
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