
Quo Vadis Cyber-Physical Systems  

Research Areas of Cyber-Physical Ecosystems 
A Position Paper 

Christian Bartelt 
Clausthal University of Technology 

Department of Informatics 
38678 Clausthal-Zellerfeld, Germany 

christian.bartelt@tu-
clausthal.de 

Andreas Rausch 
Clausthal University of Technology 

Department of Informatics 
38678 Clausthal-Zellerfeld, Germany 

andreas.rausch@tu-
clausthal.de 

Karina Rehfeldt 
Clausthal University of Technology 

Department of Informatics 
38678 Clausthal-Zellerfeld, Germany 

karina.rehfeldt@tu- 

clausthal.de 

 

ABSTRACT 

Many technological innovations from the research area of 

dynamic adaptive systems or IT ecosystems are already 

established in current software systems. Especially cyber-physical 

systems should benefit by this progress to provide smart 

applications in ambient environments of private and industrial 

space. But a proper and methodical engineering of cyber-physical 

ecosystems (CPES) is still an open and important issue. 

Traditional software and systems engineering facilities (system 

models, description languages, or process models) do not consider 

fundamental characteristics of these ecosystems as openness, 

uncertainty, or emergent constitution at runtime sufficiently. But 

especially these aspects let blur the line of system boundaries at 

design time. The diverse components of CPES have essential 

impacts on the engineering of CPES as well, concerning time 

synchronizing, execution control, and interaction structure. Self-

balanced control in CPES promises new application possibilities, 

but also needs new engineering techniques concerning the overall 

engineering process, including requirements engineering and 

runtime verification. In this position paper we survey and 

summarize the dimensions of challenges in applying control 

theory for the engineering of cyber-physical ecosystems. 

Categories and Subject Descriptors 

D.2.11 [Software Engineering]: Software Architecture 

General Terms 

Design, Reliability, Security, Languages, Theory 

Keywords 

Cyber-physical systems, software ecosystems, systems 

engineering, control theory, self-balanced control, system-of-

systems 

1. INTRODUCTION 
The term cyber-physical system (CPS) is widely used nowadays. 

One of the most common definition of cyber-physical systems is a 

system which connects physical and virtual processes, where 

bidirectional information flows are significant[9]. The physical 

processes are controlled and monitored by computations. 

Traditionally, this kind of systems is engineered based on the 

automation system pyramid by the Totally Integrated Automation 

concept[13]. This classic architecture spans from field level to 

management level by a hierarchical control scheme. The 

automation system pyramid is inflexible and not suited for 

adaptive systems. Adaptivity in this context means, that a system 

is able to change its structure autonomously to adapt to a new 

environment or certain situation. By decomposing each layer of 

the automation system pyramid into components and allowing 

communication between arbitrary components, CPS become more 

flexible. As a result, the engineering of CPS deals with several 

challenges regarding the self-organization and adaptivity. 

Openness yields benefits for CPS but also requires new research. 

In this case, openness refers to a system with high interoperability 

and open interfaces. We introduce the term cyber-physical 

ecosystems (CPES) for adaptive and open cyber-physical systems. 

These systems combine cyber-physical systems with an approach 

for interacting with other systems. The control of such highly 

dynamic systems have been researched in the field of software 

ecosystems for several years[6, 11, 12]. But the transfer of self-

balanced control mechanisms to realize CPES raises new 

ambitious challenges in engineering. We aim to name some of 

these challenges in this position paper. To do so, we first inspect 

CPS and software ecosystems in three different engineering 

challenges areas: the overall approach, the design of components 

and the runtime operation.  The overall approach for designing 

and running systems covers the whole development cycle as well 

as the runtime environment. The design of components 

concentrates on design time while the last area covers the runtime 

of systems. CPES combine concepts from CPS and software 

ecosystems. Therefore, we derive challenges for CPES by 

combining challenges for both system classes. 

2. STATE OF THE ART 
By allowing more flexibility in the architecture of CPS, new CPS 

applications will become possible. In this section, we first present 

engineering challenges of CPS and afterwards of software 

ecosystems.  

2.1 Cyber-Physical Systems 
A cyber-physical system is a system-of-systems. In a CPS, 

information systems cooperate with control systems. Information 

systems are socio-technical systems for information processing 

whereas control systems control physical processes. By 

cooperating, the control systems compensate the missing sensors 

and actuators of information systems. In turn, the information 

systems provide data analysis and storage for the control systems.  

 

 Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

CTSE’15, August 31, 2015, Bergamo, Italy
ACM. 978-1-4503-3814-1/15/08...$15.00
http://dx.doi.org/10.1145/2804337.2804341

22



 Figure 1: CPS (decomposed) with smart interfaces 
 

There has to be an intelligent interface between the two kinds of 

systems (cf. Figure 1). On the one hand, control systems are often 

continuous and realtime-capable and interact with the physical 

world. On the other hand, information systems are discrete and 

have no natural concept of time but can operate on huge amounts 

of data. These different properties can only be joined by an 

intelligent interface.The special nature of CPS is adaptivity. 

Adaptivity in CPS is achieved by decomposing each information 

and control system in components and allowing data exchange 

between arbitrary components (cf. Figure 1). The interface 

between the components deals with the same different 

characteristics as before. But it can adapt to certain situations by 

composing the components in a different way. Those kinds of 

CPS will pose new challenges to science and research[2]: 

How can an overall development and operation approach be 

established during the whole life-cycle regarding adaptivity of the 

systems, learning of functions, self-organization and more? 

CPS consist of networked information systems and control 

systems. To manage complexity, information systems and control 

systems are decomposed in modular building blocks called 

components. Consequently, the intelligent interface between the 

information systems and the control systems are also decomposed 

to fine grained smart interfaces between the components of the 

information systems and the components of the control systems. 

Those local and small interfaces are smart enough to support 

adaptivity, learning of functions and self-organization.  

How should design and development methods look like to 

consistently expand the concepts of system engineering in such a 

way that it can also be used for cyber-physical systems? 

Heterogeneously networked structures like CPS require an 

integral systemic view and interdisciplinary cooperation between 

mechanical engineering, electrical engineering and computer 

science. Therefore an interdisciplinary multi-view and multi-level 

supporting modelling and development approach is required. It is 

necessary to prepare discipline-specific approaches for integration 

into CPS. Thus handling complexity and the realization of new 

functionalities through the adaptivity of the systems and the 

combination of functions will be at the forefront.  

How should cyber-physical systems - that are more adaptive and 

open systems but still have high dependability requirements to be 

guaranteed - be deployed, operated, monitored and maintained? 

CPS directly influence the physical world. Therefore an operation 

approach is required that is able to control and thereby prevent 

damage of the CPS and even more important its environment. The 

damage should not only be prevented in case of errors and failures 

but particularly in case of incorrect behavior and adaption of the 

CPS. 

There are already different modelling approaches for CPS. Some 

of the challenges of modeling CPS are summarized in [4]. The 

work also lists some promising new approaches. The close 

integration of embedded systems and the physical world is often 

modelled with hybrid systems. In [8] hybrid automata are used for 

verification of cyber-physical systems. There are also approaches 

for component-based design of hybrid systems as well as methods 

for checking whether a hybrid systems satisfies a specification[3, 

5]. 

2.2 Software Ecosystems 
Complex software ecosystems are complex, compound system 

consisting of interacting individual adaptive systems, which are 

adaptive as a whole, based on engineered adaptability. The 

different life cycles of the individual adaptive systems must also 

be taken into consideration [12]. 

A complex software ecosystem (CSE) comprises of individual 

adaptive systems whose behavior and interactions change over 

time. These changes are usually not planned centrally, but arise 

from independent processes and decisions within and outside the 

CSE. For example, a slippery road warning system of a car 

requests for information about road conditions without any 

knowledge about relevant information providers in the ecosystem. 

The warning system could connect to totally different systems, 

like a weather forecast provider as well as an electronic accessible 

plan of the snow plowing service or even the ABS monitoring of 

cars in same area, to receive the relevant information. 

In addition, CSE are mixed human-machine artifacts: human 

beings in the complex software ecosystem interact with the 

individual systems, and in this way they become an integral, 

active part of the CSE. Therefore, human requirements, goals, and 

behavior must be considered when designing a CSE, by modeling 

them as active system components. A number of ambitious 

challenges follow from the mentioned characteristics of software 

ecosystems. These can be divided in three areas – balancing 

evolution process between system (local) and ecosystem (global), 

distributed and independent engineering at design time, and 

technology support for system composition at runtime.  

How can system development and system operation be integrated 

into a close linked and balanced approach for software ecosystem 

evolution?  

The development and evolution of systems in software 

ecosystems is characterized by interplay of classical model-based 

engineering and constraint-based development to consider 

external restrictions from the ecosystem. As already mentioned, a 

CSE consists of a set of individual adaptive systems. To restrict 

the individual adaptive behavior of the adaptive systems, local 

constraints might be added and enforced locally under closed 

world assumption. In addition, institutional and improvement 

constraints from an ecosystem’s communities or covering 

common ecosystem’s objectives and guidelines are added—

following an open-world semantic. All of these constraints can be 

used to validate the individual models of the adaptive systems but 

also to validate the union of models of all adaptive systems resp. 

the ecosystem’s models. Therefore constraint validations of 

individual systems, but also of the interaction between these 

adaptive systems, can be identified during design time. However, 

as changes in these systems are not planned centrally, but arise 

from independent processes and decisions, adaptivity cannot be 

completely controlled during design time. Consequently, we also 

CPS

Information
 Systems

Control 
Systems

Component

Component

Component Component Component

Component

Smart 
Interfaces

Decompose Decompose

23



have to take the runtime into account. Therefore, the constraints 

provide a knowledge transfer between design time and run time. 

Constraints are additionally monitored and enforced during run 

time. 

How should distributed engineering of the constituent systems 

with different life-cycles and not centrally managed and 

coordinated be organized during design time? 

As consequence of openness of software ecosystems as well as 

uncertainty of their system environments, and the independency 

and distribution of development processes follow several 

challenges. For example, established design methods using 

software modeling under the closed-world assumption (CWA) 

with description techniques based on the open-world assumption 

(OWA) have to be combined. The application of OWA during 

design is necessary because the demand for the specification of 

system parts while only incomplete information about the whole 

system at runtime is available[11]. Especially software interfaces 

of independently developed components have to be connected 

semantically dependable. Because of the distributed development 

of system parts by independent actors a syntactic connection of 

interfaces is undependable in general[7]. Furthermore, 

adaptability demands have to be engineered at design time. 

How can self-adaptation of the software ecosystem evolution be 

balanced during runtime? 

The systems composition in CSE moves from design to runtime. 

This is a profound changed paradigm which requires answers to 

several challenges. One central question is, how can technology 

support the dynamical adaptivity resp. the emergent composition 

of systems to facilitate a self-balanced ecosystem at runtime? The 

adaptability of a software ecosystems needs a common 

technological infrastructure to manage the joining components 

and their connections as well as additional services [10]. The 

technology has to provide an autonomous mechanism which can 

balance the concurrent needs of systems in a CSE. Systems of a 

software ecosystem compete for common shared resources. For 

the balancing of the competitive demands of systems in software 

ecosystems an appropriate mechanism has to be implemented by 

the infrastructure [1]. Furthermore the semantic correctness of the 

autonomous system integration and system requirements has to be 

validated during operation and design time. 

3. RESEARCH AREAS IN ENGINEERING 

OF CPES 
CSE are complex adaptive systems of adaptive systems and 

human beings. Thereby software ecosystems are open systems 

with respect to the independent evolution of the constituent 

adaptive systems, the dynamic self-adaption mechanisms of the 

constituent adaptive systems themselves, and the active human 

beings within the CSE. Hence software ecosystems come with a 

high degree of uncertainty due to their openness and adaptivity. 

To manage uncertainty additional knowledge is elaborated and 

used during design time and run time. In addition an overall 

evolutionary development approach is provided by software 

ecosystems. 

CPS merge together embedded software-intensive control systems 

and global networked internet-based information systems by 

modular, small, intelligent, and non-hierarchical interfaces 

between the components of the control system and the 

information system. Adaptivity in CPS is based on functional 

adaption of the control system with respect to high dependability 

issues. Interdisciplinary and holistic engineering approaches are 

applied to provide new functionalities through an intelligent new 

connection between existing control components and information 

components. 

In CPES we integrate the openness and adaptivity of software 

ecosystems with the modular and intelligent component coupling 

of CPS. Thereby new, combined research areas arise. We deduce 

these research areas from the combination of the challenges in 

Section 2. The research areas cover A) the overall approach and 

evolution of the system, B) the design time development approach 

as well as C) the operation approach during runtime of the system 

(cf. Figure 2). 

A)     How should the controlled evolutionary development 

approach (CSE) be combined with the long-term self-adaption 

mechanism by the intelligent interfaces (CPS)? 

In classical software engineering, the design starts with main 

requirements. These requirements are step-wise refined to 

hierarchical requirements. After design time the system is not 

intended to change. A new feature for the system will be a new 

project. This classical approach is not applicable for CPES. 

In CPES integration and validation is done during runtime. 

Moreover the system is growing and changing dynamically over 

time. The system itself adapts to its environment. Once the system 

is no longer able to adapt itself, new data for machine learning 

based long-term self-optimization are provided by smart 

intelligent sensor data to fulfill the changing requirements and 

expectations after self-optimization. In addition new requirements 

might be derived for the system itself but also for components and 

physical processes realizing their own specific functionalities. 

These requirements may contradict each other – for example two 

machines with common resources which both aims at 100% 

occupancy rate. Therefore, global requirements exist as well. Each 

time a new component joins the system it has to be adjusted to fit 

to the global requirements. 

Ensuing from this situation, technical challenges can be derived: 

The components and the host infrastructure of CPES need an 

advanced configuration service compared to CSE. This 

(distributed) service has to able to receive and value feedback 

from the physical environment. Further it has to balance 

competitive requirements (possibly by market mechanisms) and 

has to consider appropriate migration strategies. 

B)     How can an open and closed world modeling approach 

(CSE) be integrated with an interdisciplinary modeling 

approach (CPS)? 

Traditional software development approaches offer various 

techniques to support software engineers. One of the most 

Design Time Run Time

Overall Approach

Evolution over time
Self-learning 
Composition

Open and Closed-
World Modelling

Approach

Interdisciplinary
Modelling
Approach

Openness Based 
Uncertainty in  

Adaptation

Controlled 
Adaption of 

Functionality w.r.t. 
Dependability

Complex Software 
Ecosystem (CSE)

Cyber-Physical
System (CPS)

Figure 2: Combined challenges in engineering of CPES 

24



fundamental is the use of models and modeling. Depending on 

what is considered relevant to a system under development at any 

given point, various modeling concepts and notations may be used 

to highlight one or more particular perspectives or views of that 

system. It is often necessary to convert between different views at 

an equivalent level of abstraction facilitated by model 

transformation, e.g. between a structural view and a behavioral 

view. 

CPES combine the virtual world represented by information 

systems and the physical world influenced by control systems. 

Consequently our modeling approach must be able to represent 

the various engineering disciplines for software to electrical up to 

mechanical engineering. Furthermore, as CPES are evolving in a 

not centrally planned and managed manner we have to use open 

and closed world models combining models describing the system 

under construction as well as overall ecosystem constraints that 

have to be guaranteed by all parts of the CPES in an 

interdisciplinary integrated approach. 

The model-based design methods in the well-established 

engineering disciplines of physical systems (electrical/mechanical 

engineering) assume traditionally a closed world paradigm. For a 

consideration of openness in CPES, these system description 

languages have to be enhance by a support of not only inter-

disciplinary modeling but also by additional expressions which 

allow to specify semantics based on the open-world assumption.  

C)    How can the openness based uncertainty in system 

adaption (CSE) be balanced with the need to control system 

adaption with respect to dependability issues (CPS)? 

After a system has been designed, verified and developed, it will 

to be deployed and executed within the ecosystem. In order to be 

useful over time, systems must be able to adapt themselves to 

changing needs, goals, requirements or environmental conditions 

as autonomously as possible. Three levels of adaptability, namely: 

engineered adaptability, emergent adaptability and evolutionary 

adaptability have to be supported. During runtime, various aspects 

have to be considered in order to enable and control those kinds of 

adaptability. Therefore the MAPE-K loop is a typical well-known 

architectural blueprint for such a system. 

As CPES manipulate and influence the physical world we have to 

guarantee the CPES does not damage or hurt its environment. 

CPS often realize safety-critical applications. Therefore, they 

underlie strict requirements like safety, security, privacy or 

realtime controlling. In classical applications the system behavior 

can be assured at design time. For CPES the existing approaches 

have to be enhanced to detect all possible dependability problems 

in advance and reorganize the system to prevent the environment 

from possible damage. Prediction techniques have to be 

elaborated to guide and guarantee the required dependability 

issues of the CPES during run time. Moreover the dependability 

issues might change over time and thus the guarantees have to be 

adapted dynamically during run time. To ensure the validity of 

dependability/safety conditions, the technical platform of CPES 

has to provide mechanisms to predict physical effects 

(simulation/test techniques). This is necessary for an estimation 

and valuation of the future behavior of systems before possibly 

irreversible or safety-critical effects are implemented in the 

physical environment. Considering that the available 

configuration mechanisms of CSE has to be enhance to ensure a 

safe operation of autonomous composed CPS. 

4. CONCLUSION 
In this paper we presented a new point of view on CPS. CPS will 

be more open and complex in the future. This will require transfer 

of self-balanced control mechanisms to CPES. We presented the 

current state of the art in both CSE and CPS. These different 

works may be considered when facing the challenges of CPES we 

presented.  

5. REFERENCES 
[1] Bartelt, C., Fischer, B. and Rausch, A. 2013. Towards a 

Decentralized Middleware for Composition of Resource-

Limited Components to Realize Distributed Applications. 

[2] Cyber-Physical Systems. Driving force for innovation in 

mobility, health, energy and production: 

http://www.acatech.de/de/publikationen/publikationssuche/

detail/artikel/cyber-physical-systems-innovationsmotor-

fuer-mobilitaet-gesundheit-energie-und-produktion.html. 

Accessed: 2015-06-15. 

[3] Damm, W., Möhlmann, E. and Rakow, A. 2014. 

Component Based Design of Hybrid Systems: A Case 

Study on Concurrency and Coupling. Proceedings of the 

17th International Conference on Hybrid Systems: 

Computation and Control (New York, NY, USA, 2014), 

145–150. 

[4] Derler, P., Lee, E.A. and Sangiovanni-vincentelli, A.L. 

2011. Addressing Modeling Challenges in Cyber-Physical 

Systems. 

[5] Henzinger, T.A. and Otop, J. 2014. Model Measuring for 

Hybrid Systems. Proceedings of the 17th International 

Conference on Hybrid Systems: Computation and Control 

(New York, NY, USA, 2014), 213–222. 

[6] Herold, S., Klus, H., Niebuhr, D. and Rausch, A. 2008. 

Engineering of IT Ecosystems: Design of Ultra-large-scale 

Software-intensive Systems. Proceedings of the 2Nd 

International Workshop on Ultra-large-scale Software-

intensive Systems (New York, NY, USA, 2008), 49–52. 

[7] Kolatzki, S., Goltz, U., Hagner, M., Rausch, A. and 

Schindler, B. 2012. Automated Verification of Functional 

Interface Compatibility. 01 (2012). 

[8] Krishna, S.N. and Trivedi, A. 2013. Hybrid Automata for 

Formal Modeling and Verification of Cyber-Physical 

Systems. Journal of the Indian Institute of Science. 93, 3 

(Sep. 2013), 419–440. 

[9] Lee, E.A. 2010. CPS Foundations. Proceedings of the 47th 

Design Automation Conference (New York, NY, USA, 

2010), 737–742. 

[10] Niebuhr, D., Klus, H., Anastasopoulos, M., Koch, J., Weiß, 

O. and Rausch, A. 2007. DAiSI -- Dynamic Adaptive 

System Infrastructure. Fraunhofer Institut für 

Experimentelles Software Engineering. 

[11] Rausch, A., Bartelt, C., Herold, S., Klus, H. and Niebuhr, 

D. 2013. From Software Systems to Complex Software 

Ecosystems: Model- and Constraint-Based Engineering of 

Ecosystems. Perspectives on the Future of Software 

Engineering. J.M. Schmid, ed. Springer. 61–80. 

[12] Rausch, A., Muller, J.P., Niebuhr, D., Herold, S. and Goltz, 

U. 2012. IT ecosystems: A new paradigm for engineering 

complex adaptive software systems. (Jun. 2012), 1–6. 

[13] Totally Integrated Automation - Totally Integrated 

Automation - Siemens: 

http://www.industry.siemens.com/topics/global/en/tia/Page

s/default.aspx. Accessed: 2015-06-08. 
 

25


