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ABSTRACT
Today customers require software systems to provide partic-
ular levels of qualities, while operating under dynamically
changing conditions. These requirements can be met with
different self-adaptation approaches. Recently, we developed
two approaches that are different in nature — control theory-
based SimCA and architecture-based ActivFORMS — to en-
dow software systems with self-adaptation, providing guaran-
tees on desired behavior. However, it is unclear which of the
two approaches should be used in different adaptation scenar-
ios and how effective they are in comparison to each other.
In this paper, we apply SimCA and ActivFORMS to the Tele
Assistance System (TAS) exemplar and compare obtained re-
sults, demonstrating the difference in achieved qualities and
formal guarantees.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures; I.2.8
[Computing Methodologies]: Problem Solving, Control
Methods, and Search—Control theory

Keywords
Adaptation, self-, adaptive system, software, MAPE, control
theory, controller, architecture, feedback, SimCA, activforms

1. INTRODUCTION
The burden on software developers has drastically increased

in recent years as customers expect software to cope with con-
tinuous change. They expect the software to run seamlessly
on different platforms, deal with varying resources, and adapt
to changes in system goals. Often, these runtime changes are
difficult to predict, requiring software engineers to design the
software with incomplete knowledge.

Self-adaptation is widely encouraged to handle software de-
sign with incomplete knowledge [4, 7]. A classic approach
to realize self-adaptation is architecture-based adaptation [15,
13], where a system maintains an explicit architectural model
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of itself, reasons about this model, and adapts itself to partic-
ular adaptation goals when relevant changes occur. However,
achieving guarantees of the system behaviour with architecture-
based adaptation is hard [3]. For this reason adaptation mech-
anisms based on control theory [10, 9] attracted the attention
of self-adaptive systems community1.

Recently, we developed two approaches for runtime adapta-
tion, one from each of the mentioned fields: ActivFORMS (Ac-
tive Formal Models for Self-adaptation) [11] an architecture-
based approach, and SimCA (Simplex Control Adaptation) [16]
that is based on principles from control theory and linear opti-
mization. In this paper, we present a comparative evaluation
of SimCA and ActivFORMS on a set of scenarios. To the
best of our knowledge, no systematic comparison between ap-
proaches for runtime adaptation based on control theory and
architecture-based adaptation has been performed so far. We
compare obtained results of runtime adaptation (the system
output), and we analyze the provided guarantees and system
behavior in the presence of disturbances.

The evaluation is conducted using the TAS exemplar [17].
TAS provides remote health support to patients by compos-
ing a number of services. Each service can be implemented by
multiple providers. These implementations have different reli-
ability, performance and cost, which affect the overall quality
of the application. Choosing a concrete service provider to
ensure the required quality of service (QoS) at runtime is a
key factor to adaptation of service-based systems as TAS.

The remainder of the paper is structured as follows. An
adaptation scenario with the TAS exemplar is introduced in
Section 2. Section 3 summarises the two studied adaptation
approaches: SimCA and ActivFORMS. In Section 4 these two
approaches are applied to TAS and compared in multiple sce-
narios. Section 5 provides discussion of received results. Fi-
nally, conclusions and directions for future research are pre-
sented in Section 6.

2. ADAPTATION SCENARIO: TAS
In this section, we introduce a scenario of TAS used for

evaluating SimCA and ActivFORMS. The main goal of TAS
is to track a patient’s vital parameters in order to adapt the
drug or drug doses when needed, and take appropriate actions
in case of emergency. To satisfy this goal, TAS combines three
types of services in a workflow, shown on Figure 1.

Each incoming request is first processed by the Medical Ser-
vice. This service receives messages from patients with their

1In this paper by self-adaptive system we mean a system
equipped with any kind of adaptation/control mechanism
which may or may not be adaptive itself.
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Figure 1: TAS workflow.

vital parameters, analyses the data, and replies with instruc-
tions to (1) change the drug or (2) change the drug doses,
or (3) invoke an alarm at the First-Aid squad in case of an
emergency. When invoked, the Drug Service notifies a local
pharmacy to deliver new medication to the patient or change
his/her dose of medication. When the Alarm Service is in-
voked, it dispatches an ambulance to the patient.

For service-based systems such as TAS, the functionality of
each service can be implemented by a number of providers
that offer services with different quality properties: reliabil-
ity, performance, and cost. The system design assumes that
these properties can be quantified and measured. E.g., reli-
ability is measured as a percentage of service failures, while
performance is measured as the service response time. At
runtime, it is possible to pick any of the services offered by
the providers. The services are considered to be part of the
environment because they are not under control of TAS. For
example, the failure profile of a concrete service implementa-
tion may change at runtime, due to the changing workloads
at the provider side or unexpected network failures.

We consider that five service providers offer the Medical
Service, three providers offer the Alarm Service and only one
provider offers the Drug Service. Table 1 shows example prop-
erties of available services based on data from [2].

Table 1: Properties of all services used in TAS.

Service Name
Fail.rate, Resp.time, Cost,

% ms ¢
S1 Medical Service 1 0.06 22 9.8
S2 Medical Service 2 0.1 27 8.9
S3 Medical Service 3 0.15 31 9.3
S4 Medical Service 4 0.25 29 7.3
S5 Medical Service 5 0.05 20 11.9

AS1 Alarm Service 1 0.3 11 4.1
AS2 Alarm Service 2 0.4 9 2.5
AS3 Alarm Service 3 0.08 3 6.8
D Drug Service 0.12 1 0.1

Requirements (Goal) 0.03 26 min

The system requirements are the following:
R1. The average failure rate should not exceed 0.03 %*

R2. The average response time should not exceed 26 ms
R3. Subject to R1 and R2, the cost should be minimized.

The requirements R1-R3 as well as the properties of the ser-
vices may change at runtime and the system should adapt ac-
cordingly. The adaptation task is to decide, for each incoming
messages with a patient’s vital parameters, which combina-
tion of services to select in order to continuously satisfy the
three requirements.

*The system design assumes that in case of a failure the re-
quest is not dropped and can be send to the same or another
service provider for re-execution. Hence, the goal failure rate
is lower than the rates of individual implementations.

2.1 The Adaptation Problem
Generalizing from the concrete TAS scenario, the adapta-

tion problem we are aiming to solve is the following:

Maintain a desired level of quality for multiple goals
and optimize the solution according to another goal,
regardless of possible fluctuations in the system pa-
rameters, measurement accuracies, requirement changes,
and dynamics in the environment that are difficult
to predict.

Defining and developing such an adaptive solution introduces
several key challenges. First, the appropriate sensors (mea-
sured variables) and actuators (knobs that can influence the
software behavior) must be carefully chosen. Second, the soft-
ware system must be properly modeled. Finally, the appropri-
ate adaptation mechanism that achieves the goals, rejecting
external disturbances and optimising the solution according
to additional goal, must be developed. The following section
describes two approaches that tackle these challenges.

3. STUDIED APPROACHES

3.1 SimCA
The adaptation logic of SimCA consists of multiple SISO

controllers that independently compute control signals for each
of the goals, and a simplex block that receives the control sig-
nals as input and produces an output that is used for adapt-
ing the software system. Figure 2 schematically shows the
primary building blocks of SimCA.
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Figure 2: A self-adaptive software with SimCA.

A detailed explanation of SimCA is available in [16]. In
short, each system goal (reliability, performance) except cost
is represented as a setpoint si(k). On every adaptation step
k the system outputs Oi(k) are measured. Based on the er-
ror ei(k) = si(k) − Oi(k) and a linear model Mi described
below, each controller Ci produces a signal ui(k) which rep-
resent the value of each goal that should be reached by the
system. The simplex block receives ui(k) and additional envi-
ronment/plant parameters (e.g., the invocation cost of exter-
nal services) as inputs and produces a simplex signal usx(k)
as output. usx(k) contains the values of system knobs which
affect the plant behaviour. For TAS, usx(k) is a vector con-
taining the probabilities to select each of the available service
providers. Disturbances affecting Oi(k) are handled by con-
troller Ci via adjusting the control signal ui(k).

SimCA works in three phases: identification, control, and
optimization.

In the identification phase, n linear models of the controlled
system are built. Each model Mi, i ∈ [1, n], is responsible
for one goal si. The identification phase starts by feeding
all possible control signal values to the plant. The goal of
identification is to determine the influence of control signal
ui on the corresponding system output Oi at every time step
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k. The dependency between ui and Oi is captured by the
coefficient αi which is further used to build controller i. αi

is calculated during identification based on linear regression
using the APRE tool [14]. As a result, the following set of
linear models is obtained:

Oi(k) = αi × ui(k − 1) (Mi)

In Mi the control signal is a value from the interval [mini,
maxi], where maxi and mini are the maximal and minimal
values that can be achieved by TAS for the i-th goal:

ui(k) = (maxi −mini)× ηi(k) +mini (1)

ηi is the control coefficient. During the identification phase,
ηi changes from 0.0 to 1.0 using an increment of 0.05 on every
step k. As a consequence, most feasible values of goal i are
produced as ui. This allows us to measure all the possible
values of the outputs Oi(k), calculate αi, and build Mi.

The modelMi generally describes the system behavior but
does not take into account small disturbances or sudden fail-
ures that typically occur in software systems. To deal with
inaccuracies inMi, SimCA uses a Kalman filter to adapt the
model at runtime, and a change point detection mechanism
that allows reacting to critical changes in the system.

An important note concerning the control methodology of
SimCA is that the simplex method does not change the value
of control signal i. Instead, simplex is responsible for seamless
translation of control signals into a proper actuation signal.
For example in TAS, if the control signal equals to failure rate
= 0.03, simplex finds a combination of services (S1-S9) that
assures this failure rate is not exceeded. Hence, simplex is not
considered when building a system model and synthesizing
controllers that manage this model. Instead, controllers are
assumed to affect the plant output via control signals. Ev-
ery goal is controlled separately during the first two phases
of SimCA. This means that during identification and control
phases SimCA works in parallel with multiple Single-Input-
Single-Output (SISO) controllers, and then combines control
outputs with the help of simplex during optimization phase.

In the control phase, a set of n controllers is synthesized.
Each controller Ci is responsible for the i-th goal. Ci calcu-
lates the control coefficient ηi at the current time step k de-
pending on the previous value of control coefficient ηi(k − 1),
adjustment coefficient αi, controller pole pi and the error ei:

ηi(k) = ηi(k − 1) +
1− pi
αi

× ei(k) (2)

The controller pole pi belongs to the open interval (0, 1)
to maintain stability and avoid oscillations. The pole also
allows to trade-off robustness to external disturbances with
the convergence speed (known as settling time): higher values
of pi lead to slower convergence [8].

In the optimization phase, SimCA combines the signals ui(k)
from multiple controllers using the simplex method to opti-
mally drive the measured output of the system towards its
desired behavior. Simplex solves the following problem:

Minimize Cost:minC =

p∑
j=1

cj · xj
subject to:

n∑
i=1

p∑
j=1

aij · xj = ui

xj ≥ 0, ui ≥ 0, with i = 1 . . . n, j = 1 . . . p

(3)

where:

• p: a number of variables — each variable represents one
service provider;

• n: a number of equations — each equation represents a
goal to be satisfied;

• xj are the values of system knobs, i.e. probabilities to
select each of the service providers;

• ui are the control signals;

• aij and cj are the monitored parameters: the failure
rate, response time and cost of external services.

SimCA finds the variables of the problem xj and passes
them to the plant in the form of a simplex signal. A detailed
explanation on how simplex solves the system of equations (3)
can be found in [16], and additional background in [5].

3.2 ActivFORMS
ActivFORMS is an architecture-based approach for self-

adaptation that uses an integrated formal model of the adap-
tation components of the feedback loop and the knowledge
they share [11]. ActivFORMS distinguishes itself from exist-
ing architecture-based approaches in three ways:

• The formally verified model of the feedback loop is di-
rectly executed by the virtual machine, hence called the
active model. This allows to guarantee at runtime the
system properties verified at design time. As the ac-
tive model is directly executed, the approach does not
require coding.

• ActivFORMS supports dynamic changes of the active
model. A new feedback loop model can be deployed at
runtime to meet new or changing goals.

• ActivFORMS supports goal management and model ver-
ification at runtime.

ActivFORMS follows a three-layered reference model pro-
posed by Kramer and Magee [13], see Figure 3. The bot-
tom layer comprises the managed system2 that implements
the domain-specific functionality. The active model monitors
and adapts the managed system through probes and effectors
respectively3. The goal management layer monitors the ac-
tive model and environment, and deals with adaptation issues
that cannot be handled by the current active model; e.g., it
dynamically changes the active model to deal with changing
system goals.

The active model realizes a MAPE-K (Monitor-Analyze-
Plan-Execute-Knowledge) feedback loop [12] that monitors
the managed system and adapts it according to the system
goals. ActivFORMS supports feedback loops modeled using
networks of timed automata. A timed automaton is a finite-
state machine that models a behavior, extended with clock
variables.

Recalling the TAS scenario, we used a utility function as a
part of the planner component of a MAPE-K formal model
to provide the required adaptation, see Figure 4. When trig-
gered by a signal from the analysis component, the planner
calculates the utility function coefficients and sends a signal
to the execution component to update the managed system.

2Managed system is called plant in control theory.
3Probe corresponds to sensor in control theory terminology,
effector corresponds to actuator.
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Figure 4: Planning automaton

The utility function works as follows: all system goals (re-
liability, performance) and optimization goal (cost) are rep-
resented as Gi. During the first adaptation period the cost
goal is set to a minimum achievable value: mincost. On every
adaptation step k the system outputs Mi(k) are measured.
Knowing the error ei(k) = Gi −Mi(k), we calculate how big
it is in relation to the actual values of the goal i:

λi(k) =
ei(k)

maxi −mini
(4)

For example, if the measured response time MRT (k) is 29.04
on a first adaptation step and other service parameters are
equal to the values from Table 1, we get:

λRT (1) =
29.04− 26

35.4− 21.68
= 0.22

Then we calculate coefficients cfi(k) for the utility function.
cfi(k) represents the selection probability for a QoS strategy
in the next adaptation period:

cfi(k) =
λi(k)

n∑
j=1

λj(k)

(5)

Using the same example, we get:

cfRT (1) =
0.22

0.30 + 0.22 + 0
= 0.43

In the provided example, a coefficient for performance of
cfRT = 0.43 means that in the next adaptation period the
service provider with the lowest difference between GRT and
service response time will be chosen 43% of the times.

For offline model-checking we use Uppaal [1], a tool that
supports modeling of behaviors and verification of properties
of networks of timed automata. For the specification of prop-
erties, we use Timed Computation Tree Logic (TCTL). TCTL
allows checking individual states of the system state space as
well as traces over the state space. The latter allows to verify
reachability, safety, and liveness properties.

The ActivFORMS virtual machine can perform the follow-
ing functions: execute the formal model according to the se-

mantics of timed automata, interact with the managed system
and environment through probes and effectors, support online
verification of the active model, and update the active model
when requested. ActivFORMS provides a set of formal tem-
plates to design the MAPE-K elements [6], and abstract Java
classes to implement probes and effectors. Probes track the
managed system and the environment and transfer data to
the Monitor automata of the feedback loop, while Effectors
transfer actions generated by the Execution automata to the
managed system.

Goal Management comprises a tree-based goal model where
nodes have associated MAPE-K models to realize adaptations.
Goal management monitors goals via the virtual machine.
When a goal violation is detected, the models associated with
an alternative goal that matches the changing conditions are
used to update the deployed models via the virtual machine.
Goal models can be updated at runtime. Here, we do not
focus on the goal layer, we refer the interested reader to [11].

4. COMPARATIVE EVALUATION
We now evaluate the approaches. Section 4.1 describes the

experimental setting. Section 4.2 shows the adaptation behav-
ior of SimCA and ActivFORMS on a basic TAS scenario and
in response to different runtime changes. Finally, Section 4.3
discusses guarantees provided by both approaches.

4.1 Experimental Setting
We use the TAS case described in Section 2 to compare the

adaptation approaches. The TAS exemplar [17] is realized as a
Java application and extended with SimCA and ActivFORMS
classes. The starting parameters of the services and system
requirements are specified in Table 1.

Adaptation is performed once per 100 invocations of TAS (k
= 100 inv.). At each adaptation step the application calculates
the average measured value of the i-th goal (e.g., measured
failure rate) during the past 100 inv. Then it calculates error
ei as the difference between i-th setpoint (e.g., target failure
rate) and measured value of the i-th goal. The application
also monitors the cost of serving the incoming requests.

The task of both SimCA and ActivFORMS is to keep the
goals at their setpoints and minimize the cost. SimCA achieves
this task by calculating the value of the simplex signal, which
represents the probability of selecting the services in the list
{S1, S2, ..., S9}. ActiveFORMS achieves this task by prior-
itizing goals with the help of utility function and updating
cost setpoint in case of goal violations. Due to high runtime
fluctuations in the values of service parameters, the controller
pole p in SimCA is set to 0.98 which allows to reject errors of
high magnitude. For the same reason, the cost increment ∆C

in ActivFORMS is set to a low value of 0.1¢ 4.
The application collects the data of the system and the ser-

vice implementations to build performance graphs, which are
used to compare the adaptation approaches in the following
section. The x-axis of the graphs are time instants t, each
instant corresponds to a series of ∆t inv. of TAS. Thus, the
y-axis shows the average values of the measured feature per
∆t inv. of TAS. ∆t can be changed in the TAS interface.

4.2 Adaptation Results
The graphs in Figure 5 show adaptation results of SimCA

and ActivFORMS on TAS configured according to Table 1.

4We use ¢ symbol to represent cost throughout the paper.
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Figure 5: SimCA vs activFORMS on a TAS scenario
(∆t = 1000 inv.)

SimCA starts with an identification phase (t < 7). The con-
trol phase, which is immediately followed by an optimization
phase, starts after the relationship between control signals,
simplex signal and system output is identified (from t equal 7
onwards). This phase is stable, all minor spikes on the SimCA
graphs are caused by the random nature of failures in TAS,
e.g., a failure rate of 3% does not always lead to 3 fails per
100 inv.

In the same scenario ActivFORMS starts with a cost set-
point of 8.5¢ which is the average minimal invocation cost
of the TAS workflow. In this scenario we assume no prior of-
fline verification of properties so the optimal cost is considered
unknown. As a result, both the reliability and performance
goals are violated (t < 20 on the right graphs). The adapta-
tion slowly increases the cost setpoint which leads to a zero
reliability error and a small performance error after t = 30.

Comparing TAS reliability achieved by SimCA and Activ-
FORMS, it is notable that the latter approach requires three
times more time to reach a stable state with no goal viola-
tion. Comparing performance, ActivFORMS slightly violates
the goal even after t = 75, but the most notable error can
be observed when t < 30. So in this case SimCA needs 4
times less time in order to reach a setpoint. As for the picked
services, the strategies differ. Though both approaches use S1
approximately equal amount of times (≈ 60%), SimCA prefers
a combination of S2, S4 and AS3, while ActivFORMS uses S2,
AS1 and AS3.
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Figure 6: SimCA vs ActivFORMS on a TAS scenario
(∆t = 100 inv.)

The Cost graphs (Figure 5) seem to be similar, but closer
examination shows that the average cost measured during sta-
ble state (t between 30 and 75) is 11.26¢ for SimCA vs 11.37¢
for ActivFORMS. This means a saving of 110¢ per 1000 work-
flow invocations for SimCA compared to ActivFORMS.

To further compare the approaches, we decrease the mea-
surements interval ∆t from 1000 to 100 workflow invocations,
see Figure 6. The measured reliability spikes are almost equal
on the top plots, however performance and probabilities to
select services in ActivFORMS have noticeably higher oscilla-
tion amplitude than in SimCA. Such effect is caused by the na-
ture of the algorithm that selects utility function coefficients:
the closer the measured value of a goal i gets to the setpoint
i, the lower is the priority of goal i.

It is worth mentioning that simplex operating under distur-
bances has the property of distributing probabilities for select-
ing services equally among all available services [16]. We do
not observe this behaviour in the solution with ActivFORMS.
With ActivFORMS, the probabilities of selecting some of the
services can suddenly change from 0 to 100% in 1000 work-
flow inv. (e.g., see the probability to select S2 in 30 < t < 40).
Hence, with SimCA, the load on service providers will be rela-
tively smooth over time, while the load with the ActivFORMS
solution can change abruptly, requiring the service providers
to keep 100% of their resources available all the time.

Both adaptation approaches have a mechanism that allows
to trade-off settling time for other properties, so we study how
such trade-off will affect the system output, see Figure 7.

Lowering pole p in SimCA from 0.98 to 0.7 drastically in-
creases the oscillation amplitude of all outputs. After t = 40
the system even triggers re-identification as the measured sys-
tem output values are too far from their setpoints. This is
caused by a combination of low settling time (i.e., the sys-
tem immediately follows any change in the output) and small
adaptation period that leads to high measurement errors.

Raising the cost increment ∆C in ActivFORMS from 0.1 to
1.0 also increases oscillations of all system outputs. However,
their amplitude is much lower, see the ’Reliability’ and ’Cost’
plots. The system is also more stable than in SimCA. This
experiment allows to conclude that ActivFORMS is a better
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adaptation solution for a system with settling time priority.
Finally, we show how both approaches react to runtime

changes, see Figure 8. First of all, having the same initial con-
ditions as in the previous experiments, we set ActivFORMS’
cost setpoint to 11.0¢ instead of 8.5¢ because we already know
the approximate optimal cost value. This adjustment results
almost immediately in convergence to the desired setpoint val-
ues. Hence, by doing a system pre-run or offline validation,
the ActivFORMS adaptation time can be greatly decreased.

Coming back to Figure 8, there are three major changes
happening in the system at runtime:

• Goal change. Both goals are changed at t=22: failure
rate from 0.03 to 0.05%, resp.time from 26 to 28 ms;

• Abrupt change. Medical Service 2 breaks at t=33;

• Parameter change. Response time of Medical Service 1
increases from 22 to 52 ms at t=55.

The plots show that both adaptation approaches deal with
all types of change: the measured values of both goals follow
their setpoints. As in the previous experiments, ActivFORMS
requires more time to adapt to the new setpoints.

More importantly, the cost of TAS workflow execution at
t=22 decreases to 10.2¢ with SimCA vs 10.8¢ with Activ-
FORMS. When Service 2 shuts down at t = 33, it is already
barely used by SimCA because there is another combination
of services that can produce the same result with lower cost.
However, the ActivFORMS solution even increases the uti-
lization of Service 2 when t is between 22 and 33. When
the response time of Service 1 increases at t = 55, the differ-
ence between the workflow invocation cost is around 1¢ per
invocation. This scenario shows that SimCA better solves op-
timization tasks.

4.3 Guarantees
By using the simplex method, SimCA guarantees optimal

cost in TAS without violating the failure rate and response
time goals. Simplex has proven to be a practical and fast
algorithm for solving this kind of optimization problems [5].
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The control-theoretical guarantees provided by SimCA are
divided into four main categories: asymptotic stability, steady-
state error, settling time and overshoot. If a closed-loop sys-
tem is asymptotically stable, it reaches the proximity of the
setpoint si. If the system has zero steady-state error, its set-
point si is reached after a certain time and Oi(k) = si(k), k ≥
K̄. The amount of time K̄ after this happens is called set-
tling time. If the controlled value exceeded the setpoint before
reaching a stable area, this is called overshoot and should be
avoided.

The control-theoretical guarantees provided by SimCA are
confirmed by the data shown on the Figures:

• The control system is asymptotically stable and con-
verges without overshooting, since it is designed to have
only a single pole p which belongs to the open interval
(0, 1);

• According to the system output equation of SimCA [16],
the output Oi during steady-state equals si which leads
to a zero steady-state error: ∆e = Oi − si = 0. The
absence of a steady-state error can be observed on the
performance plot of Figure 5 when t > 15;

• The settling time K̄ of a unit step of every controller i
depends on the pole pi and a constant ∆si chosen by the
system engineer: K̄ = ln ∆si

ln pi
. According to [10, p.85],

the commonly used value of ∆s is 0.02 (2%). Hence K̄ =
ln 0.02
ln 0.98

= 193.6. This means that changing the response
time from 26 to 28 (step of amplitude 0.2) would take
around 193.6∗0.2 ≈ 40 adaptation steps. This guarantee
can be observed on the performance plot of Figure 8
when t is between 20 and 24*;

*As adaptation is performed every 100 workflow invocations
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Due to the nature of the simplex method, SimCA will only
work when the setpoint of every goal lays between minimal
and maximal values of that goal: mini ≤ si ≤ maxi. There-
fore, when having an infeasible goal, a system with SimCA
will not converge to the closest feasible value for that goal.
Instead, the user will be notified that the task is not solv-
able and the change point detection mechanism will cause an
infinitely loop of identification phases, see Figure 9. On the
contrary, ActivFORMS will adapt the system output so that
it converges to the closest feasible goal value.
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Performance
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Performance Meas
ured

Set
point

Figure 9: SimCA vs ActivFORMS with infeasible goal
(∆t = 1000 inv.)

The ActivFORMS approach provides offline and online guar-
antees on the system behaviour. The offline guarantees come
from the verification of the formal model through TCTL prop-
erties at the design time with the Uppaal model checker; veri-
fied properties are: reachability, safety, liveness, and deadlock
freeness [1].

To achieve the guaranteed cost optimality required by TAS,
we first implemented the utility function algorithm as a part
of the planner component of a MAPE-K loop. Then, we de-
termined the lowest value of cost that does not violate the goal
failure rate and response time with the help of formal offline
verification of the following safety property:

A[] (gCost == MIN_VALUE) imply
(measuredFR <= gFR AND measuredRT <= gRT)

The system parameters and goals for verification were taken
from Table 1. The MAPE-K model is also verified to guaran-
tee the correctness of the algorithm’s functionality. E.g., to
guarantee that the system model is deadlock free, i.e. it does
not have erroneous states and the system does not get stuck
in any particular state, Uppaal provides a special formula:

A[] not deadlock

The following liveness property guarantees that whenever
the planning behavior is invoked to create a plan, then even-
tually a plan is executed.

Planning.CreatePlan --> Execution.PlanExecuted

The runtime guarantees of ActivFORMS are provided in
two ways. First, the model that was formally verified offline
is directly executed by the virtual machine at runtime so these
guarantees are preserved at runtime. Second, as offline ver-
ification is limited to the input provided by the verification
models, ActivFORMS allows to continue verification of prop-
erties at runtime and inform the user about violations. We
refer the interested reader to [11] for details.

and ∆t = 1000 invocations, 4 time steps on the graph equals
to 40 adaptation steps
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Figure 10: SimCA vs ActivFORMS with a constant
disturbance (∆t = 1000 inv.)

In the studied TAS scenarios we used both types of runtime
guarantees provided by ActivFORMS. The direct execution of
the verified model allowed to guarantee the correctness of the
adaptation mechanism implementation; the runtime verifica-
tion mechanism of ActivFORMS guaranteed that the minimal
cost, previously determined offline, does not lead to violation
of the failure rate or response time goals at runtime. To insure
the latter, we added the following runtime goals:

G1: A[] (measuredFR <= gFR AND measuredRT <= gRT)
G2: A[] (measuredFR > 0.9*gFR AND measuredRT > 0.9*gRT)

Goal G1 assures that the failure rate and response time of
TAS do not exceed their goals. GoalG2 assures that the values
of both goals will not drop lower than 90% of their goals, i.e.
the system will not waste resources. In case of a runtime goal
violation, the cost setpoint gCost is adapted accordingly: for
G1 violation gCost is increased by the cost increment ∆C , for
G2 violation gCost is decreased by ∆C .

Changing ∆C allows trading-off the speed of the system re-
action to runtime changes (settling time) for the amplitude of
system outputs oscillations around the goal value (accuracy).

4.4 Disturbance Handling
Throughout the experiments discussed in Section 4.2, both

approaches handled randomly distributed measurement dis-
turbances caused by the changes of service parameters at run-
time. Different to ActivFORMS, SimCA allows to formally
evaluate the amount of disturbance the system can withstand.

According to the PBM approach [8] that lays at the core of
SimCA, the amount of disturbance the system can withstand
∆(d) by using a PBM controller can be estimated as follows:
0 < ∆(d) < 2

1−p
. This means that the value of the pole p

defines how SimCA will react to disturbances. For p = 0.98
that was used in most experiments, the measurement can be
inaccurate by a factor of 100, and the controller of SimCA will
still adapt the system to follow the goals.

However, as mentioned in Section 4.3, the simplex method
will not be able to reach an infeasible goal. Hence, the mea-
surement inaccuracy on values of goal i that SimCA can with-
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stand is: mini ≤ ∆(d) ≤ maxi. This property of SimCA can
be observed on Figure 7 after t = 40: the reliability output
reaches a value that is higher than maximal achievable value
for a TAS workflow which causes a re-identification phase.

When it comes to constant disturbances, both approaches
successfully perform adaptation. In the scenario shown on
Figure 10, there is a constant response time measurement dis-
turbance of +3 ms (e.g., the sensor shows 29 ms instead of 26
ms). As in the previous experiments with the same pole and
cost increment, SimCA converges to the setpoint faster. It
is notable that ActivFORMS achieves better cost by slightly
violating the performance goal.

5. DISCUSSION
Both SimCA and ActivFORMS successfully solved the adap-

tation problem. The choice between these approaches depends
on the particular scenario. When it comes to formal guaran-
tees, both approaches provide the main guarantee required
from adaptation, i.e. to minimize the cost without violating
performance and reliability goals. SimCA guarantees this by
using the simplex method and ActivFORMS verifies the solu-
tion optimality offline. However, at runtime SimCA performs
better because offline system validation of ActivFORMS relies
on particular system properties that may not hold online.

Other formal guarantees provided by the two approaches
are different. With SimCA it is possible to formally prove a
number of system properties, such as stability, settling time,
amount of disturbance the system withstands, etc., which do
not depend on the particular system parameters. On a con-
trary, with ActivFORMS these properties are inherent to the
underlying algorithm, such as a utility function that was used
in our study, and do not come from the design of the adapta-
tion mechanism. With ActivFORMS it is possible to formally
verify these properties of the algorithm on a particular set of
system parameters by exploring the whole state space. How-
ever, trying to verify the TAS system with all possible combi-
nations of service parameters will lead to an explosion of the
state space. This is compensated by runtime verification.

On the other hand, with ActivFORMS the correctness of
the implementation of adaptation mechanism can be formally
proven, in particular the absence of erroneous states and cor-
rect interaction between adaptation components.

6. CONCLUSIONS
In this paper we presented a comparative evaluation of the

two different approaches for self-adaptation: SimCA which is
based on control theory and linear optimization, and architecture-
based ActivFORMS equipped with a utility function. The
study was performed using the TAS exemplar. The analysis
of adaptation results have shown that both approaches can
deal with multiple goals and provide guaranteed optimality
with respect to an additional goal. However, SimCA achieves
better results in the presence of runtime changes as it does
not rely on data verified at design time. At the same time,
ActivFORMS is a good choice for systems that require low
settling time.

Except optimality, the two adaptation approaches offer dif-
ferent guarantees. The design of SimCA adaptation mecha-
nism, such as the pole value or the system output equation,
allows to formally prove the properties of underlying system
and guarantee that they will hold at runtime independent of

system parameters. ActivFORMS allows formal verification
of system properties based on the particular input data. Run-
time verification allows complementary verification when the
system parameters change. An important feature of Activ-
FORMS is that it allows to formally guarantee the functional
correctness of the implementation of adaptation algorithm.

This work is a first step towards understanding the effec-
tiveness and formal power of different adaptation mechanisms.
As a part of future efforts, we want to compare other adap-
tation approaches, such as QoSMOS [2] to SimCA and Activ-
FORMS. We are also planning to test the adaptation mecha-
nisms on different types of systems and scenarios.
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