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Message from the Chairs

The Software Engineering community is pushing a significant effort on self-adaptive systems. Such
systems are required to modify their behavior to maintain goals in response to unpredicted changes in
their execution environment. Key challenges for self-adaptive systems include time-efficient diagnosis
of requirements violation, fast decision making, and systematic procedures to assess their effectiveness
and dependability. Further challenges arise in correlating local and global decision-making for larger-
scale or distributed systems. Despite a variety of approaches has been proposed for self-adaptive
software, only a few of them can provide formal guarantees about the quality of adaptation, mainly due
to the difficulty of grounding the adaptation mechanisms within suitable theoretical frameworks.

Control theory has established effective mechanisms to make controlled plants behave as expected.
Although the similarity with software adaptation is self-evident, most of the attempts to apply "off-the-
shelf" control theory to software applications have been unsuccessful. The main challenge has been
model software systems as dynamical system -- i.e., by means of differential or difference equations --
because of the intrinsic non-linearities, the variety of usage profiles, and the interconnection of
heterogeneous components, together with the common lack of control theory skills in the software
engineering education, research, and practice. As result, the current use of control theory is limited to
very specific applications and hard to generalize to large classes of software.

The aim of this workshop is to provide a forum to discuss a different route. Bringing together
researchers from the communities of software engineering and control theory and fostering their debate
and cooperation, our goal is twofold. On one hand, exploring new modeling strategies to incorporate
control in software systems design and development, empowering software engineers with theoretical
and practical skills to bring control to the core of adaptation. On the other hand, outlining the new
challenges and opportunities the very nature of software and computing systems place to established
control theory, due to its higher decoupling from the physical constraints of an classic plant. For the
future, we envision a fruitful hybridization of the two disciplines for engineering adaptive software.

We received a total of 11 submissions, out of which 6 were accepted for presentation. To complement
the program, the workshop proposes a keynote speech by Prof Karl-Erik Arzen about his experience
with the design of self-adaptive resource managers for embedded systems and an introductory tutorial
on control theory for computer scientists by Prof Alberto Leva, to provide a first contact point for the
software engineering researchers aiming at knowing more about this discipline.

We would like to thank the program committee members for providing valuable and constructive

feedback to the authors under a tight schedule, as well as each author and presented who submitted their
work to the CTSE 2015 workshop.

Antonio Filieri and Martina Maggio
(CTSE 2015 Chairs)
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SimCA vs ActivFORMS: Comparing Control- and
Architecture-Based Adaptation on the TAS Exemplar

Stepan Shevtsov
Linnaeus University
Vaxj6, Sweden
stepan.shevtsov@Inu.se

ABSTRACT

Today customers require software systems to provide partic-
ular levels of qualities, while operating under dynamically
changing conditions. These requirements can be met with
different self-adaptation approaches. Recently, we developed
two approaches that are different in nature — control theory-
based SimCA and architecture-based ActivFORMS — to en-
dow software systems with self-adaptation, providing guaran-
tees on desired behavior. However, it is unclear which of the
two approaches should be used in different adaptation scenar-
ios and how effective they are in comparison to each other.
In this paper, we apply SimCA and ActivFORMS to the Tele
Assistance System (TAS) exemplar and compare obtained re-
sults, demonstrating the difference in achieved qualities and
formal guarantees.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures; [.2.8
[Computing Methodologies]: Problem Solving, Control
Methods, and Search—Control theory

Keywords

Adaptation, self-, adaptive system, software, MAPE, control
theory, controller, architecture, feedback, SImCA, activforms

1. INTRODUCTION

The burden on software developers has drastically increased
in recent years as customers expect software to cope with con-
tinuous change. They expect the software to run seamlessly
on different platforms, deal with varying resources, and adapt
to changes in system goals. Often, these runtime changes are
difficult to predict, requiring software engineers to design the
software with incomplete knowledge.

Self-adaptation is widely encouraged to handle software de-
sign with incomplete knowledge [4, 7]. A classic approach
to realize self-adaptation is architecture-based adaptation [15,
13], where a system maintains an explicit architectural model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.
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of itself, reasons about this model, and adapts itself to partic-
ular adaptation goals when relevant changes occur. However,
achieving guarantees of the system behaviour with architecture-
based adaptation is hard [3]. For this reason adaptation mech-
anisms based on control theory [10, 9] attracted the attention
of self-adaptive systems community?.

Recently, we developed two approaches for runtime adapta-
tion, one from each of the mentioned fields: ActivFORMS (Ac-
tive Formal Models for Self-adaptation) [11] an architecture-
based approach, and SimCA (Simplex Control Adaptation) [16]
that is based on principles from control theory and linear opti-
mization. In this paper, we present a comparative evaluation
of SImCA and ActivFORMS on a set of scenarios. To the
best of our knowledge, no systematic comparison between ap-
proaches for runtime adaptation based on control theory and
architecture-based adaptation has been performed so far. We
compare obtained results of runtime adaptation (the system
output), and we analyze the provided guarantees and system
behavior in the presence of disturbances.

The evaluation is conducted using the TAS exemplar [17].
TAS provides remote health support to patients by compos-
ing a number of services. Each service can be implemented by
multiple providers. These implementations have different reli-
ability, performance and cost, which affect the overall quality
of the application. Choosing a concrete service provider to
ensure the required quality of service (QoS) at runtime is a
key factor to adaptation of service-based systems as TAS.

The remainder of the paper is structured as follows. An
adaptation scenario with the TAS exemplar is introduced in
Section 2. Section 3 summarises the two studied adaptation
approaches: SimCA and ActivFORMS. In Section 4 these two
approaches are applied to TAS and compared in multiple sce-
narios. Section 5 provides discussion of received results. Fi-
nally, conclusions and directions for future research are pre-
sented in Section 6.

2. ADAPTATION SCENARIO: TAS

In this section, we introduce a scenario of TAS used for
evaluating SImCA and ActivFORMS. The main goal of TAS
is to track a patient’s vital parameters in order to adapt the
drug or drug doses when needed, and take appropriate actions
in case of emergency. To satisfy this goal, TAS combines three
types of services in a workflow, shown on Figure 1.

Each incoming request is first processed by the Medical Ser-
vice. This service receives messages from patients with their

'In this paper by self-adaptive system we mean a system
equipped with any kind of adaptation/control mechanism
which may or may not be adaptive itself.
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Figure 1: TAS workflow.

vital parameters, analyses the data, and replies with instruc-
tions to (1) change the drug or (2) change the drug doses,
or (3) invoke an alarm at the First-Aid squad in case of an
emergency. When invoked, the Drug Service notifies a local
pharmacy to deliver new medication to the patient or change
his/her dose of medication. When the Alarm Service is in-
voked, it dispatches an ambulance to the patient.

For service-based systems such as TAS, the functionality of
each service can be implemented by a number of providers
that offer services with different quality properties: reliabil-
ity, performance, and cost. The system design assumes that
these properties can be quantified and measured. E.g., reli-
ability is measured as a percentage of service failures, while
performance is measured as the service response time. At
runtime, it is possible to pick any of the services offered by
the providers. The services are considered to be part of the
environment because they are not under control of TAS. For
example, the failure profile of a concrete service implementa-
tion may change at runtime, due to the changing workloads
at the provider side or unexpected network failures.

We consider that five service providers offer the Medical
Service, three providers offer the Alarm Service and only one
provider offers the Drug Service. Table 1 shows example prop-
erties of available services based on data from [2].

Table 1: Properties of all services used in TAS.

Fail.rate, Resp.time, Cost,

Service Name
% ms ¢

S1 Medical Service 1 0.06 22 9.8
S2 Medical Service 2 0.1 27 8.9
S3 Medical Service 3 0.15 31 9.3
S4 Medical Service 4 0.25 29 7.3
S5 Medical Service 5 0.05 20 11.9
AS1 Alarm Service 1 0.3 11 4.1
AS2 Alarm Service 2 0.4 9 2.5
AS3 Alarm Service 3 0.08 3 6.8
D Drug Service 0.12 1 0.1
Requirements (Goal) 0.03 26 min

The system requirements are the following;:

R1. The average failure rate should not exceed 0.03 %"

R2. The average response time should not exceed 26 ms

R3. Subject to R1 and R2, the cost should be minimized.
The requirements R1-R3 as well as the properties of the ser-
vices may change at runtime and the system should adapt ac-
cordingly. The adaptation task is to decide, for each incoming
messages with a patient’s vital parameters, which combina-
tion of services to select in order to continuously satisfy the
three requirements.

“The system design assumes that in case of a failure the re-
quest is not dropped and can be send to the same or another
service provider for re-execution. Hence, the goal failure rate
is lower than the rates of individual implementations.

2.1 The Adaptation Problem

Generalizing from the concrete TAS scenario, the adapta-
tion problem we are aiming to solve is the following:

Maintain a desired level of quality for multiple goals

and optimize the solution according to another goal,
regardless of possible fluctuations in the system pa-
rameters, measurement accuracies, requirement changes,
and dynamics in the environment that are difficult

to predict.

Defining and developing such an adaptive solution introduces
several key challenges. First, the appropriate sensors (mea-
sured variables) and actuators (knobs that can influence the
software behavior) must be carefully chosen. Second, the soft-
ware system must be properly modeled. Finally, the appropri-
ate adaptation mechanism that achieves the goals, rejecting
external disturbances and optimising the solution according
to additional goal, must be developed. The following section
describes two approaches that tackle these challenges.

3. STUDIED APPROACHES

3.1 SimCA

The adaptation logic of SimCA consists of multiple SISO
controllers that independently compute control signals for each
of the goals, and a simplex block that receives the control sig-
nals as input and produces an output that is used for adapt-
ing the software system. Figure 2 schematically shows the
primary building blocks of SimCA.

Disturbances

Control # Simplex Measured
Setpoint 1 - Error 1 Controller signal 1' Simplex signal Plant output>

ﬂ)—»
A0, 1 - 0;...0,

Control

Error n i
L COnt’I;OHGF signal n
On

Figure 2: A self-adaptive software with SimCA.

Parameters

Setpoint n

A detailed explanation of SimCA is available in [16]. In
short, each system goal (reliability, performance) except cost
is represented as a setpoint s;(k). On every adaptation step
k the system outputs O;(k) are measured. Based on the er-
ror e;(k) = si(k) — O;(k) and a linear model M; described
below, each controller C; produces a signal u;(k) which rep-
resent the value of each goal that should be reached by the
system. The simplex block receives u; (k) and additional envi-
ronment/plant parameters (e.g., the invocation cost of exter-
nal services) as inputs and produces a simplex signal usy (k)
as output. usz(k) contains the values of system knobs which
affect the plant behaviour. For TAS, u..(k) is a vector con-
taining the probabilities to select each of the available service
providers. Disturbances affecting O;(k) are handled by con-
troller C; via adjusting the control signal u; (k).

SimCA works in three phases: identification, control, and
optimization.

In the identification phase, n linear models of the controlled
system are built. Each model M;, i € [1,n], is responsible
for one goal s;. The identification phase starts by feeding
all possible control signal values to the plant. The goal of
identification is to determine the influence of control signal
u; on the corresponding system output O; at every time step



k. The dependency between u; and O; is captured by the
coefficient «; which is further used to build controller 7. «;
is calculated during identification based on linear regression
using the APRE tool [14]. As a result, the following set of
linear models is obtained:

O;(k) = a; x ui(k—1) (M)

In M; the control signal is a value from the interval [min;,
max;]|, where maz; and min; are the maximal and minimal
values that can be achieved by TAS for the i-th goal:

u; (k) = (max; — min;) X n:(k) + min; (1)

7; is the control coefficient. During the identification phase,
7; changes from 0.0 to 1.0 using an increment of 0.05 on every
step k. As a consequence, most feasible values of goal i are
produced as wu;. This allows us to measure all the possible
values of the outputs O;(k), calculate «;, and build M;.

The model M; generally describes the system behavior but
does not take into account small disturbances or sudden fail-
ures that typically occur in software systems. To deal with
inaccuracies in M;, SImCA uses a Kalman filter to adapt the
model at runtime, and a change point detection mechanism
that allows reacting to critical changes in the system.

An important note concerning the control methodology of
SimCA is that the simplex method does not change the value
of control signal i. Instead, simplex is responsible for seamless
translation of control signals into a proper actuation signal.
For example in TAS, if the control signal equals to failure rate
= 0.03, simplex finds a combination of services (S1-S9) that
assures this failure rate is not exceeded. Hence, simplex is not
considered when building a system model and synthesizing
controllers that manage this model. Instead, controllers are
assumed to affect the plant output via control signals. Ev-
ery goal is controlled separately during the first two phases
of SimCA. This means that during identification and control
phases SimCA works in parallel with multiple Single-Input-
Single-Output (SISO) controllers, and then combines control
outputs with the help of simplex during optimization phase.

In the control phase, a set of n controllers is synthesized.
Each controller C; is responsible for the i-th goal. C; calcu-
lates the control coefficient 7; at the current time step k de-
pending on the previous value of control coefficient n;(k — 1),
adjustment coefficient «;, controller pole p; and the error e;:

i) = sl = 1) + 2 ex(b) (2)

The controller pole p; belongs to the open interval (0,1)
to maintain stability and avoid oscillations. The pole also
allows to trade-off robustness to external disturbances with
the convergence speed (known as settling time): higher values
of p; lead to slower convergence [8].

In the optimization phase, SImCA combines the signals u; (k)
from multiple controllers using the simplex method to opti-
mally drive the measured output of the system towards its
desired behavior. Simplex solves the following problem:

P
Minimize Cost: min C = Z cj - Tj
subject to: i=1
n p
i=1 j=1 ®3)
xj >20,u; >0, withi=1...n,j=1...p
where:

e p: a number of variables — each variable represents one
service provider;

e n: a number of equations — each equation represents a
goal to be satisfied;

e z; are the values of system knobs, i.e. probabilities to
select each of the service providers;

e wu,; are the control signals;

e a;; and c¢; are the monitored parameters: the failure
rate, response time and cost of external services.

SimCA finds the variables of the problem x; and passes
them to the plant in the form of a simplex signal. A detailed
explanation on how simplex solves the system of equations (3)
can be found in [16], and additional background in [5].

3.2 ActivFORMS

ActivFORMS is an architecture-based approach for self-
adaptation that uses an integrated formal model of the adap-
tation components of the feedback loop and the knowledge
they share [11]. ActivFORMS distinguishes itself from exist-
ing architecture-based approaches in three ways:

e The formally verified model of the feedback loop is di-
rectly executed by the virtual machine, hence called the
active model. This allows to guarantee at runtime the
system properties verified at design time. As the ac-
tive model is directly executed, the approach does not
require coding.

e ActivFORMS supports dynamic changes of the active
model. A new feedback loop model can be deployed at
runtime to meet new or changing goals.

o ActivFORMS supports goal management and model ver-
ification at runtime.

ActivFORMS follows a three-layered reference model pro-
posed by Kramer and Magee [13], see Figure 3. The bot-
tom layer comprises the managed system? that implements
the domain-specific functionality. The active model monitors
and adapts the managed system through probes and effectors
respectively®. The goal management layer monitors the ac-
tive model and environment, and deals with adaptation issues
that cannot be handled by the current active model; e.g., it
dynamically changes the active model to deal with changing
system goals.

The active model realizes a MAPE-K (Monitor-Analyze-
Plan-Execute-Knowledge) feedback loop [12] that monitors
the managed system and adapts it according to the system
goals. ActivFORMS supports feedback loops modeled using
networks of timed automata. A timed automaton is a finite-
state machine that models a behavior, extended with clock
variables.

Recalling the TAS scenario, we used a utility function as a
part of the planner component of a MAPE-K formal model
to provide the required adaptation, see Figure 4. When trig-
gered by a signal from the analysis component, the planner
calculates the utility function coefficients and sends a signal
to the execution component to update the managed system.

2Managed system is called plant in control theory.
3Probe corresponds to sensor in control theory terminology,
effector corresponds to actuator.
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Figure 4: Planning automaton

The utility function works as follows: all system goals (re-
liability, performance) and optimization goal (cost) are rep-
resented as ;. During the first adaptation period the cost
goal is set to a minimum achievable value: ming,st. On every
adaptation step k the system outputs M;(k) are measured.
Knowing the error e;(k) = G; — M;(k), we calculate how big
it is in relation to the actual values of the goal i:

max; — min;

Ai(k) = (4)

For example, if the measured response time Mgy (k) is 29.04
on a first adaptation step and other service parameters are
equal to the values from Table 1, we get:

_29.04—26
~ 35.4—21.68
Then we calculate coefficients cf; (k) for the utility function.

cfi(k) represents the selection probability for a QoS strategy
in the next adaptation period:

Arr(1) =0.22

cfi(k) = 22— (5)

Using the same example, we get:

_ 0.22
T 0.304+0.22+0

In the provided example, a coefficient for performance of
cfrr = 0.43 means that in the next adaptation period the
service provider with the lowest difference between Grr and
service response time will be chosen 43% of the times.

For offline model-checking we use Uppaal [1], a tool that
supports modeling of behaviors and verification of properties
of networks of timed automata. For the specification of prop-
erties, we use Timed Computation Tree Logic (TCTL). TCTL
allows checking individual states of the system state space as
well as traces over the state space. The latter allows to verify
reachability, safety, and liveness properties.

The ActivFORMS virtual machine can perform the follow-
ing functions: execute the formal model according to the se-

CfRT (1) =0.43

mantics of timed automata, interact with the managed system
and environment through probes and effectors, support online
verification of the active model, and update the active model
when requested. ActivFORMS provides a set of formal tem-
plates to design the MAPE-K elements [6], and abstract Java
classes to implement probes and effectors. Probes track the
managed system and the environment and transfer data to
the Monitor automata of the feedback loop, while Effectors
transfer actions generated by the Execution automata to the
managed system.

Goal Management comprises a tree-based goal model where
nodes have associated MAPE-K models to realize adaptations.
Goal management monitors goals via the virtual machine.
When a goal violation is detected, the models associated with
an alternative goal that matches the changing conditions are
used to update the deployed models via the virtual machine.
Goal models can be updated at runtime. Here, we do not
focus on the goal layer, we refer the interested reader to [11].

4. COMPARATIVE EVALUATION

We now evaluate the approaches. Section 4.1 describes the
experimental setting. Section 4.2 shows the adaptation behav-
ior of SimCA and ActivFORMS on a basic TAS scenario and
in response to different runtime changes. Finally, Section 4.3
discusses guarantees provided by both approaches.

4.1 Experimental Setting

We use the TAS case described in Section 2 to compare the
adaptation approaches. The TAS exemplar [17] is realized as a
Java application and extended with SimCA and ActivFORMS
classes. The starting parameters of the services and system
requirements are specified in Table 1.

Adaptation is performed once per 100 invocations of TAS (k
=100 inv.). At each adaptation step the application calculates
the average measured value of the i-th goal (e.g., measured
failure rate) during the past 100 inv. Then it calculates error
e; as the difference between i-th setpoint (e.g., target failure
rate) and measured value of the i-th goal. The application
also monitors the cost of serving the incoming requests.

The task of both SimCA and ActivFORMS is to keep the
goals at their setpoints and minimize the cost. SImCA achieves
this task by calculating the value of the simplex signal, which
represents the probability of selecting the services in the list
{51, 52,...,59}. ActiveFORMS achieves this task by prior-
itizing goals with the help of utility function and updating
cost setpoint in case of goal violations. Due to high runtime
fluctuations in the values of service parameters, the controller
pole p in SimCA is set to 0.98 which allows to reject errors of
high magnitude. For the same reason, the cost increment Ac
in ActivFORMS is set to a low value of 0.1¢ *.

The application collects the data of the system and the ser-
vice implementations to build performance graphs, which are
used to compare the adaptation approaches in the following
section. The z-axis of the graphs are time instants t, each
instant corresponds to a series of At inv. of TAS. Thus, the
y-axis shows the average values of the measured feature per
At inv. of TAS. At can be changed in the TAS interface.

4.2 Adaptation Results

The graphs in Figure 5 show adaptation results of SImCA
and ActivFORMS on TAS configured according to Table 1.

4We use ¢ symbol to represent cost throughout the paper.
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Figure 5: SimCA vs activFORMS on a TAS scenario
(At = 1000 inv.)

SimCA starts with an identification phase (¢ < 7). The con-
trol phase, which is immediately followed by an optimization
phase, starts after the relationship between control signals,
simplex signal and system output is identified (from ¢ equal 7
onwards). This phase is stable, all minor spikes on the SimCA
graphs are caused by the random nature of failures in TAS,
e.g., a failure rate of 3% does not always lead to 3 fails per
100 inv.

In the same scenario ActivFORMS starts with a cost set-
point of 8.5¢ which is the average minimal invocation cost
of the TAS workflow. In this scenario we assume no prior of-
fline verification of properties so the optimal cost is considered
unknown. As a result, both the reliability and performance
goals are violated (¢ < 20 on the right graphs). The adapta-
tion slowly increases the cost setpoint which leads to a zero
reliability error and a small performance error after t = 30.

Comparing TAS reliability achieved by SimCA and Activ-
FORMS, it is notable that the latter approach requires three
times more time to reach a stable state with no goal viola-
tion. Comparing performance, ActivEFORMS slightly violates
the goal even after ¢ = 75, but the most notable error can
be observed when ¢t < 30. So in this case SimCA needs 4
times less time in order to reach a setpoint. As for the picked
services, the strategies differ. Though both approaches use S1
approximately equal amount of times (= 60%), SImCA prefers
a combination of S2, S4 and AS3, while ActivFORMS uses S2,
AS1 and AS3.
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Figure 6: SimCA vs ActivFORMS on a TAS scenario
(At = 100 inv.)

The Cost graphs (Figure 5) seem to be similar, but closer
examination shows that the average cost measured during sta-
ble state (¢ between 30 and 75) is 11.26¢ for SimCA vs 11.37¢
for ActivFORMS. This means a saving of 110¢ per 1000 work-
flow invocations for SimCA compared to ActivEFORMS.

To further compare the approaches, we decrease the mea-
surements interval At from 1000 to 100 workflow invocations,
see Figure 6. The measured reliability spikes are almost equal
on the top plots, however performance and probabilities to
select services in ActivFORMS have noticeably higher oscilla-
tion amplitude than in SimCA. Such effect is caused by the na-
ture of the algorithm that selects utility function coefficients:
the closer the measured value of a goal i gets to the setpoint
i, the lower is the priority of goal i.

It is worth mentioning that simplex operating under distur-
bances has the property of distributing probabilities for select-
ing services equally among all available services [16]. We do
not observe this behaviour in the solution with ActivEFORMS.
With ActivFORMS, the probabilities of selecting some of the
services can suddenly change from 0 to 100% in 1000 work-
flow inv. (e.g., see the probability to select S2 in 30 < t < 40).
Hence, with SimCA, the load on service providers will be rela-
tively smooth over time, while the load with the ActivFORMS
solution can change abruptly, requiring the service providers
to keep 100% of their resources available all the time.

Both adaptation approaches have a mechanism that allows
to trade-off settling time for other properties, so we study how
such trade-off will affect the system output, see Figure 7.

Lowering pole p in SimCA from 0.98 to 0.7 drastically in-
creases the oscillation amplitude of all outputs. After ¢ = 40
the system even triggers re-identification as the measured sys-
tem output values are too far from their setpoints. This is
caused by a combination of low settling time (i.e., the sys-
tem immediately follows any change in the output) and small
adaptation period that leads to high measurement errors.

Raising the cost increment A¢ in ActivFORMS from 0.1 to
1.0 also increases oscillations of all system outputs. However,
their amplitude is much lower, see the 'Reliability’ and 'Cost’
plots. The system is also more stable than in SimCA. This
experiment allows to conclude that ActivEFORMS is a better
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Figure 7: SimCA vs ActivFORMS, the settling time
trade-off (At = 1000 inv.)

adaptation solution for a system with settling time priority.

Finally, we show how both approaches react to runtime
changes, see Figure 8. First of all, having the same initial con-
ditions as in the previous experiments, we set ActivFORMS’
cost setpoint to 11.0¢ instead of 8.5¢ because we already know
the approximate optimal cost value. This adjustment results
almost immediately in convergence to the desired setpoint val-
ues. Hence, by doing a system pre-run or offline validation,
the ActivFORMS adaptation time can be greatly decreased.

Coming back to Figure 8, there are three major changes
happening in the system at runtime:

e Goal change. Both goals are changed at t=22: failure
rate from 0.03 to 0.05%, resp.time from 26 to 28 ms;

e Abrupt change. Medical Service 2 breaks at t=33;

e Parameter change. Response time of Medical Service 1
increases from 22 to 52 ms at t=55.

The plots show that both adaptation approaches deal with
all types of change: the measured values of both goals follow
their setpoints. As in the previous experiments, ActivFORMS
requires more time to adapt to the new setpoints.

More importantly, the cost of TAS workflow execution at
t=22 decreases to 10.2¢ with SimCA vs 10.8¢ with Activ-
FORMS. When Service 2 shuts down at ¢ = 33, it is already
barely used by SimCA because there is another combination
of services that can produce the same result with lower cost.
However, the ActivFORMS solution even increases the uti-
lization of Service 2 when t is between 22 and 33. When
the response time of Service 1 increases at ¢t = 55, the differ-
ence between the workflow invocation cost is around 1¢ per
invocation. This scenario shows that SImCA better solves op-
timization tasks.

4.3 Guarantees

By using the simplex method, SimCA guarantees optimal
cost in TAS without violating the failure rate and response
time goals. Simplex has proven to be a practical and fast
algorithm for solving this kind of optimization problems [5].
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Figure 8: SimCA vs ActivFORMS during runtime
changes (At = 1000 inv.)

The control-theoretical guarantees provided by SimCA are
divided into four main categories: asymptotic stability, steady-
state error, settling time and overshoot. If a closed-loop sys-
tem is asymptotically stable, it reaches the proximity of the
setpoint s;. If the system has zero steady-state error, its set-
point s; is reached after a certain time and O; (k) = s;(k), k >
K. The amount of time K after this happens is called set-
tling time. If the controlled value exceeded the setpoint before
reaching a stable area, this is called overshoot and should be
avoided.

The control-theoretical guarantees provided by SimCA are
confirmed by the data shown on the Figures:

e The control system is asymptotically stable and con-
verges without overshooting, since it is designed to have
only a single pole p which belongs to the open interval

(0, 1);

e According to the system output equation of SimCA [16],
the output O; during steady-state equals s; which leads
to a zero steady-state error: Ae = O; —s; = 0. The
absence of a steady-state error can be observed on the
performance plot of Figure 5 when ¢ > 15;

e The settling time K of a unit step of every controller i

depends on the pole p; and a constant As; chosen by the
system engineer: K = %pi_i. According to [10, p.85],
the commonly used value of As is 0.02 (2%). Hence K =
[20-02 — 193.6. This means that changing the response
time from 26 to 28 (step of amplitude 0.2) would take
around 193.6%0.2 =~ 40 adaptation steps. This guarantee
can be observed on the performance plot of Figure 8

when ¢ is between 20 and 24*;

*As adaptation is performed every 100 workflow invocations



Due to the nature of the simplex method, SimCA will only
work when the setpoint of every goal lays between minimal
and maximal values of that goal: min; < s; < max;. There-
fore, when having an infeasible goal, a system with SimCA
will not converge to the closest feasible value for that goal.
Instead, the user will be notified that the task is not solv-
able and the change point detection mechanism will cause an
infinitely loop of identification phases, see Figure 9. On the
contrary, ActivFORMS will adapt the system output so that
it converges to the closest feasible goal value.
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Figure 9: SimCA vs ActivFORMS with infeasible goal
(At = 1000 inv.)

The ActivFORMS approach provides offline and online guar-
antees on the system behaviour. The offline guarantees come
from the verification of the formal model through TCTL prop-
erties at the design time with the Uppaal model checker; veri-
fied properties are: reachability, safety, liveness, and deadlock
freeness [1].

To achieve the guaranteed cost optimality required by TAS,
we first implemented the utility function algorithm as a part
of the planner component of a MAPE-K loop. Then, we de-
termined the lowest value of cost that does not violate the goal
failure rate and response time with the help of formal offline
verification of the following safety property:

A[l (gCost == MIN_VALUE) imply
(measuredFR <= gFR AND measuredRT <= gRT)

The system parameters and goals for verification were taken
from Table 1. The MAPE-K model is also verified to guaran-
tee the correctness of the algorithm’s functionality. E.g., to
guarantee that the system model is deadlock free, i.e. it does
not have erroneous states and the system does not get stuck
in any particular state, Uppaal provides a special formula:

A[] not deadlock

The following liveness property guarantees that whenever
the planning behavior is invoked to create a plan, then even-
tually a plan is executed.

Planning.CreatePlan --> Execution.PlanExecuted

The runtime guarantees of ActivFORMS are provided in
two ways. First, the model that was formally verified offline
is directly executed by the virtual machine at runtime so these
guarantees are preserved at runtime. Second, as offline ver-
ification is limited to the input provided by the verification
models, ActivFORMS allows to continue verification of prop-
erties at runtime and inform the user about violations. We
refer the interested reader to [11] for details.

and At = 1000 invocations, 4 time steps on the graph equals
to 40 adaptation steps
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Figure 10: SimCA vs ActivFORMS with a constant
disturbance (At = 1000 inv.)

In the studied TAS scenarios we used both types of runtime
guarantees provided by ActivFORMS. The direct execution of
the verified model allowed to guarantee the correctness of the
adaptation mechanism implementation; the runtime verifica-
tion mechanism of ActivFORMS guaranteed that the minimal
cost, previously determined offline, does not lead to violation
of the failure rate or response time goals at runtime. To insure
the latter, we added the following runtime goals:

Gl: A[] (measuredFR <= gFR AND measuredRT <= gRT)
G2: A[] (measuredFR > 0.9%gFR AND measuredRT > 0.9%gRT)

Goal G1 assures that the failure rate and response time of
TAS do not exceed their goals. Goal G2 assures that the values
of both goals will not drop lower than 90% of their goals, i.e.
the system will not waste resources. In case of a runtime goal
violation, the cost setpoint gCost is adapted accordingly: for
G1 violation gCost is increased by the cost increment A, for
G2 violation gCost is decreased by Ac.

Changing Ac allows trading-off the speed of the system re-
action to runtime changes (settling time) for the amplitude of
system outputs oscillations around the goal value (accuracy).

4.4 Disturbance Handling

Throughout the experiments discussed in Section 4.2, both
approaches handled randomly distributed measurement dis-
turbances caused by the changes of service parameters at run-
time. Different to ActivFORMS, SimCA allows to formally
evaluate the amount of disturbance the system can withstand.

According to the PBM approach [8] that lays at the core of
SimCA, the amount of disturbance the system can withstand
A(d) by using a PBM controller can be estimated as follows:
0 < A(d) < %. This means that the value of the pole p
defines how SimCA will react to disturbances. For p = 0.98
that was used in most experiments, the measurement can be
inaccurate by a factor of 100, and the controller of SimCA will
still adapt the system to follow the goals.

However, as mentioned in Section 4.3, the simplex method
will not be able to reach an infeasible goal. Hence, the mea-
surement inaccuracy on values of goal ¢ that SiImCA can with-



stand is: min; < A(d) < max;. This property of SImCA can
be observed on Figure 7 after ¢ = 40: the reliability output
reaches a value that is higher than maximal achievable value
for a TAS workflow which causes a re-identification phase.

When it comes to constant disturbances, both approaches
successfully perform adaptation. In the scenario shown on
Figure 10, there is a constant response time measurement dis-
turbance of +3 ms (e.g., the sensor shows 29 ms instead of 26
ms). As in the previous experiments with the same pole and
cost increment, SimCA converges to the setpoint faster. It
is notable that ActivFORMS achieves better cost by slightly
violating the performance goal.

S. DISCUSSION

Both SimCA and ActivEFORMS successfully solved the adap-
tation problem. The choice between these approaches depends
on the particular scenario. When it comes to formal guaran-
tees, both approaches provide the main guarantee required
from adaptation, i.e. to minimize the cost without violating
performance and reliability goals. SimCA guarantees this by
using the simplex method and ActivEFORMS verifies the solu-
tion optimality offline. However, at runtime SimCA performs
better because offline system validation of ActivFORMS relies
on particular system properties that may not hold online.

Other formal guarantees provided by the two approaches
are different. With SimCA it is possible to formally prove a
number of system properties, such as stability, settling time,
amount of disturbance the system withstands, etc., which do
not depend on the particular system parameters. On a con-
trary, with ActivFORMS these properties are inherent to the
underlying algorithm, such as a utility function that was used
in our study, and do not come from the design of the adapta-
tion mechanism. With ActivEFORMS it is possible to formally
verify these properties of the algorithm on a particular set of
system parameters by exploring the whole state space. How-
ever, trying to verify the TAS system with all possible combi-
nations of service parameters will lead to an explosion of the
state space. This is compensated by runtime verification.

On the other hand, with ActivFORMS the correctness of
the implementation of adaptation mechanism can be formally
proven, in particular the absence of erroneous states and cor-
rect interaction between adaptation components.

6. CONCLUSIONS

In this paper we presented a comparative evaluation of the
two different approaches for self-adaptation: SimCA which is

based on control theory and linear optimization, and architecture-

based ActivFORMS equipped with a utility function. The
study was performed using the TAS exemplar. The analysis
of adaptation results have shown that both approaches can
deal with multiple goals and provide guaranteed optimality
with respect to an additional goal. However, SimCA achieves
better results in the presence of runtime changes as it does
not rely on data verified at design time. At the same time,
ActivFORMS is a good choice for systems that require low
settling time.

Except optimality, the two adaptation approaches offer dif-
ferent guarantees. The design of SimCA adaptation mecha-
nism, such as the pole value or the system output equation,
allows to formally prove the properties of underlying system
and guarantee that they will hold at runtime independent of

system parameters. ActivFORMS allows formal verification
of system properties based on the particular input data. Run-
time verification allows complementary verification when the
system parameters change. An important feature of Activ-
FORMS is that it allows to formally guarantee the functional
correctness of the implementation of adaptation algorithm.

This work is a first step towards understanding the effec-
tiveness and formal power of different adaptation mechanisms.
As a part of future efforts, we want to compare other adap-
tation approaches, such as QoSMOS [2] to SimCA and Activ-
FORMS. We are also planning to test the adaptation mecha-
nisms on different types of systems and scenarios.
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ABSTRACT

An architectural approach to self-adaptive systems involves
runtime change of system configuration (i.e., the system’s
components, their bindings and operational parameters) and
behaviour update (i.e., component orchestration). Thus, dy-
namic reconfiguration and discrete event control theory are
at the heart of architectural adaptation. Although control-
ling configuration and behaviour at runtime has been dis-
cussed and applied to architectural adaptation, architectures
for self-adaptive systems often compound these two aspects
reducing the potential for adaptability. In this paper we
propose a reference architecture that allows for coordinated
yet transparent and independent adaptation of system con-
figuration and behaviour.

Categories and Subject Descriptors
D.2 [Software Engineering)

General Terms
Design

Keywords

Self-adaptive Systems, Software Architecture

1. INTRODUCTION

Self-adaptive systems are capable of altering at runtime
their behaviour in response to changes in their environment,
capabilities and goals. Research and practice in the field
has addressed challenges of designing these systems from
multiple perspectives and levels of abstraction.

It is widely recognised that an architectural approach to
achieve self-adaptability promises a general coarse grained
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framework that can be applied across many application do-
mains, providing an abstract mechanism in which to define
runtime adaptation that can scale to large and complex sys-
tems [21].

Architecture-based adaptation involves runtime change of
system configuration (e.g., the system’s components, their
bindings, and operational parameters) and behaviour up-
date (e.g., component orchestration).

Existing approaches to architectural adaptation (e.g. [16,
10] incorporate elements from two key areas to enable run-
time adaptation: Dynamic reconfiguration [9, 21] and discrete-
event control theory [12, 22, 8]. The first, key for adapting
the system configuration, studies how to change component
structure and operational parameters ensuring that on-going
operation is not disrupted and/or non-functional aspects of
the system are improved. The second, key for adapting be-
haviour, studies how to direct the behaviour of a system in
order to ensure high-level (i.e., business, mission) goals.

Although the notions of configuration and behaviour con-
trol are discussed and applied by many authors, they are
typically compounded when architectures for adaptation are
presented, reducing overall architectural adaptability. Au-
tomated change of configuration and behaviour address dif-
ferent kinds of adaptation scenarios each of which should
be managed as independently as possible from the other.
Nonetheless, configuration and behaviour are related and
it is not always possible to change one without changing
the other. The need for both capabilities of independent
yet coordinated adaptation of behaviour and configuration
requires an extensible architectural framework that makes
explicit how different kinds of adaptation occur.

Consider a UAV on a mission to search for and anal-
yse samples. A failure of its GPS component may trigger
a reconfiguration aiming at providing a location triangulat-
ing over alternative sensor data. The strategy may tnvolve
passivating the navigation system, unloading the GPS com-
ponent and loading components for other sensors in addi-
tion to the component that resolves the triangulation. A be-
haviour strategy that is keeping track of the mission status
(e.g. tracking areas remaining to be traversed, samples col-
lected, etc.) should be oblivious to this change.

A reconfiguration adaptation strategy that can cope with
the GPS failure can be computed automatically using ap-
proaches based on, for example, SMT solvers or planners [22]
that consider the structural constraints provided in the sys-
tem specification (e.g., the need for a location service), re-
quirements and capabilities of component types (e.g., the
requirements of a triangulation service) and runtime infor-



mation of available component instances (e.g., the availabil-
ity of other sensors).

The arrival of the UAV at an unexpected location due to,
say, unanticipated weather conditions may make the current
search and collection strategy inadequate. For instance, the
new location may be further away from the base than expected
and the remaining battery charge may be insufficient to allow
visiting the remaining unsearched locations before returning
to base. In this situation the behaviour strategy would have
to be revised to relinquish the goal of searching the complete
area before returning to base in favour of the safety require-
ment that battery levels never go below a given threshold.
The new behaviour strategy may reprioritise remaining ar-
eas to be searched (in terms of importance and convenience),
visiting only a subset of the remaining locations as it moves
towards the base station for recharging. Once recharged, the
strategy may attempt to revisit the entire area under surveil-
lance but prioritising locations previously discarded. Such
behavioural adaptation should be independent to the infras-
tructure supporting reconfiguration control.

A behaviour strategy that can deal with unexpected devi-
ations in the UAV’s navigation plan can be computed auto-
matically using approaches based on, for instance, controller
synthesis [8] that consider a behaviour model describing the
capabilities of the UAV (e.g. autonomy), environment (e.g.,
map with locations of interest and obstacles) and system
goals (e.g. UAV safety requirements and search and analyse
— liveness — requirements). Indeed, our proposal of an ex-
plicit separation of reconfiguration and behaviour strategy
computation and enactment is in line with the design princi-
ples of a separation of concerns and information hiding. The
behaviour strategy is oblivious to the implementation that
provides the services it calls and the reconfiguration strategy
supports the injection of the dependencies that are required
by the behaviour strategy oblivious to the particular order-
ing of calls that the behaviour strategy will make. In a sense,
the design principle which is known to support changeabil-
ity supports runtime changeability, which ultimately is what
adaptation is about.

Configuration and behaviour adaptation may however need
to be executed in concert. Consider the scenario in which
the gripper of the UAV’s arm that is to be used to pick up
samples becomes unresponsive. With a broken gripper the
original search and analyse mission is unachievable. This
should trigger an adaptation to a degraded goal that aims
to analyse samples via on-board sensors and remote process-
ing. This goal requires a different behaviour strategy (e.g.
circling samples once found to perform a 360 degree analy-
sis) but also a different set of services provided by different
components (e.g. infra-red camera). Not only are both be-
haviour and configuration adaptation required, but also their
enactment requires a non-trivial degree of provisioning: To
set up the infra-red camera, the UAV requires folding the
arm to avoid obstructing the camera’s view; performing such
an operation while in the air is risky. Hence, coordination
between configuration and behaviour adaptation is needed:
First, a safe landing location must be found, then arm fold-
ing must be completed, and only then can the reconfigura-
tion start. New components are loaded and activated, and
finally, a strategy for in-situ analysis, rather than analysis
at the base, can start.

It is in the combined configuration and behaviour adapta-
tion where the need for both separation of concerns and ex-
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plicit architectural representation of coordination becomes
most evident. Approaches to automated computation of
configuration and behaviour adaptation strategies require
different input information and utilise different reasoning
techniques. Both automated reasoning forms are of signifi-
cant computational complexity and require careful abstrac-
tion of information. Keeping resolution of configuration and
behaviour adaptation separately allows reusing existing and
future developments in the fields of dynamic reconfiguration
and control theory and also helps keep computational com-
plexity down.

The broken UAV gripper scenario requires a coordinated
behaviour and reconfiguration adaptation strategy. The adap-
tation required can be decomposed into a behaviour control
problem that assumes that a reconfiguration service is avail-
able and a reconfiguration problem. The resulting behaviour
strategy will be computed on the assumption that the UAV’s
capabilities will conform to the current configuration (e.g.
grip command fails) until a reconfigure command is executed,
and that from then on different capabilities will be avail-
able (e.g. infra-red camera getPicture command available).
The behaviour strategy computation will also consider re-
strictions on when the reconfigure command is allowed (e.g.
when arm is folded) and new goals (360 degree picture anal-
ysis rather than collect). The computation of the reconfigu-
ration strategy does not entail additional complexity and is
oblivious to the fact that a behaviour strategy that involves a
reconfiguration halfway through is being computed.

In the above scenario, what needs to be resolved at the
architectural level of the self-adaptation infrastructure is
which architectural element is responsible for the decomposi-
tion of the adaptation strategy into a behaviour strategy and
a reconfiguration strategy, and also how strategy enactment
is performed to allow the behaviour strategy to command
reconfiguration at an appropriate time (and possibly even
account for reconfiguration failure). Indeed, an appropriate
architectural solution to this would enable guaranteeing that
given a correct decomposition of the overall composite adap-
tation problem into configuration and behaviour adaptation
problems, and given correct-by-construction configuration
and behavioural strategies for these problems, the overall
adaptation problem is correct.

In this paper we present MORPH, a reference architecture
for behaviour and configuration self-adaptation. MORPH
makes the distinction between dynamic reconfiguration and
behaviour adaptation explicit by putting them as first class
entities. Thus, MORPH allows both independent reconfig-
uration and behaviour adaptation building on the extensive
work developed but also allowing coordinated configuration
and behavioural adaptation to accommodate for complex
self-adaptation scenarios.

2. MORPH

The MORPH reference architecture builds upon the large
body of work related to engineering self-adaptive emphasis-
ing the need to make behaviour and reconfiguration control
first-class architectural entities. In particular, it draws in-
spiration from [16, 10], which are discussed below.

2.1 Background

The MAPE-K model shows how to structure a control
loop in adaptive systems. The four key activities (Monitor,
Analysis, Plan and Execute) are performed over a shared



data structure that captures the knowledge required for adap-
tation. The MAPE-K model does not prescribe what knowl-
edge is to be captured nor what aspect of the system is to
be controlled. Thus, there is no explicit treatment or dis-
tinction between configuration and behaviour adaptation let
alone prescribed mechanisms for dealing with coordinated
and independent configuration and behaviour adaptation.

The need to deal with hierarchies of control loops in au-
tonomous systems is widely recognised (e.g. [11]). Lower
levels are typically low latency loops that focus on more
tactic and stateless objectives that involve less monitored
and controlled elements while higher levels tend to focus
on more stateful and strategic objectives involving multi-
ple controlled and monitored aspects that require higher la-
tency loops. The need for hierarchy in architectural self-
adaptation is discussed in [16]. A three-tier architecture
is proposed to provide a separation of concerns and to ad-
dress a key architectural concern related to dealing with the
complexity of run-time construction of adaptation strate-
gies. The architecture structures hierarchically the MAPE-
K loops introducing a separation of concerns in which com-
plex, strategic, resource consuming analysis is performed
in top layers while simple, more tactical adaptation is per-
formed in lower layers.

Unlike the MAPE-K model, the architecture in [16] pre-
scribes the kind of control that is effected on the adaptive
system by establishing a clear interface between the adapta-
tion infrastructure and the component based system to be
adapted. The architecture assumes an interface on which
it can take action on the current system configuration by
creating and deleting components, binding and unbinding
components through their required and provided ports and
setting component modes (i.e., configuration parameters).

Although the three-tier architecture provides a clear sep-
aration of the concerns of behavioural planning from com-
ponent reconfiguration, this is purely hierarchical, with the
behaviour plan dictating the required structural (re) config-
uration at lower layers. Although this allows for independent
structural configuration alone if the behaviour plan is still
satisfied, it is less clear how behaviour control and configura-
tion control should work together, hindering the possibility
of more elaborate behaviour and configuration control and
the potential for reasoning about adaptation guarantees.

The Rainbow [10] framework instantiates and refines the
MAPE-K architecture providing an extensible framework for
sensors and actuators at the interface between the control in-
frastructure and the target system. The architecture recog-
nises the complexity of the interface between the MAPE-K
infrastructure (referred to by the authors as the architecture
layer) and the component system to be adapted (referred to
as the system layer). The Rainbow framework introduces
additional infrastructure into the architecture and system
layers in addition to accounting for an extra layer between
the two: the translation layer. Monitoring is split amongst
the three layers: probes are introduced as system layer in-
frastructure to support observation and measurement of low-
level system states. Gauges are part of the architectural in-
frastructure layer and aggregate information from the probes
to update appropriate properties of the knowledge base used
for the MAPE activities. The translation layer resolves the
abstraction gap between the system layer and the architec-
tural layer, for instance relating abstract component iden-
tifiers in the later concrete process identifiers and machine
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identifiers in the former.

Rainbow focuses on achieving self-adaptation through con-
figuration adaptation. Thus, as in [16] focus is on chang-
ing component instances and bindings and also effecting be-
haviour by changing operational parameters (thread pool
size, number of servers, etc.). Indeed, the framework does
not account explicitly for automated construction of be-
haviour strategies that control the functional behaviour of
the system layer components. As in [16], the distinction be-
tween configuration and behaviour control is not elaborated
explicitly in the architecture.

In the following, we propose an architecture that takes
inspiration from the architectures discussed above but that
includes the design concern related to supporting indepen-
dent yet coordinated behaviour and configuration adapta-
tion. The architecture combines the three tier structure
from [16] to address varying latency of architectural self-
adaptation control. We design each layer as a MAPE-K
control loop, resulting in a hierarchical control loop struc-
ture as in [17]. As in Rainbow [10] we address the problem
of bridging the gap between the managed component ar-
chitecture and the adaptation infrastructure encapsulating
the former and also providing a decoupled mechanism for
aggregation and inference over logged system data.

2.2 Architectural Overview

We start with a very brief introduction of the main ar-
chitectural elements to give a general picture of how the
architecture works before we go into detail of the workings
and rationale of each element. A graphical representation of
the architecture can be found in Figure 1. In the remaining
text, when we want to emphasise traceability to the figure
we will use an alternative font.

The architecture is structured in three main layers that sit
above the target system: Goal Management, Strategy Manage-
ment and Strategy Enactment. Orthogonal to the three layers is
the Common Knowledge Repository. Each layer can be thought
of as a implementing a MAPE-K loop. The top layer’s
MAPE-K loop is responsible for reacting to changes in the
goal model that require complex computation of strategic,
possibly configuration and behavioural, adaptation. Its knowl-
edge base is the Common Knowledge Repository. The Strategy
Management layer’s MAPE-K loop is responsible for adapting
to changes that can be addressed using pre-processed strate-
gies. It selects pre-computed strategies based on the Common
Repository Knowledge and a set of internally managed pre-
computed strategies. The Strategy Enactment layer’s MAPE-
K loop is responsible for executing strategies; its knowledge
base is primarily the strategy under enactment.

The Target System abstracts the Component Architecture that
provides system functionality. The Component Architecture
is harnessed by effectors and probes which allow the Strategy
Enactment Layer to interface with system components. The
Knowledge Repository stores in a Log the execution data pro-
duced by Target System and also stores in the Goal Model) the
result of Inference procedures that produce knowledge regard-
ing the system state, goals and environment assumptions.
We expect users, administrators and other stakeholders to
also produce modifications to the Knowledge Repository, and
in particular the goals and environment assumptions.

The three layers that provide the architectural adapta-
tion infrastructure are each split into reconfiguration and a
behaviour aspects. The Goal Management layer has a Goal



strategy | problem Solver

Behaviour

strategies

(System state +

Behaviour

| problem
I
§ X Reconfiguration Goal Model
O S Problem Solver Manager
|
S,
<
strategies X
exception exception
sl
S5
8 E | Reconfiguration
S %! | Strategy Manager
s 8! 4 3 configuration
v s, negotiation
b3
exception strategy

Reconfiguration reconfigure

exception

Behaviour /

|
i Goal Model
g

System Goals +

Strategy Manager
Environment

Assumptions)

strategy

Strategy Enactor

Strategy
Enactment

reconfiguration
commands

Strategy Enactor

Knowledge Repository

behaviour
commands

(Effectors ( Rgsource ) ( Probes )
Discovery

Target
System

i
I
C g i Component ArchitecturD |
i

Figure 1: The MORPH Reference Architecture.

Model Manager whose main responsibility is to decompose
adaptation problems into reconfiguration and behaviour prob-
lems, each of which is given to a specific Solver to produce a
strategy that can achieve the required adaptation. The top
layer sends reconfiguration and behaviour strategies down-
wards. The bottom two layers have architectural elements to
handle reconfiguration and behaviour strategies separately
but interact with each other when and if needed to maintain
overall consistency. The Strategy Management layer entities
interact to ensure that they select consistent strategies to be
executed by the Strategy Enactment layer (c.f., configuration
negotiation). The Strategy Enactment layer entities interact
to ensure that the execution of their respective strategies is
done consistently over time (c.f., reconfigure command).

2.3 Target System

Responsibility: The main responsibility is to achieve
the system goals, encapsulate implementation details and
provide abstract monitoring and control mechanisms over
which behaviour and structure of the system can be adapted.

Rationale: This is to encapsulate the instrumentation of
the system-to-be-adapted to support a flexible and reusable
framework for monitoring, analysing, planning and execut-
ing adaptation strategies in the layers above.

Structure and Behaviour: The Target System, strongly
inspired by [10], contains the component architecture that pro-
vides the managed system’s functionality (e.g., GPS, video,
telemetry and navigation components). It also contains in-
strumentation to monitoring and control of the component
architecture. Two types of effectors are provided. The first
provides an API to add, remove and bind components, in
addition to setting operational parameters of these compo-
nents. We refer to the invocation of operations on these
effectors as reconfiguration commands. These effectors are ap-
plication domain independent, and they provide the adapta-
tion infrastructure an abstraction over the concrete deploy-
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ment infrastructure on which the component architecture
runs (e.g., the UAVs operating system). The second effec-
tor type, behaviour actions, is domain dependent and provides
an API that invokes functional services provided by compo-
nents of the component architecture. The UAV’s navigation
component may exhibit a complex API which is abstracted
into simple commands (e.g. goto(Location)) that are to be
used as the basis for behaviour strategies.

The mechanism for monitoring of the component architec-
ture can be provided by probes that reveal state information.
As with effectors, monitoring information can be classified
into two kinds. We have on one hand information regarding
the status of components. This kind of information is ap-
plication independent. Status of a component may indicate
if it is active, inactive, connected or killed. On the other
hand we refer to as events the application domain relevant
information that flows from the Target System to the Strat-
egy Enactment Layer. UAV events may include notifications
regarding battery depletion, or acknowledgements of having
reached a requested location.

Between the target system and the adaptation infrastruc-
ture a translation layer is required to provide translation
services that aim to bridge the abstraction gap between the
knowledge representation required to perform adaptation at
the architectural level and the concrete information of the
actual implementation. In the UAV, this may include re-
solving event handlers, process ids, in addition to domain
specific translations such the conversion of continuous vari-
able for battery level to a discrete battery depleted event.

2.4 Common Knowledge Repository

Responsibility: The key responsibility of the repository
is to keep an up to date goal model at runtime based on
inferences made over continuous monitoring of the environ-
ment to detect changes in goals, behaviour assumptions and
available infrastructure.



Rationale: The design rationale for the repository is to
decouple the accumulation of runtime information of the
target system from the complex computational processes
involved in abstracting and inferring high-level knowledge
that can be incorporated, for subsequent adaptation, into a
structured body of knowledge regarding stakeholder goals,
environmental assumptions and target system capabilities.

Structure and Behaviour: The common knowledge
repository stores information about the target system, the
goals and environment assumptions. It consists of two data
structures (a log and a goal model) and an Inference procedure.

The Goal Model: This is the key data architectural ele-
ment of the repository. We use the term “goal model” in the
sense of goal oriented requirements engineering [18].

The point of keeping a structured view of the world that
includes requirements and assumptions, with multiple ways
of achieving high-level goals and preference criteria over these
alternatives is that at runtime it is possible to change the
way a goal is achieved by selecting a different OR-refinement.
The combinatorial explosion of possible OR-refinement reso-
lutions can be a rich source for adaptation which is exploited
in the Goal Management Layer. In addition, this representa-
tion of rationale, is amenable to being updated and changed
as new information is acquired.

2.5 Goal Management Layer

Responsibility: The main responsibility of the Goal Man-
agement Layer is to deal with and anticipate changes in the
stakeholder goals, environment assumptions and system ca-
pabilities by pre-computing adaptation strategies consisting
of separate behaviour and reconfiguration strategies.

Rationale: The rationale for this layer is based on two
core concepts: The first is that the adaptive system must be
capable of performing strategic, computationally expensive,
planning independently of and concurrently with the execu-
tion of pre-computed strategies (occurring in lower layers).
The second is to decompose adaptation into a behaviour
strategy that controls the system to an interface and a re-
configuration strategy that injects the dependencies on con-
crete implementations that the behaviour strategy will use.
Decomposing adaptation along the modular design improves
support for adaptability allowing behaviour and configura-
tion changes independently.

Structure and Behaviour: The layer has three main
entities, the Goal Model Manager, the Behaviour Problem
Solver and the Reconfiguration Problem Solver.

The Goal Model Manager: This is the key element of the
layer responsible for three core tasks: The first is to decide
when a new adaptation strategy must be computed, the sec-
ond is to resolve all OR-refinements in the goal model and
select the requirements for to be achieved by the system, and
third to decompose the requirements into achievable recon-
figuration and behaviour problems. Concrete strategies for
reconfiguration and behaviour are computed by the solvers.

Production of adaptation strategies can be triggered by
requests for plans from layers below or internally due to the
identification of significant changes in the goal model. The
former may correspond to a scenario in which a failure is
propagated rapidly upwards from the target system: For
instance, the UAV’s gripper component fails. The Strategy
Enactment layer, which is executing a strategy that requires
the gripper, immediately informs that its current strategy is
unviable and requests a new strategy to the Strategy Man-
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agement Layer. If all pre-computed plans require the arm
to pick up objects, a new strategy for achieving system goals
is requested to the Goal Model Manager.

The alternative, internal, triggering mechanism corresponds
to scenarios in which the goal model is changed because
of new information inferred from the log or input manu-
ally by some stakeholder. For instance, weather conditions
may lead to inferring higher energy consumption rates from
logged information. What would follow is a revision of the
assumptions on UAV autonomy stored in the Goal Model.
Such alteration may trigger the re-computation and down-
stream propagation of search strategies to make more fre-
quent recharging stops.

Adaptation strategies are decomposed into a strategy for
achieving the component configuration that can provide the
functional services required achieve selected requirements
and a behaviour strategy that can call these services in
an appropriate temporal order to satisfy the requirements.
The adaptation strategy that deals with the broken gripper
must reconfigure the system to use a different set of compo-
nents (e.g. the infra-red camera) and coordinate its use upon
reaching a position where there is a sample to be inspected.

As discussed in the Introduction, decomposition allows
adaptation of the system configuration transparently to the
behaviour strategy being executed (e.g., changing the loca-
tion mechanism) or the behaviour strategy transparently to
the configuration in use (e.g., changing the route planning
strategy). In addition, decomposition allows for the compu-
tation of multiple behaviour strategies for a given configura-
tion (e.g. different search and collect strategies that assume
different UAV autonomy can be run on a configuration that
has a gripper component) and different configurations can
be used for a given behaviour strategy (e.g. different config-
urations for providing a positioning service can be used for
the same search strategy).

One of the design rationales for this layer is the pre-
computation of expensive adaptation strategies that are then
ready to use when needed. This means that multiple recon-
figuration and behaviour strategies may be constructed. In-
deed, the Goal Model Manager can pre-compute, and propa-
gate downwards, many reconfiguration and behaviour strate-
gies for one resolution of the OR-refinements of the goal
model. This may be useful, for example, if it is known that
information regarding UAV autonomy is imprecise, multiple
(behaviour) search strategies for searching the area may be
developed so that the infrastructure can adapt quickly as soon
as the predicted UAV autonomy differs significantly from
what can be inferred from the monitored energy consump-
tion. Similarly, should the GPS-based location service be
known to fail (perhaps do to environmental conditions), then
various reconfiguration plans may be pre-computed to allow
adaptation to alternative positioning systems when needed.

Configuration Problem Solver: The layer has two entities
capable of automatically constructing strategies for given
adaptation problems. The Configuration Problem Solver focuses
on how to control the target system to achieve a specified
configuration given the current system configuration, con-
figuration invariants that must be preserved and component
availability. Configuration invariants may include structural
restrictions forcing the architecture to conform to some ar-
chitectural style or other considerations based, for instance,
on non-functional. In the UAV example such restrictions
may include that the attitude control components never be




disabled or the total number of active components never be
beyond a given threshold to avoid battery overconsumption.

Reconfiguration problem solvers build strategies that call
actions that add and remove components, activate and passi-
vate them, and establish or destroy bindings between them.
These reconfiguration actions are part of the API exposed by
the target system. The strategy may sequence these actions
or have an elaborate scheme that decides which actions to
call depending on feedback obtained through the informa-
tion on the status of components exhibited by the target
system API.

To automatically construct strategies the solvers can build
upon a large body of work developed in the Artificial Intel-
ligence and Verification communities, including automatic
planners (e.g. [3]), controller synthesis (e.g. [8]), and model
checking. Such techniques have been applied to construction
of reconfiguration strategies in [21].

Behaviour Problem Solver: This entity focuses on how to
control the target system to satisfy a behaviour goal. In con-
trast to reconfiguration problems, the behaviour goal may
not be restricted to safety and reachability (i.e. reach a
specific global state while preserving some invariant). Be-
haviour goals may include complex liveness goals such as
to have the UAV monitor indefinitely an area for samples
to inspect. Behaviour problem solvers produce strategies,
which can be encoded as automata that monitor target sys-
tem events and invoke target system actions.

In addition to the expressiveness of goals that behaviour
strategies must resolve, there is an asymmetry between re-
configuration and behaviour problems. To resolve the co-
ordination problem between strategies (as with folding the
UAV arm before a reconfiguration to deal with a gripper fail-
ure can be executed, see Introduction), the behaviour strate-
gies produced by the solver can invoke a reconfigure com-
mand, which triggers the execution of a reconfiguration strat-
egy. We explain how this triggering works in Section 2.6.

2.6 Strategy Management Layer

Responsibility: This layer selects and propagates pre-
computed behaviour and reconfiguration strategies to be en-
acted in the layer below. For this, the layer must store and
manage pre-computed behaviour and reconfiguration plans,
and request new strategies to the layer above when needed.
It must also ensure that the behaviour and reconfiguration
strategies sent to the lower layer are consistent, indicating
their relationships.

Rationale: They main concept for the layer is to allow
rapid adaptation to failed strategy executions (or capitaliz-
ing rapidly on opportunities offered by new environmental
conditions) by having a restricted universe of pre-computed
alternative behaviour and reconfiguration strategies that can
be deployed independently or in a coordinated fashion.

Structure and Behaviour The layer has two entities
that work in similar fashion mimicking much of the layer’s
responsibilities but only on either behaviour or reconfigura-
tion strategies. However, the Behaviour Strategy Manager
and the Reconfiguration Strategy Manager are not strictly
peers. In some adaptation scenarios the former will take a
Master role in a Master-Slave decision pattern.

Behaviour Strategy Manager: This entity stores and man-
ages multiple behaviour strategies. From these strategies it
picks a behaviour strategy to be enacted in the layer below.
The selection of strategy may be triggered by an exception

14

raised by the layer below or internally due to a change iden-
tified in the common knowledge repository. The former may
occur when the behaviour strategy being executed finds it-
self in a unexpected situation it cannot handle. For instance,
the UAV executing a particular search strategy expects to be
at a specific location with at least 50% of its battery remain-
ing but finds that it is below that threshold, invalidating the
rest of the strategy for covering the area to be searched. At
this point the Strategy Enactment Layer signals that the
assumptions for its current strategy are invalid and requests
a new strategy to this layer.

The other scenario that can trigger the selection of a new
strategy is a change in the common knowledge repository.
Consider again the problem of unexpected energy overcon-
sumption. An inference process in the knowledge repository
may update the average energy consumption rate periodically
based on Target System information being logged. This aver-
age may be well above the assumed consumption average for
the behaviour strategy being executed. The Behaviour Strat-
egy Manager may decide that it is plausible that the current
behaviour strategy will fail and may decide to deploy a more
conservative search strategy.

Note that the two channels that may trigger the selection
of a new strategy differ significantly in terms of latency and
urgency. The exception mechanism provides a fast propaga-
tion of failures upwards, indicating that the strategy being
currently enacted is relying on assumptions that have just
been violated. This means that any guarantees on the suc-
cess of the current strategy in satisfying its requirements are
void and a new strategy is urgently required. The monitor-
ing of changes in the knowledge repository is a process that
incurs in comparatively significant delays as the inference
of goal model updates based on logged information may be
performed sporadically and consume a significant amount
of time. The upside of this second channel is that it may
predict problems sufficiently ahead of their occurrence, pro-
viding time to select pre-computed strategies to avoid them.

The selection of a behaviour strategy is constrained by
the current configuration of the target system (which deter-
mines the events and actions that can be used by the strat-
egy) and the alternative configurations that may be reached
by enacting one of the pre-computed re-configuration strate-
gies. Furthermore, the selection is informed by preferences
defined in the goal model on which OR-refinement resolution
is preferred. Thus, a new strategy that can be supported by
the current UAV configuration may be selected to alter the
search strategy. Alternatively or a strategy that no longer
picks samples up to avoid the extra consumption produced
by load carrying may be chosen. In the later case, in-situ
analysis is required and hence a reconfigured UAV with an
infra-red camera in place is required. Selecting such a pre-
computed behaviour strategy is subject to the availability of a
pre-computed reconfiguration strategy that can reach a con-
figuration with an active infra-red camera module.

The Behaviour Strategy Manager deploys the selected strat-
egy by performing two operations. Firstly, should the se-
lected strategy require a configuration with characteristics
that are currently not provided, it commands the Reconfigu-
ration Strategy Manager to deploy an appropriate reconfig-
uration strategy (c.f. Master-Slave relationship). Secondly,
the manager hot-swaps the current behaviour strategy being
executed in the layer below with the newly selected strategy,
setting the initial state of the new strategy consistently with



the current state of the Target System. Note that should the
new strategy be replacing a strategy that is still valid (i.e.
no exception has been raised) then the hot-swap procedure
may also exploit information extracted by the current state
of the strategy to be swapped out.

Should the Behaviour Strategy Manager fail to select a
pre-computed behaviour strategy, the manager requests new
strategies from the layer above. This may happen, for ex-
ample, because none of pre-computed strategies it manages
have assumptions that are compatible with the actual ob-
served behaviour of the system (e.g., energy consumption is
far worse than what is assumed by any pre-computed strat-
egy) or that they all rely on unachievable configurations (e.g.
the joint failure of the gripper component and infra-red cam-
era was a operational scenario not considered in any of the
pre-computed strategies).

Reconfiguration Strategy Manager: This entity works sim-
ilarly to its behaviour counterpart. It stores and manages
multiple reconfiguration strategies and selects them for de-
ployment constrained by the availability of instantiatable
components in the Target System while maintaining con-
sistency with the configuration requirements of the current
behaviour strategy. Selection is also informed by preferences
specified in the goal model. Consequently, a precision pref-
erence may lead to selecting a reconfiguration strategy that
attempts to use a GPS rather than hybrid positioning.

When negotiating with the Behaviour Strategy Manager
on a pair of strategies to be deployed, the Reconfiguration
Strategy Manager takes the slave rol, informing the configu-
rations requirements that are achievable and then selecting
an appropriate reconfiguration strategy based on the selec-
tion made by the Behaviour Strategy Manger.

There are three channels that can trigger the selection of
a new reconfiguration strategy. Two are similar to those
that trigger the Behaviour Strategy Manager: An exception
from the Reconfiguration Strategy Enactor and a change in
the goal model. FEzxzamples of these are the failure of the
GPS component triggering a rapid response by the manager
which selects an alternative configuration (using the hybrid
positioning component) and deploys an appropriate reconfig-
uration strategy, or an increased response time of the GPS
component leading to the decision of changing the position-
ing system before it (most likely) fails. The third channel is
the request of a new configuration by the Behaviour Strat-
egy Manager (which in turn may have been triggered via de
exception mechanism or a change in the goal model).

Note that deployment of new strategies at the Strategy
Management layer may respond not only to problems (or
forseen problems) while enacting the current strategies, but
also deploy new strategies to capitalise on opportunities af-
forded by a change in the environment. For instance, should
a new component become available, or statistics on its per-
formance improve, (e.g. the GPS component) this would
be reflected in the knowledge repository and an alternative
preferred pre-computed strategy may be deployed.

2.7 Strategy Enactor

Responsibility: This layer’s main responsibility is to ex-
ecute behaviour and reconfiguration strategies provided by
the layer above. Strategy execution involves monitoring the
target system and invoking operations on it at appropriate
times as defined by the strategy. The layer must also ensure
that if the target system should reach a state unexpected by
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the strategy, and that consequently cannot be dealt with by
the strategy, is reported to the layer above. The other key
responsibility of the layer is to support both independent
and transparent update of behaviour and reconfiguration
strategies in addition to supporting a master-slave relation
between behaviour and reconfiguration strategy execution
in which the former can initiate the execution of the later.

Rationale: The aim is to provide a MAPE loop with low
latency analysis to allow rapid response to changes in the
state of the target system based on pre-computed strategies.
In other words to achieve fast adaptation to anticipated be-
haviour of the target system. Allow independent handling
of failed assumptions made by either the behaviour or re-
configuration strategies, thereby adapting one strategy in a
way that is transparent to the other.

Structure and Behaviour: The layer has two strategy
enactors, one for behaviour strategies and the other for re-
configuration strategies. Both enactors work very similarly.
They monitor the target system and react to changes in the
system by invoking commands on the target system. The
decision of which command to execute is entirely prescribed
by the strategy being enacted and requires no significant
computation. The two enactors do, however, differ in the
instrumentation infrastructure they use to monitor and ef-
fect the target.

Reconfiguration Strategy Enactor: This entity invokes re-
configuration commands and accesses individual software
component status information through an API provided by
the Target System layer. The aspects monitored and effected
by this enactor are application domain independent; com-
mands and status data are related to the component deploy-
ment infrastructure and allow operations such as adding,
removing and binding components, setting operational pa-
rameters of these components and checking if they are idle,
active, and so on.

In addition to sequencing reconfiguration commands, the
enactor has to resolve the challenge of ensuring that state
information is not lost when the configuration is modified.
This can involve ensuring stable conditions such as quies-
cence [15] passive or quiescent before change.

Behaviour Strategy Enactor: The entity monitors and ef-
fects the target system through application domain services
provided by the components of the target system via be-
haviour commands and event abstractions exhibited by the
Target System layer. The enactor starts executing the be-
haviour strategy assuming that there is a configuration in
place that can provide the events and commands it requires.
Thus, a new search and analyse behaviour strategy using the
gripper is assuming the gripper component configured.

Should the behaviour strategy require a different configu-
ration at any point, it must request the configuration change
explicitly. In this case a reconfigure command will be part of
the behaviour strategy and the behaviour enactor will com-
mand the execution of the reconfiguration strategy stored
by the reconfiguration strategy enactor (e.g., the behaviour
strategy folds the arm holding the broken gripper and then
requests reconfiguration to incorporate the infra-red camera
to only then proceed with in situ analysis). Note that in this
case the behaviour enactor assumes that the reconfiguration
strategy is attempting to reach a target configuration that
is consistent with the behaviour strategy.

Assumptions regarding the current configuration and the
target configuration of the strategy loaded on the reconfigu-




ration strategy enactor are assured by the layer above that
feeds consistent behaviour and reconfiguration strategies to
this layer.

3. RELATED WORK

The last decade has seen a significant build up on the
body of work related to engineering self-adaptive systems.
This work builds on this knowledge, emphasising the need to
make behaviour and reconfiguration control first-class archi-
tectural entities. As discussed in Section 2, the architecture
proposed builds on those of [16] and others. However, ex-
isting work does not provide support for both independent
and also coordinated structural and behavioural adaptation
at the architectural level.

The MORPH reference architecture is geared towards the
use of strategies derived from the field of control engineer-
ing referred to as discrete event dynamic system (DEDS)
control [4] which naturally fits over the system abstractions
used at the architecture level, which is the level we envis-
age self-adaptation supported by our architecture to operate.
DEDS are discrete-state, event-driven system of which the
state evolution depends entirely on the occurrence of dis-
crete events over time. The field builds on, amongst others,
supervisory control theory [19] and reactive planning [5].

Automated construction of DEDS control strategies have
been applied for self-adaptation in many different forms. For
instance, in [1] temporal planning is used to produce re-
configuration strategies that do not consider structural con-
straints and the status of components when applying reconfig-
uration actions. In [22], an architecture description language
(ADL) and a planning-as-model-checking are used to com-
pute and enact reconfiguration strategies. In [7, 2, 14] au-
tomatic generation of event-based coordination strategies is
applied for runtime adaptation of deadlock-free mediators.
In [13], a learning technique (the L* algorithm [6]) is ap-
plied for automatically generating component’s behaviour.
Note that strategies do not have to be necessarily temporal
sequencing of actions or commands. For instance, in [20]
reconfiguration strategies used are one-step component pa-
rameter changes.

an executable modelling language for runtime execution
of models (EUREMA) facilitates seamless adaptation.

4. CONCLUSIONS

An architectural approach to self-adaptive systems involves
runtime change of system configuration (e.g., the system’s
components, their bindings and operational parameters that
act as knobs) and behaviour update (e.g., components or-
chestration, reactive behaviour, etc). In this paper we present
MORPH, a reference architecture for behaviour and config-
uration self-adaptation. MORPH allows both independent
reconfiguration and behaviour adaptation building on the
extensive work developed but also allows coordinated con-
figuration and behavioural adaptation to accommodate for
complex self-adaptation scenarios.
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ABSTRACT

Self-adaptive software systems are designed to support a
number of alternative solutions for fulfilling their require-
ments. These define an adaptation space. During operation,
a self-adaptive system monitors its performance and when
it finds that its requirements are not fulfilled, searches its
adaptation space to select a best adaptation. Two major
problems need to be addressed during the selection process:
(a) Handling environmental uncertainty in determining the
impact of an adaptation; (b) maintain an optimal equilib-
rium among conflicting requirements. This position paper
investigates the application of Adaptive Model Predictive
Control ideas from Control Theory to design self-adaptive
software that makes decisions by predicting its future per-
formance for alternative adaptations and selects ones that
minimize the cost of requirement failures using quantitative
information. The technical details of our proposal are illus-
trated through the meeting-scheduler exemplar.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—methodologies

Keywords

Control theory, self-adaptive systems, software requirements,
predictive control

1. INTRODUCTION

Self-adaptive systems are designed to maintain the fulfill-
ment of their requirements in dynamic environments. When
a failing requirement is encountered the system adapts by
switching to an alternative configuration. The set of the
available configurations constitute the system’s adaptation
space. Unfortunately, configuration selection is not an easy
task as requirements are often conflicting and an adaptation
that restores a failed requirement may break another one.
For example, restoring a failed performance requirement by
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adding a server to a system may fail an operating costs re-
quirement. In addition, stakeholders often over-constrain
the system-to-be, or propose unrealistic unfeasible require-
ments [14]. Such conflicts can be accommodated by set-
ting realistic thresholds, making a satisfactory equilibrium
attainable. However, for many software systems setting ac-
curate thresholds is at best guesswork, since there are no
physical laws that account for the relationship between con-
trol parameters and requirements for an adaptive system.

Current approaches [5,8,21] deal with conflicting require-
ments and adaptation costs by making predictions about
the system’s environment and anticipate failures by mak-
ing reconfiguration plans that optimize the utility output
over time using a control theoretic technique, named Model
Predictive Control (MPC), and variations of it [12]. How-
ever, these approaches are specific to resource provisioning
and therefore architectural configurations, ignoring the di-
mensions of requirements and behavior of the adaptation
space [2]. Moreover, the lack of a software engineering method-
ology which relates the elements of MPC and those of a self-
adaptive software system prevents designers from applying
this technique to domains other than service-based applica-
tions, where the current approaches focus on.

In this position paper we describe how a combination of
concepts from Software Engineering (SE) and Control The-
ory (CT), in the same line of work as in [4], can tackle in a
systematic way the problem of conflicting requirements and
overestimation of system capabilities while applying adap-
tation strategies that maximize the system’s outcome over
time with minimum adaptation effort. Towards this direc-
tion we propose a combined use of MPC [12] and an on-
line learning mechanism [10], similarly to [13,15], to predict
the future behavior of the controlled system within a speci-
fied horizon and dynamically compose adaptation strategies
that will minimize the divergence of each requirement from
the specified threshold prescribed by the stakeholders. Fur-
thermore, we examine how the synthesis of a controller can
be part of a SE process for designing self-adaptive systems.
The adoption of MPC guarantees the avoidance of over-
shooting, management of constraints, and optimal tradeoff
among conflicting requirements across time using prioritiza-
tion techniques. In particular, we use Analytic Hierarchy
Process (AHP) [1,7].

The rest of the paper is organized as follows. Section 2
introduces the baseline of our proposal. Section 3 investi-
gates how MPC can be applied for quantitative adaptation.
Finally, Section 4 concludes the paper.



Weekly cost must
be less than 500€

Meeting

(AR6) notTrend
Decrease(7d,2)

t5:select room
automatically

G1; G2; (G3)*

G0:Schedule

~G2: Book
. Meeting

80% of the
articipation participants show up %

(AR2) SuccessRate(75%)

G3: Manage
\_ Meetin,

J [BCP1] G6;G7 G7;G6) (ARS5) NeverFail

G7:Find Date

(ARS8)

C
(schedule manually, 10) Meeting rooms have
the required equipment

Good Quality
Yo
RfM (AR7) SuccessRate(90%)
constaint || assumption

; (sequential)

local rooms
& hotel rooms
available

HfM

o
1
AwReq

* (zero or more) # (shuffle)

*l

/ assigned

| (alternative) ~ + (one or more) component

— 1

[ |
|

Figure 1: Three-peaks model for the Meeting Scheduler case study.

2. PRELIMINARIES AND MOTIVATING
EXAMPLES

Our proposal adopts concepts from Goal-Oriented Re-
quirements Engineering (GORE) such as goals for model-
ing stakeholder requirements, softgoals for modeling qual-
ity requirements, and AND/OR refinements that refine goal
G into simpler goals whose satisfaction (all/at least one)
implies the satisfaction of G, following traditional boolean
semantics. Tasks are actions that a component (hardware
/software components, or an external actor) can implement
to fulfill or operationalize a goal. For example, in Fig. 1,
Schedule meeting is a top-level goal, while Good participa-
tion is a softgoal. The goal Schedule meeting is AND refined
into subgoals Initiate Meeting, Book Meeting and Manage
Meeting.

In our previous work [1] we proposed a qualitative adap-
tation process inspired by feedback loop control. The design
of this process includes three basic concepts: Awareness Re-
quirements, Evolution Requirements and System Identifica-
tion.

Awareness requirements (AwReqs) impose constraints on
the failure of other requirements and correspond to the set-
points of the adaptation mechanism. AwRegs are associated
with variables named indicators that measure their success
degree. For example, AR4 dictates that the goal Find Room
must never fail, whereas AR1 prescribes that 85% of time the
weekly cost of meetings must be less than 500 Euros. Hence,
the associated indicators are Iy = 100% and Is > 85%.
Every indicator is constantly monitored and when its value
diverges from the one prescribed by the stakeholders, the as-
sociated AwReq fails and adaptation is triggered. In control-
theoretical terms, indicators correspond to the system’s out-
puts.

Evolution requirements (EvoReqs) [18] describe when and
how other requirements should change at runtime. For ex-
ample, an FvoReq may be “If requirement R fails three times
in a row, replace it with requirement R~ ”, where R~ is a
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weaker (i.e., easier to fulfill) requirement. Such requirements
are useful to evolve unfeasible requirements that were ini-
tially elicited from the stakeholders.

System Identification. Indicators are controlled by con-
trol parameters (CPs) set by the adaptation mechanism. In
our recent work [2] we proposed an iterative process, named
three-peaks to guide the software designers elicit a larger
adaptation space that includes control parameters from the
three dimensions of a software system, requirements, behav-
ior and architecture. Requirement control parameters (Re-
gCPs) are derived either from OR-refinements or physical,
information resources required by the system, in order to
operate. For instance, V P1 in Fig. 1 is a ReqCP that gets
its values from the ordered set {t2 — t3 — t4}. On the
other hand, RfM and H fM are integer variables that rep-
resent how many local rooms and hotel rooms respectively
are provided for meetings. M CA is yet another ReqCP that
represents how many conflicts for the timeslot chosen and
the participant timetables, while FFhM represents from how
many participants the system should collect time tables in
order to satisfy the goal G5. Behavioral control parame-
ters (BCPs) stem from system behavior, modeled with flow
expressions (see Fig. 1), that capture allowed sequences of
fulfillment of subgoals in order to fulfill a parent goal. For
example, the goal Book Meeting can be fulfilled either by
finding room first and then a date (G6; G7) or find a date
first and a meeting room afterwards (G7;G6), see Fig. 1.
These two potential sequences constitute the set of values for
BCP1. Finally, Architectural Control Parameters (ACPs)
capture variability in cases where more than one component
are assigned with the fulfillment of the same goal or task,
such as the task select room automatically which is carried
out either by a component that finds the best equipped room
or the another one which finds the cheapest room available.
ACP1 gets as value the selected component’s name.

Apart from CPs, the system’s indicators are influenced by
parameters found in the system’s environment that cannot
be controlled, named Environmental Parameters (EPs). Ex-



amples of such parameters include the price of hotel rooms,
the response time of invited participants to timetable collec-
tion requests and their punctuality in attending the meetings
after confirming their presence. EPs capture environmental
uncertainty, since they are changing in a non-deterministic
manner, adding disturbances to the system. For instance,
the hotel room prices in certain periods rise, sometimes de-
creasing the indicator I since the costs of meetings exceeds
the allocated budget. Therefore, the system should respond
to such changes of the environment and if possible anticipate
them.

The qualitative positive or negative influence of C'Ps on
controlled indicators is captured by differential relations.
For instance, the differential relation A(Iz/MCA) < 0 means
that by increasing M C A by one unit Iz will decrease, while
A(IsMCA) > 0 means that by increasing MCA Is will also
increase. Similarly, the differential relations A(I;/ACP1)
[BestEqip Room Service — BestPrice RoomService] > 0
(the arrows indicate growing enumeration values), means
switching to the component that finds the available room
with the best price increases the success rate of I1. The
differential relations are symmetric and are provided by do-
main experts, which makes them prone to human errors and
inaccuracies.

Indicators related to the same CP with conflicting influ-
ence, such as Is and I from the previous example, are called
conflicting indicators. When multiple failures are detected
the adaptation mechanism must perform trade-offs, fixing
the most important requirements first. Towards this direc-
tion, we set priorities over indicators using AHP. Due to
lack of quantitative information on the impact of CPs on
indicators, we define alternative conservative and optimistic
adaptation policies to guide the trade-off process. A conser-
vative adaptation policy forbids the adaptation mechanism
from fixing a failing indicator if the value of a non-failing
indicator is about to decrease. The absence of quantitative
information limits the precision of the adaptation process,
given that there might exist values of CPs that fix low pri-
ority indicator while all the other affected indicators still re-
main above their thresholds. On the other hand, optimistic
adaptation policies allow tuning parameters that decrease
indicators of higher priority requirements hoping they re-
main above their threshold. Again, the lack of quantitative
relations and planning in the adaptation process can result
in leading to failure important requirements in order to fix
other, less significant ones.

3. A CONTROL-BASED APPROACH

Defining an adaptation strategy able to satisfy the most
important requirements under the presence of uncertainty is
not an easy task without adopting quantitative approaches.
This section sketches a general control-based design proce-
dure that can be used to accommodate this task.

A design process. As in various types of systems, some of
the indicators might depend not only on the chosen value
of the control parameter, but also on its past and on the
values of other indicators [9,16]. For instance, if the par-
ticipation to the meetings drops and the value indicator I»
is 60% instead of 75%, decreasing MCA, in order to fix this
failure will not have immediate impact, but gradually I> will
increase until it reaches the desired value. Such systems are
called dynamic systems.

The first step is to better understand how the control
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parameters affect the indicators. The differential relations
presented in the previous section, provide only qualitative
information, and cannot be easily exploited with control
techniques. A more expressive way to capture these rela-
tions is to consider the relation between control parameters
CP(-) € R™, and indicators I(-) € RP, as a discrete-time
linear dynamic system

z(t+1)=A-x(t)+ B- CP(t) )

I(t) =C - z(t)

where z(-) € R"™ is the state of the system—notice that the
state might not have a meaningful interpretation, but it is
functional to defining in a more compact form the relation
between CP(-) and I(-). Since the system has m inputs,
and p outputs, it is a Multiple-Input and Multiple-Output
(MIMO) system.

The matrices (A, B, C) describe the dynamics of the sys-
tem, and can be identified from experimental data through
system identification techniques for MIMO systems, e.g.,
subspace identification methods see [10,19,20]. Note that in
case A is a matrix of all zeros, the system is characterized as
static. However, our MPC is also applicable to static MIMO
systems. This analytical model can be used to predict the
future behavior of the system over a finite time horizon, and
as such is also referred as prediction model. Having identi-
fied the model of the system (1), the control scheme of Fig. 2
can be set up.

The next step is to design a control mechanism, therefore,
decide what type of “Controller” to use [4,13,15]. MPC is
a natural choice for the problem-at-hand for various rea-
sons [12]. First of all, it is naturally formulated for MIMO
systems. There are generally many control parameters, and
indicators that need to be controlled. Moreover, both indi-
cators and control parameters have upper and lower bounds
that the decision-making strategy should take into account.
MPC allows one to formulate the problem as the minimiza-
tion of a functional subject to given constraints as follows:

N—1
minimizecp, , , Z J(AwReqy ., Ii+r, CPivr)  (2)
k=0
subject to Imin < T4k < Imax

Cpmin S Cpt+k S Cpmax
Tipht1 = A - Tyqk + B+ CPiyy
Livk =C - x4yp

ze=ux(t), k=0,...,N—1.

The optimization problem (2) is solved over a finite horizon
of N steps ahead, thanks to the prediction model (1). The
solution of the optimal control problem is a plan of future



control parameter values CP;, ..., CP{, y_;. Only the first
element of this plan is applied, i.e., CP(t) = CP;. At time
t + 1, a new optimization problem is solved analogously.

It is important to notice that the cost function has to be
designed according to the specific domain. A common choice
is:

J(AwRegq,, I+, CP:) = Zqi (AwReq, ; — Ityi)Q + er C’Pf,j
i J

where ¢; > 0 and 7; > 0. The values ¢; are weighting the
error between the setpoint and the output, using the re-
quirement prioritization result of AHP. On the other hand,
the values r; represent penalties of using one control pa-
rameter over others, and it can be chosen according to the
specific domain [3]. Finally, minimizing the cost function
is interpreted as an effort by the adaptation mechanism to
anticipate requirement failures using analytical prediction
models, giving priority to those of higher importance, while
minimize the aggregate penalties of the planned adaptation
strategy. Whenever, it is unfeasible to eliminate completely
within the time horizon all the failures, FvoRegs can be
used to weaken the failure-insisting requirements, lowering
their thresholds.

Apparently, the quality of the obtained solution depends
on the accuracy of the extracted prediction model. It is
possible that the dynamics relating the inputs and the out-
puts of the system are changing over time, or that the linear
model (1) is not able to capture more complex dynamics of
the system. Therefore, the “Learning” block, in the control
scheme in Fig. 2 is in charge to monitor the input-output
relation of the system, and update the model that is used in
the control mechanism according to the actual behavior of
the system. The learning mechanism can be based on many
different algorithms, ranging from recursive least squares to
recursive subspace identification [6,11]. Independently of
the learning mechanism, the “Learning” block is in charge of
updating online the model adopted by the MPC algorithm
to predict the future behavior of the system.

The proposed solution is able to cope with environmental
uncertainty, while overcomes the limitation of having qual-
itative information coming from domain experts. In princi-
ple, designers can collect data on the input-output behavior
of the system and therefore to identify a reasonably accurate
linear model describing the dynamics of the system. The
control algorithm exploits such a model for planning a suit-
able adaptation strategy, named plan of control signals in
control-theoretical terms. Finally, the learning mechanism
is in charge of updating the prediction model whenever it
behaves differently than expected.

It is worth noticing that the proposed control scheme is
generic in that the “Controller” and “Learning” blocks can
be realized in terms of any controller or learning algorithm
respectively. For our case, tools that combine optimiza-
tion and satisfiability modulo theories, e.g. [17], can handle
also boolean constraints to the MPC optimization problem.
Such constraints are “If timetables are collected automati-
cally, then the schedule is made automatically as well” (see
Fig. 1).

The main limitation of the approach comes whenever new
requirements are added to the problem. In that case, there
are two possibilities. First, new indicators (i.e., new out-
puts) are introduced to the system and second new control
parameters (i.e., inputs) are added. In both cases, the whole
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design procedure needs to be repeated, since no control-
based technique is able to manage structural changes in the
systems.

4. CONCLUSIONS AND FUTURE WORK

In this position paper we investigated the problem of de-
signing an adaptation mechanism for MIMO software sys-
tems that operate within environmental uncertainty. We
used meeting-scheduler as an exemplar to demonstrate the
weaknesses of qualitative adaptation and the need of ana-
lytical models for better adaptation.

We address this problem by proposing the use of MPC.
This type of control uses analytical models that describe the
system’s behavior allowing to forecast future failures in our
requirements and anticipate them in an optimal way with
respect to their priorities.

Finally, we plan to implement an MPC controller and
experiment with simulations of the meeting-scheduler and
other case studies to further evaluate our proposal.
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ABSTRACT

Many technological innovations from the research area of
dynamic adaptive systems or IT ecosystems are already
established in current software systems. Especially cyber-physical
systems should benefit by this progress to provide smart
applications in ambient environments of private and industrial
space. But a proper and methodical engineering of cyber-physical
ecosystems (CPES) is still an open and important issue.
Traditional software and systems engineering facilities (system
models, description languages, or process models) do not consider
fundamental characteristics of these ecosystems as openness,
uncertainty, or emergent constitution at runtime sufficiently. But
especially these aspects let blur the line of system boundaries at
design time. The diverse components of CPES have essential
impacts on the engineering of CPES as well, concerning time
synchronizing, execution control, and interaction structure. Self-
balanced control in CPES promises new application possibilities,
but also needs new engineering techniques concerning the overall
engineering process, including requirements engineering and
runtime verification. In this position paper we survey and
summarize the dimensions of challenges in applying control
theory for the engineering of cyber-physical ecosystems.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture

General Terms
Design, Reliability, Security, Languages, Theory

Keywords

Cyber-physical ~ systems, software ecosystems, systems
engineering, control theory, self-balanced control, system-of-
systems

1. INTRODUCTION

The term cyber-physical system (CPS) is widely used nowadays.
One of the most common definition of cyber-physical systems is a
system which connects physical and virtual processes, where
bidirectional information flows are significant[9]. The physical
processes are controlled and monitored by computations.
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Traditionally, this kind of systems is engineered based on the
automation system pyramid by the Totally Integrated Automation
concept[13]. This classic architecture spans from field level to
management level by a hierarchical control scheme. The
automation system pyramid is inflexible and not suited for
adaptive systems. Adaptivity in this context means, that a system
is able to change its structure autonomously to adapt to a new
environment or certain situation. By decomposing each layer of
the automation system pyramid into components and allowing
communication between arbitrary components, CPS become more
flexible. As a result, the engineering of CPS deals with several
challenges regarding the self-organization and adaptivity.

Openness yields benefits for CPS but also requires new research.
In this case, openness refers to a system with high interoperability
and open interfaces. We introduce the term cyber-physical
ecosystems (CPES) for adaptive and open cyber-physical systems.
These systems combine cyber-physical systems with an approach
for interacting with other systems. The control of such highly
dynamic systems have been researched in the field of software
ecosystems for several years[6, 11, 12]. But the transfer of self-
balanced control mechanisms to realize CPES raises new
ambitious challenges in engineering. We aim to name some of
these challenges in this position paper. To do so, we first inspect
CPS and software ecosystems in three different engineering
challenges areas: the overall approach, the design of components
and the runtime operation. The overall approach for designing
and running systems covers the whole development cycle as well
as the runtime environment. The design of components
concentrates on design time while the last area covers the runtime
of systems. CPES combine concepts from CPS and software
ecosystems. Therefore, we derive challenges for CPES by
combining challenges for both system classes.

2. STATE OF THE ART

By allowing more flexibility in the architecture of CPS, new CPS
applications will become possible. In this section, we first present
engineering challenges of CPS and afterwards of software
ecosystems.

2.1 Cyber-Physical Systems

A cyber-physical system is a system-of-systems. In a CPS,
information systems cooperate with control systems. Information
systems are socio-technical systems for information processing
whereas control systems control physical processes. By
cooperating, the control systems compensate the missing sensors
and actuators of information systems. In turn, the information
systems provide data analysis and storage for the control systems.
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There has to be an intelligent interface between the two kinds of
systems (cf. Figure 1). On the one hand, control systems are often
continuous and realtime-capable and interact with the physical
world. On the other hand, information systems are discrete and
have no natural concept of time but can operate on huge amounts
of data. These different properties can only be joined by an
intelligent interface.The special nature of CPS is adaptivity.
Adaptivity in CPS is achieved by decomposing each information
and control system in components and allowing data exchange
between arbitrary components (cf. Figure 1). The interface
between the components deals with the same different
characteristics as before. But it can adapt to certain situations by
composing the components in a different way. Those kinds of
CPS will pose new challenges to science and research[2]:

How can an overall development and operation approach be
established during the whole life-cycle regarding adaptivity of the
systems, learning of functions, self-organization and more?

CPS consist of networked information systems and control
systems. To manage complexity, information systems and control
systems are decomposed in modular building blocks called
components. Consequently, the intelligent interface between the
information systems and the control systems are also decomposed
to fine grained smart interfaces between the components of the
information systems and the components of the control systems.
Those local and small interfaces are smart enough to support
adaptivity, learning of functions and self-organization.

How should design and development methods look like to
consistently expand the concepts of system engineering in such a
way that it can also be used for cyber-physical systems?

Heterogeneously networked structures like CPS require an
integral systemic view and interdisciplinary cooperation between
mechanical engineering, electrical engineering and computer
science. Therefore an interdisciplinary multi-view and multi-level
supporting modelling and development approach is required. It is
necessary to prepare discipline-specific approaches for integration
into CPS. Thus handling complexity and the realization of new
functionalities through the adaptivity of the systems and the
combination of functions will be at the forefront.

How should cyber-physical systems - that are more adaptive and
open systems but still have high dependability requirements to be
guaranteed - be deployed, operated, monitored and maintained?

CPS directly influence the physical world. Therefore an operation
approach is required that is able to control and thereby prevent
damage of the CPS and even more important its environment. The
damage should not only be prevented in case of errors and failures
but particularly in case of incorrect behavior and adaption of the
CPS.
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There are already different modelling approaches for CPS. Some
of the challenges of modeling CPS are summarized in [4]. The
work also lists some promising new approaches. The close
integration of embedded systems and the physical world is often
modelled with hybrid systems. In [8] hybrid automata are used for
verification of cyber-physical systems. There are also approaches
for component-based design of hybrid systems as well as methods
for checking whether a hybrid systems satisfies a specification[3,
5].

2.2 Software Ecosystems

Complex software ecosystems are complex, compound system
consisting of interacting individual adaptive systems, which are
adaptive as a whole, based on engineered adaptability. The
different life cycles of the individual adaptive systems must also
be taken into consideration [12].

A complex software ecosystem (CSE) comprises of individual
adaptive systems whose behavior and interactions change over
time. These changes are usually not planned centrally, but arise
from independent processes and decisions within and outside the
CSE. For example, a slippery road warning system of a car
requests for information about road conditions without any
knowledge about relevant information providers in the ecosystem.
The warning system could connect to totally different systems,
like a weather forecast provider as well as an electronic accessible
plan of the snow plowing service or even the ABS monitoring of
cars in same area, to receive the relevant information.

In addition, CSE are mixed human-machine artifacts: human
beings in the complex software ecosystem interact with the
individual systems, and in this way they become an integral,
active part of the CSE. Therefore, human requirements, goals, and
behavior must be considered when designing a CSE, by modeling
them as active system components. A number of ambitious
challenges follow from the mentioned characteristics of software
ecosystems. These can be divided in three areas — balancing
evolution process between system (local) and ecosystem (global),
distributed and independent engineering at design time, and
technology support for system composition at runtime.

How can system development and system operation be integrated
into a close linked and balanced approach for software ecosystem
evolution?

The development and evolution of systems in software
ecosystems is characterized by interplay of classical model-based
engineering and constraint-based development to consider
external restrictions from the ecosystem. As already mentioned, a
CSE consists of a set of individual adaptive systems. To restrict
the individual adaptive behavior of the adaptive systems, local
constraints might be added and enforced locally under closed
world assumption. In addition, institutional and improvement
constraints from an ecosystem’s communities or covering
common ecosystem’s objectives and guidelines are added—
following an open-world semantic. All of these constraints can be
used to validate the individual models of the adaptive systems but
also to validate the union of models of all adaptive systems resp.
the ecosystem’s models. Therefore constraint validations of
individual systems, but also of the interaction between these
adaptive systems, can be identified during design time. However,
as changes in these systems are not planned centrally, but arise
from independent processes and decisions, adaptivity cannot be
completely controlled during design time. Consequently, we also
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have to take the runtime into account. Therefore, the constraints
provide a knowledge transfer between design time and run time.
Constraints are additionally monitored and enforced during run
time.

How should distributed engineering of the constituent systems
with different life-cycles and not centrally managed and
coordinated be organized during design time?

As consequence of openness of software ecosystems as well as
uncertainty of their system environments, and the independency
and distribution of development processes follow several
challenges. For example, established design methods using
software modeling under the closed-world assumption (CWA)
with description techniques based on the open-world assumption
(OWA) have to be combined. The application of OWA during
design is necessary because the demand for the specification of
system parts while only incomplete information about the whole
system at runtime is available[11]. Especially software interfaces
of independently developed components have to be connected
semantically dependable. Because of the distributed development
of system parts by independent actors a syntactic connection of
interfaces is undependable in general[7]. Furthermore,
adaptability demands have to be engineered at design time.

How can self-adaptation of the software ecosystem evolution be
balanced during runtime?

The systems composition in CSE moves from design to runtime.
This is a profound changed paradigm which requires answers to
several challenges. One central question is, how can technology
support the dynamical adaptivity resp. the emergent composition
of systems to facilitate a self-balanced ecosystem at runtime? The
adaptability of a software ecosystems needs a common
technological infrastructure to manage the joining components
and their connections as well as additional services [10]. The
technology has to provide an autonomous mechanism which can
balance the concurrent needs of systems in a CSE. Systems of a
software ecosystem compete for common shared resources. For
the balancing of the competitive demands of systems in software
ecosystems an appropriate mechanism has to be implemented by
the infrastructure [1]. Furthermore the semantic correctness of the
autonomous system integration and system requirements has to be
validated during operation and design time.

3. RESEARCH AREAS IN ENGINEERING
OF CPES

CSE are complex adaptive systems of adaptive systems and
human beings. Thereby software ecosystems are open systems
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with respect to the independent evolution of the constituent
adaptive systems, the dynamic self-adaption mechanisms of the
constituent adaptive systems themselves, and the active human
beings within the CSE. Hence software ecosystems come with a
high degree of uncertainty due to their openness and adaptivity.
To manage uncertainty additional knowledge is elaborated and
used during design time and run time. In addition an overall
evolutionary development approach is provided by software
ecosystems.

CPS merge together embedded software-intensive control systems
and global networked internet-based information systems by
modular, small, intelligent, and non-hierarchical interfaces
between the components of the control system and the
information system. Adaptivity in CPS is based on functional
adaption of the control system with respect to high dependability
issues. Interdisciplinary and holistic engineering approaches are
applied to provide new functionalities through an intelligent new
connection between existing control components and information
components.

In CPES we integrate the openness and adaptivity of software
ecosystems with the modular and intelligent component coupling
of CPS. Thereby new, combined research areas arise. We deduce
these research areas from the combination of the challenges in
Section 2. The research areas cover A) the overall approach and
evolution of the system, B) the design time development approach
as well as C) the operation approach during runtime of the system
(cf. Figure 2).

A) How should the controlled evolutionary development
approach (CSE) be combined with the long-term self-adaption
mechanism by the intelligent interfaces (CPS)?

In classical software engineering, the design starts with main
requirements. These requirements are step-wise refined to
hierarchical requirements. After design time the system is not
intended to change. A new feature for the system will be a new
project. This classical approach is not applicable for CPES.

In CPES integration and validation is done during runtime.
Moreover the system is growing and changing dynamically over
time. The system itself adapts to its environment. Once the system
is no longer able to adapt itself, new data for machine learning
based long-term self-optimization are provided by smart
intelligent sensor data to fulfill the changing requirements and
expectations after self-optimization. In addition new requirements
might be derived for the system itself but also for components and
physical processes realizing their own specific functionalities.
These requirements may contradict each other — for example two
machines with common resources which both aims at 100%
occupancy rate. Therefore, global requirements exist as well. Each
time a new component joins the system it has to be adjusted to fit
to the global requirements.

Ensuing from this situation, technical challenges can be derived:
The components and the host infrastructure of CPES need an
advanced configuration service compared to CSE. This
(distributed) service has to able to receive and value feedback
from the physical environment. Further it has to balance
competitive requirements (possibly by market mechanisms) and
has to consider appropriate migration strategies.

B) How can an open and closed world modeling approach
(CSE) be integrated with an interdisciplinary modeling
approach (CPS)?

Traditional software development approaches offer various
techniques to support software engineers. One of the most



fundamental is the use of models and modeling. Depending on
what is considered relevant to a system under development at any
given point, various modeling concepts and notations may be used
to highlight one or more particular perspectives or views of that
system. It is often necessary to convert between different views at
an equivalent level of abstraction facilitated by model
transformation, e.g. between a structural view and a behavioral
view.

CPES combine the virtual world represented by information
systems and the physical world influenced by control systems.
Consequently our modeling approach must be able to represent
the various engineering disciplines for software to electrical up to
mechanical engineering. Furthermore, as CPES are evolving in a
not centrally planned and managed manner we have to use open
and closed world models combining models describing the system
under construction as well as overall ecosystem constraints that
have to be guaranteed by all parts of the CPES in an
interdisciplinary integrated approach.

The model-based design methods in the well-established
engineering disciplines of physical systems (electrical/mechanical
engineering) assume traditionally a closed world paradigm. For a
consideration of openness in CPES, these system description
languages have to be enhance by a support of not only inter-
disciplinary modeling but also by additional expressions which
allow to specify semantics based on the open-world assumption.

C) How can the openness based uncertainty in system
adaption (CSE) be balanced with the need to control system
adaption with respect to dependability issues (CPS)?

After a system has been designed, verified and developed, it will
to be deployed and executed within the ecosystem. In order to be
useful over time, systems must be able to adapt themselves to
changing needs, goals, requirements or environmental conditions
as autonomously as possible. Three levels of adaptability, namely:
engineered adaptability, emergent adaptability and evolutionary
adaptability have to be supported. During runtime, various aspects
have to be considered in order to enable and control those kinds of
adaptability. Therefore the MAPE-K loop is a typical well-known
architectural blueprint for such a system.

As CPES manipulate and influence the physical world we have to
guarantee the CPES does not damage or hurt its environment.
CPS often realize safety-critical applications. Therefore, they
underlie strict requirements like safety, security, privacy or
realtime controlling. In classical applications the system behavior
can be assured at design time. For CPES the existing approaches
have to be enhanced to detect all possible dependability problems
in advance and reorganize the system to prevent the environment
from possible damage. Prediction techniques have to be
claborated to guide and guarantee the required dependability
issues of the CPES during run time. Moreover the dependability
issues might change over time and thus the guarantees have to be
adapted dynamically during run time. To ensure the validity of
dependability/safety conditions, the technical platform of CPES
has to provide mechanisms to predict physical effects
(simulation/test techniques). This is necessary for an estimation
and valuation of the future behavior of systems before possibly
irreversible or safety-critical effects are implemented in the
physical environment. Considering that the available
configuration mechanisms of CSE has to be enhance to ensure a
safe operation of autonomous composed CPS.
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4. CONCLUSION

In this paper we presented a new point of view on CPS. CPS will
be more open and complex in the future. This will require transfer
of self-balanced control mechanisms to CPES. We presented the
current state of the art in both CSE and CPS. These different
works may be considered when facing the challenges of CPES we
presented.
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ABSTRACT

Temporal logic based approaches that automatically gener-
ate controllers have been shown to be useful for mission level
planning of motion, surveillance and navigation, among oth-
ers. These approaches critically rely on the validity of the
environment models used for synthesis. Yet simplifying as-
sumptions are inevitable to reduce complexity and provide
mission-level guarantees; no plan can guarantee results in a
model of a world in which everything can go wrong. In this
paper, we show how our approach, which reduces reliance on
a single model by introducing a stack of models, can endow
systems with incremental guarantees based on increasingly
strengthened assumptions, supporting graceful degradation
when the environment does not behave as expected, and
progressive enhancement when it does.

Categories and Subject Descriptors
D.2 [Software Engineering)]

General Terms
Design

Keywords
Self-adaptive Systems, Controller Synthesis

1. INTRODUCTION

Controller synthesis and planning approaches based on
temporal logic have proven useful for generating discrete
event-based robot behaviours from high-level specifications
(e.g. [4, 30, 29]). Such approaches rely on finite-state mod-
els that purport to represent the operating environment and
how the robot can interact with it. However, any such model
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is by definition an abstraction of the real environment and
its dynamics, and any such model entails a risk that it is
not a true representation of the environment as encountered
at runtime. In some scenarios, this risk, when materialised,
may lead to catastrophic failure of the mission.

One means to cope with this uncertainty [12] is to use
machine learning techniques that revise (or indeed generate
from scratch) the models on which synthesis relies so that,
over a period of time, the models converge upon a “realistic”
description of the environment [27, 11, 14]. One drawback of
using such techniques is the computational cost of learning,
and the delay before the mission can begin in earnest, which
may be prohibitive in some domains (e.g. safety-critical sys-
tems). Another drawback is that the learned model may be
of such complexity that synthesis becomes computationally
infeasible, and in the worst case nothing can be guaranteed
in a world where anything can go wrong. There is therefore
a benefit in having an element of manual abstraction in-
volved in synthesising robotic behaviours. To that end, we
have proposed an approach [7] in which models at different
levels of abstraction are used to synthesise a controller capa-
ble of gracefully degrading its guarantees when the runtime
environment diverges from one of the more abstract models,
and progressively enhancing its guarantees when the envi-
ronment behaves as envisaged in the more idealised models.

Our approach uses a stack of models where higher models
are more idealised and can be simulated by the lower mod-
els. A mission requirement is associated with each tier of
the stack. Higher tiers allow to produce controllers guaran-
teeing stronger requirements, while lower tiers only allow for
controllers with weaker requirements because of their more
realistic description of the environment dynamics. Each tier
of the stack can be regarded as an independent controller
synthesis problem, but our approach combines the resulting
controllers in such a way that a failure in a higher controller
can be handled by a graceful degradation to the controller
of a lower tier, resulting in a lower guaranteed ‘service level’.
Likewise, if the environment conforms to a higher tier, we
may attempt to synthesise a controller for a higher tier and
so enhance the guaranteed service level.

In this paper, we show how synthesised controller stacks
can be used to provide robust behaviour for robot missions
from high-level temporal logic specifications. We apply it
to an existing case study involving a robot engaged in a
surveillance mission [28] and show how, in addition to au-
tomatic synthesis for cyclic missions (i.e. missions in which
the goals are achieved infinitely many times, our approach
enables the robot to handle invalid environment models. In



other words, in this paper we report on an application of
our previous technique to a known case study to evaluate
its applicability and asses some of its properties.

In Section 3 we give an overview of our approach and
the guarantees it makes. Section 4 describes our particular
implementation of the general approach and how it achieves
the general requirements. Sections 5 and 6 discuss how the
approach has been applied to an existing surveillance case
study. Finally, Section 7 comments on some of the related
work, before Section 8 concludes.

2. BACKGROUND

We start with labelled transition systems a canonical rep-
resentation of reactive components and systems.

DEFINITION 2.1. (Labelled Transition Systems) A Labelled

Transition System (LTS) is E = (S, A, A, so), where S is a
finite set of states, A is its communicating alphabet, A C
(S x A x S) is a transition relation, and so € S is the
initial state. We denote A(s) = {€ | (s,4,8") € A} and
A(s, ) ={s" | (s,4,s") € Ag}. A trace of E ist=4o, {1, ...,
where for every i > 0 we have (s, 4, si+1) € A, We denote
the set of traces of E by TR(E). We say that an LTS is de-
terministic if (s, £,s") and (s,¢,s") are in A implies s' = s".

Reactive systems are built as compositions of multiple re-
active components. Such composition is formalised as fol-
lows:

DEFINITION 2.2. (Parallel Composition) Let M = (Si,
A]w, AM, S]y[o) and E = (SE, AE,AE, SEO) be LTSS.
The Parallel Composition (||) is a symmetric operator such
that EHM is the LTS EHM = (SE X S]V[, Agp U AM, A,
($Ey, SMy)), where A is the smallest relation that satisfies
the rules below, where £ € Ag U A

(s,4,s)EAE

(t,6,t")EANM
(G0),6(7,0)€en L€ AR\ AM

(G0, 6,(s,t))€en L€ AM\AB

(s.6,s)EAR, (t,Lt)EAN
((s,8),,(s",t")) €A

LEARNAy

We restrict attention to states in Sg X Sy that are reachable
from the initial state (sg,, Sm,) using transitions in A.

There are various restrictions that can be imposed on the
LTS to be composed using parallel composition. These re-
strictions vary in order to adequately capture different inter-
action models. We are interested in reasoning about what a
controller can achieve in a possibly adversarial environment.
Hence, the distinction between actions that are controlled
or monitored by the controller is relevant. Thus we adopt
the notion notion of legal LTS from Interface Automata [5]
where a component may not block their environment from
performing actions that they monitor.

DEFINITION 2.3. (Legal LTS) Given LTSs M = (S, A,
A, sum,) and E = (Sg, A, Ag, sg, ), where A is partitioned
into actions controlled and monitored by M (A = AcUAwm ),
we say that M is a legal LTS for E if for all (sg,sm) € E||M
it holds that Ap(sg) N Ac 2 Am(sm) N Ac and also that
AE(SE) N A - AM(S}\{) NAum.

Simulation relation between two LTSs is formally defined
as follows.
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DEFINITION 2.4. (Simulation) Let o be the universe of all
LTSs with communicating alphabet A. Given E and F' in g,
we say that E simulates F, written E > F, when (E,F) is
contained in some simulation relation R C o X o such that

or a € an s € we have — mplies
for all £ € A and (E,F) € R we have E —~ E' impli

that there is F’ such that F — F' AVsp € init(E’) - 3sp €
init(F') - (E', F') € R.

We fix Fluent Linear Temporal Logic (FLTL) [15] as the
language for describing properties. A fluent Fl is defined as
Fl = (I, Try, Initm), where Ip C A is the set of initiating
actions, T C A is the set of terminating actions and Im N
Tr = 0. A fluent may be initially true or false as indicated
by Initp. FEvery action £ € A induces a fluent, namely

0= <é7 A \ {é},false).

Let F be the set of all fluents over A. An FLTL formula
is defined inductively using the standard Boolean connec-
tives and temporal operators X (next), U (strong until) as

follows:
pu=Fl| ooV | Xp| Uy

where Fl € F. Additionally, as it is usual, we define p A as
-V, Op (eventually) as TUgp, Oy (always) as =O-p,
and oW1 (weak until) as (@Uv) V Op.

Let IT be the set of infinite traces over A. The trace m =
Lo, £q, . .. satisfies a fluent Flat position 4, denoted 7,7 = Fl,
if and only if one of the following conditions holds:

o Initm A(Vj EN-0<j<i—{; ¢ Tr)

e jeN-(J<iNlelImANVEEN j<k<i =4, ¢
Tr1)

In other words, a fluent holds at position 7 if and only if it
holds initially or some initiating action has occurred, but no
terminating action has yet occurred.

For an infinite trace 7, the satisfaction of a (composite)
formula ¢ at position i, denoted m,i = ¢, is defined as
follows:

w1 = Fl 2 milEFl

i e £ =(m i p)
miEeVYy £ (miEe)V(miEY)
miEXpe 2 mitllEe
mikEeUp 2 3 >iomjEgA

Vi<k<j-mkEe

We say that ¢ holds in 7, denoted 7 |= ¢, if 7,0 = . A
formula ¢ € FLTL holds in an LTS E (denoted E = ¢) if it
holds on every infinite trace produced by E.

An LTS control problems aims to find, given an LTS F
modelling the environment to be controlled and a goal ¢ to
be achieved, a controller M in the form of an LTS such that
E||M does not restrict uncontrollable actions of E, does not
have deadlocks and satisfies ¢

DEFINITION 2.5. (LTS Control [6]) Given a domain model
in the form of an LTS E = (S, A, A, s0), a set of controllable
actions A, C A, and an FLTL formula ¢, a solution for the
LTS control problem € = (E,p, Ac) is an LTS M = (Su,
Anr, Anr, Sop,) such that M is a legal LTS for E, E||M is
deadlock free, and every trace w in E||M is such that = = .

3. APPROACH



The central concept in our approach is that of the control
stack, which has in each tier a controller synthesis problem
for a particular mission requirement and environment model.
Overall the control stack specifies the robot’s mission.

The key requirements the approach imposes in order to
guarantee graceful degradation and progressive enhancement
are that (see Figure 1): (i) higher-level environment mod-
els must be simulated by lower-level environment models,
capturing a notion of idealisation of higher-level models; (ii)
higher-level controllers used to achieve enhanced function-
ality must be simulated by lower levels controllers, ensuring
a consistent overall strategy; (iii) the runtime infrastructure
must be capable of detecting when an inconsistency between
an environment model (in any tier) and the runtime envi-
ronment occurs; (iv) a sound automated replanning proce-
dure for each tier that is expressive enough to deal with the
system requirements for its tier must be provided, allowing
progressive system enhancement after inconsistencies have
been detected. Our implementation of the approach pro-
vides the runtime infrastructure (iii) and planning proce-
dure (iv), guarantees controller simulation (ii), and checks
that the models given in a control stack specification satisfy

(i)

strong assumptions
& guarantees

idealised

o |
simulatest
M < |
S 1
w2 || o

Figure 1: Multi-tier control problem

]
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The environment models are expected to be ranked in
terms of the degree of idealisation of the environment they
represent. The environment model My is the least ide-
alised and require that environment models further up the
hierarchy allow strictly less behaviour. This can be for-
mally captured via a simulation relation [23], M; > M; for
i < j. We require environment models to have the same
communicating alphabets partitioned identically into con-
trolled and monitored actions. Controlled actions are those
that the robot may choose to perform, while monitored ac-
tions are events that the robot observes in the environment.
In summary, the less idealised the environment model is, the
more behaviour (in terms of unexpected actions and non-
determinism) may arise.

Each tier ¢ has an associated requirement (G;) to be achieved

by the system assuming that the runtime environment con-
forms to the environment model for that tier (M;).

Each tier introduces a control problem & = (M;,G;). A
solution to a control problem (a controller) is a deterministic
LTS that, when composed with its environment, guarantees
requirement G; (i.e. M;||C; = G;). The control stack in-
troduces an additional constraint: each controller must be
simulated by controllers in lower tiers (C; > C; for i < j).
Intuitively, this requires that a controller never do something
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that a lower-tier controller would not do, thus ensuring that
if a controller must be stopped, because the assumptions for
its tier are discovered not to hold, decisions made by it up to
that point have been consistent with lower-tier controllers.
This allows for graceful degradation, falling back to lower-
tier controllers when needed. Section 4 describes how this
constraint is satisfied.

Control stack synthesis is executed bottom-up through
the tiers. The operation attempts to build a controller that
solves the control problem in a tier while being simulated
by the controller for the tier immediately below. We do
not require that control problems for all tiers have solution.
It is possible that the system starts in a degraded mode,
with controllers solving problems up to level i. The system,
as the current state evolves, may progressively enhance its
behaviour by synthesising controllers for tiers beyond tier 4.

After synthesis, the enactment procedure continuously mon-
itors the environment and concurrently executes the stack
of controllers giving priority to the controller of the upper-
most enabled tier. It continuously updates the current state
based on monitored actions and sensed state, disabling tiers
at level ¢ and above should an inconsistency be detected at
tier ¢ (Section 4 shows how this is achieved). At any point,
to progressively enhance functionality, a replanning attempt
may be made for the lowest disabled tier. Based on the cur-
rent state of the enabled tier immediately below, the state
of the disabled tier is automatically approximated and an
attempt is made to build a controller that will work despite
the uncertainty about the current state of the tier. This
demands that the controller synthesis procedure be capable
of solving problems exhibiting non-determinism. Should a
controller exist, it is put into the controller hierarchy and
the tier is enabled. The approach does not prescribe when
replanning must be attempted. In principle this can be done
at any time, however in practice replanning may be associ-
ated with a clock or with heuristics related to the problem
domain. For a detailed explanation of the enactment proce-
dure the reader is referred to [7].

4. IMPLEMENTATION

The implementation of our framework consists of two main
components: a planner, which implements the controller
synthesis algorithms, and an enactor, which handles run-
time execution of the control stack.

4.1 Planner

The Modal Transition System Analyser (MTSA) [8], is a
tool for developing and analysing compositional models of
concurrent systems, using the Finite State Processes (FSP)
process algebra. Importantly for our approach, MTSA im-
plements controller synthesis algorithms for Generalised Re-
activity(1) (GR(1)) goals, which cover an expressive subset
of linear temporal logic including safety and liveness proper-
ties [8]. Our general approach is agnostic as regards the syn-
thesis procedure, but GR(1) is expressive enough for many
domains. We extended MTSA to support the specification
and synthesis of complete control stacks A control stack C is
specified in MTSA as follows:

controlstack ||C@{Controlled} {
tier (ENV, REQ)

}



where Controlled refers to a set of controlled actions, and
where each tier consists of environment model ENV and mis-
sion requirement specification REQ. A control stack may con-
sist of any number of tiers ordered such that the last tier has
the most realistic environment model.

Environment models and requirements are defined using
existing support in MTSA for process and property specifi-
cation in FSP and FLTL (fluent linear temporal logic), and
examples of them can be found in Section 5.

Synthesis of the control stack is achieved by solving the
controller synthesis problem of each tier bottom-up from
the lowest tier. If no solution is found for the problem in
a particular tier, synthesis of the stack terminates at that
tier. The procedure also includes a sanity check that the
environments of tiers simulate the one immediately above.

Synthesis for a single tier ¢ consists of the following steps:

1. Compose the tier’s environment model FE; in parallel
with the controller C;_; generated by the tier below
(if there is a tier below) to create E;. This ensures
that the controller for tier ¢ will be simulated by the
controller of the tier below.

2. Solve the GR(1) controller synthesis problem for the
tier’s requirement on E;, to produce controller C;.

3. Complete controller C; to produce C;. The completion
consists of considering the monitored actions enabled
in each state of the controller, and adding transitions
to a designated exception state for any monitored ac-
tions which are not enabled. These transitions capture
behaviours of the environment that have not been an-
ticipated in the present tier’s environment model. If
the runtime environment does not behave as the model
describes, one of these transitions will be taken to the
exception state. A single extra transition, which we
call an exception marker, is added at the exception
state which indicates to the enactor that a particu-
lar tier has been disabled. It is these transitions that
enable the enactor to detect inconsistencies

The final control stack state machine C'S is a parallel
composition of the completed controllers C, i.e. CS =
complete(Ch)|)...|[complete(Crn) = Ci|...||Cy,. This compo-
sition guarantees the requirements of every tier of the stack
until the exception marker for tier ¢ occurs, at which point
it only guarantees the requirements of the tiers up to i — 1.

4.2 Enactor

The enactor extends [3] to execute control stacks rather
than individual controllers. It keeps track of the stack’s cur-
rent state, executing controlled actions (via domain-specific
action implementations as in [3]) and responding to moni-
tored environment events. When the current state is con-
trolled, the enactor selects an enabled action at random.
When the state is uncontrolled, the enactor waits to receive
an environment event. In states where the only enabled ac-
tion is an exception marker for some tier 7, the enactor notes
the degradation of the service to ¢ — 1 and reports this to
the rest of the framework. In effect, this disables the con-
troller for tier . The planner may attempt at any point
an enhancement by re-synthesising a controller for tier ¢ (or
above).
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S. CASE STUDY

In this section we apply our approach to an autonomous
robot given the mission of surveying a set of regions of a
city. This case study is inspired by that given in [28]. The
environment consists of five regions of interest, and when
each region is visited the robot may receive a reward or incur
some damage. In the original problem, the environment also
contained a number of obstacles but the task of avoiding
these is handled with lower-level control, and so we omit
them from our discrete specification here.

Our overall mission goal is to have the robot repeatedly
collect a specific reward (reward[1]), and collect the other
rewards if possible. Unfortunately, it is not possible to guar-
antee achievement of this goal in the environment due to two
sources of uncertainty. The first concerns the motion of the
robot, which is not always reliable, and the second concerns
the rewards and damage that the environment may provide
in each region. In the worst case, the robot may move to
the wrong region and receive unexpected rewards or damage.
This would make our overall goal unachievable. However, we
can decompose the mission into a series of requirements, the
weakest of which can be satisfied in the most realistic envi-
ronment in the lowest tier, and then introduce further tiers
above for stronger requirements in more idealised environ-
ments.

The tier 1 (most realistic) environment model available to
us is given in FSP syntax below.

SLIPPY_ROBOT = (arrive[’r5]->ENV->ROBOT[’r5]),
ROBOT [p:Locations] =
(goto[q:Locations]->arrive [q] ->ENV->R0OBOT [q] |

goto[’r3]->arrive [’r3]->ENV->ROBOT[’r3] |
goto[’r3]->arrive[’r4]->ENV->ROBOT[’r4]).

ORIGINAL_MAP = MAP,
MAP = (
arrive[’r1]->(reward[1]->MAP | reward[2]->MAP) |

arrive[’r4]->(reward[2]->MAP | damage[2]->MAP) |
arrive[’r5] -> base -> MAP)+{ENV}.
| ISLIPPY_DOMAIN = (ORIGINAL_MAP| |SLIPPY_ROBOT).

The model states that the robot (which starts in r5) can
perform a controlled goto action, which is followed by a
monitored environment event arrive, which indicates ar-
rival at the destination. This model displays a degree of
non-determinism representing unreliable motion of the robot
(it can equally represent unreliable sensing of location). In
particular, there are two groups of adjacent regions. When
the robot moves towards one such region, it may arrive in
a different region that is adjacent to the destination. For
example, moving to r3 may lead to arrival in r3 or r4.

As specified in the MAP process, after arrival, the environ-
ment can respond with one of several events representing
rewards or damage. For instance, in region ri, the envi-
ronment may provide reward[1] or reward[2]. Different
regions provide different rewards, and region r5 provides
event base to represent the base location. The unpredictable
motion in this environment model means that we cannot
guarantee the strong properties that we are interested in.
However, in the worst case we want the robot to ensure its
physical safety and so our tier 1 requirement AVOID_DAMAGE
is to avoid receiving damage[2]. This property is specified
as follows:



fluent DAMAGE[i:Damages] = <damage[i], base>
1tl_property NO_DAMAGE2 = []!DAMAGE[2]
controllerSpec AVOID_DAMAGE = {

safety = {NO_DAMAGE2}

controllable = {CONT} }

The controller satisfying this requirement will never allow
the robot to attempt a goto[’r3] as it may arrive to r4
which can result in damage.

If we assume reliable motion it is possible to guarantee
stronger requirements. We specify such an assumption by
removing the non-determinism from the ROBOT process:

ROBOT = (arrive[’r5] -> ENV -> ROBOT[’r5]),
ROBOT [p:Locations] =
(gotol[q:Locations]->arrive[q]

-> ENV -> ROBOT[q]).
| IORIGINAL_DOMAIN =
(ORIGINAL_MAP| |ROBOT) .

We are now able to introduce a more interesting mission
requirement. We are particularly interested in having the
robot collect reward[1], and hence our tier 2 requirement
REWARD_LIVE_GOAL is to collect reward[1] infinitely often
(i.e. OO reward:), and to visit the base infinitely often
(O base). It is specified as follows:

fluent
fluent
assert

REWARD[i:Rewards] = <reward[i], base>
AT_BASE = <base, goto[Locations]>
REWARDS = (REWARD[1])
assert VISITBASE = AT_BASE
assert REWARDFAULTS = REWARD[2]
controllerSpec REWARD_LIVE_GOAL = {
failure = {REWARDFAULTS}
liveness = {REWARDS,VISITBASE}
controllable = {CONT} }

The desired reward is only available in region r1, and the
environment model states that, instead of reward[1], the
environment may, with some probability, give reward[2].
Provided that these hidden probabilities are non-zero, they
can be abstracted with the assumption that arriving in r1 in-
finitely often will yield reward[1] infinitely often. Encoding
this kind of assumption in GR(1) has been demonstrated in
[8] where probabilistic failures (i.e. reward[2]) are treated
non-quantitatively.

It would now be possible to create a control stack consist-
ing of two tiers using the above models and requirements.
However, the synthesised controller only guarantees that
eventually the desired reward will be received. In a prac-
tical setting with a robot’s limited power supply, this is too
weak a guarantee. Instead, we wish to have a bound on
how long it will take to receive the reward. In order to do
this we must strengthen our assumptions about the environ-
ment and create an idealised model of it, resulting in a third
tier in our stack. In this case, we estimate that the envi-
ronment has a low probability of repeatedly failing to give
reward[1] (e.g. if the probability of reward[1] is 0.5 then
the chance of failing in four attempts falls rapidly to 0.0625).
We therefore introduce the assumption that the environment
will comply within a small bound on the number of attempts,
accepting that there is a small risk that this bound may
be broken at runtime. In our idealised tier 3 environment
model BOUNDED_FAILURE_DOMAIN we introduce an FSP pro-
cess that restricts the previously given ORIGINAL_MAP such
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that the number of reward actions before the desired reward
is bounded.

BOUNDED_FAILURES (Reward=1,Bound=2) = BF[0],

BF[i:0..Bound] = (reward[Reward] -> BF[O0]

| when (i < Bound)

{{reward[Rewards] }\{reward[Reward]}} -> BF[i+1]).

| |IBOUNDED_FAILURE_DOMAIN =
(ORIGINAL_MAP| | BOUNDED_FAILURES(1,5) | [ROBOT) .

We are now in a position to specify the stronger require-
ment for tier 3. The REWARD_BOUNDED_GOAL states that the
reward must be received within a count of 7 controlled ac-
tions.

fluent ENDED = <ended, reset>
fluent REWARD_BOUNDED[i:Rewards] =
<reward[i], reset>
1tl_property BOUNDREWARDS =
[] (ENDED ->
(REWARD_BOUNDED[1] && AT_BASE))
| |BOUNDEDREWARDS (Bound=8) =
(RUNNING || COUNT(Bound)
| | BOUNDREWARDS) .
| IBR = BOUNDEDREWARDS(7) .
controllerSpec REWARD_BOUNDED_GOAL = {
safety = {BR}
controllable = {CONT} }

The tier 3 controller will ensure that reward[1] is received
within at most 7 controlled actions (resetting the count when
received), assuming that the runtime environment behaves
like the tier 3 model. If, however, the runtime environment
does not behave in this idealised manner, the control stack
will ensure graceful degradation from tier 3 to tier 2. More
specifically, if reward[1] is not received within the bound,
an exception marker transition (inserted by the completion
of the tier 3 controller) will be taken, and the subsequent
behaviour of the control stack will no longer conform to the
tier 3 controller. Instead it will guarantee only the require-
ments of tiers 1 and 2.

In the final, uppermost tier we have a mission require-
ment which relies on the most idealised model of the envi-
ronment. We would like, if the environment turns out to be
an ideal one, that the robot collect any other rewards avail-
able. Hence, our tier 4 requirement is for the robot to have
received reward[1] and either of the other rewards infinitely
often (i.e. OO (reward: A (rewards V rewards))):

assert ALL_REWARDS =
(REWARD[1] && (REWARD[2] || REWARD[3]))
controllerSpec ALL_REWARD_LIVE_GOAL = {
liveness = {ALL_REWARDS}
controllable = {CONT} }

This requirement can only be achieved by assuming an
environment which gives rewards deterministically:

PREDICTABLE_MAP = MAP,

MAP = (

arrive[’r1] -> (reward[1] -> MAP) |
arrive[’r2] -> (reward[2] -> MAP) |

arrive[’r5] -> base -> MAP)+{ENV}.



The specification of the mission control stack composed of
the four tiers is as follows:

controlstack ||STACK@{CONT}= {
tier (PREDICTABLE_DOMAIN,ALL_REWARD_LIVE_GOAL)
tier (BOUNDED_FAILURE_DOMAIN,REWARD_BOUNDED_GOAL)
tier (ORIGINAL_DOMAIN,REWARD_LIVE_GOAL)
tier (SLIPPY_DOMAIN,AVOID_DAMAGE)

The resulting control stack state machine, of 2427 states,
was synthesised in 2951ms on a laptop with an Intel Core i5
2.3GHz CPU and 4Gb memory.

5.1 Graceful Degradation

The four tiers of our control stack mean that the level of
service can be degraded, in response to uncertainty in the
environment, three times before failing completely (provided
that the assumptions of the higher tiers are violated before
those of lower tiers). A controller synthesised for a single
model and single goal will fail completely the first time an
unexpected event is encountered.

When the control stack is operating in tier 4, one of the
possible traces leading to degradation is:

arrive[’r5], base, goto[’r1], count[0], arrive[’ri1],
reward[2], tier_disabled4

The tier_disabled4 event is the exception marker used
by the enactor to track the current service level. The excep-
tion occurs in this case because the tier 4 environment model
does not allow reward[2] in region ri1, and yet this is what
happened in the runtime environment. After this exception,
the control stack is operating in tier 3, achieving the tier 3
requirement. It may continue in this tier indefinitely, in the
case where the runtime environment matches the tier 3 ab-
straction. On the other hand, one possible trace (continuing
from the above trace) leading to further degradation is:

goto[’r1], count[1], arrive[’ri1], reward[2],

goto[’r1], count[5], arrive[’ri1], reward[2],
tier_disabled3

This exception occurs because the runtime environment
has broken the bound given in the model, which states that
region r1 must provide a reward[1] within 5 attempts.

The control stack continues to operate in tier 2. Again,
execution may continue from this point achieving the tier 2
requirement indefinitely. There is however the possibility of
a further degradation as follows:

goto[’r1], arrive[’r3], tier_disabled2

This leaves the control stack operating in tier 1. A further
sequence of events that lead to an exception is as follows:

reward[3], goto[’r2], arrive[’r2], damagel[2],
tier_disabledil

Note that although we have presented the degradation
from tier to tier, it is possible that the tier 1 assumptions
are violated immediately, bypassing the intermediate tiers.
After all tiers are disabled, the control stack cannot guaran-
tee any goals until progressive enhancement takes place.
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5.2 Progressive Enhancement

Suppose now that the stack is operating in tier 2, that is,
the bound related to reward[1] has been broken, but the
motion of the robot remains reliable. A progressive enhance-
ment may now be considered in order to raise the service
level back into tier 3. Suppose that the rewards given by
the environment while in tier 2 have been observed, either
automatically under a machine learning scheme or through
manual intervention. Suppose further that it has been de-
termined that, after the transient disturbance which caused
the degradation from tier 3 to tier 2, the environment does in
fact provide reward[1] within the required bound!. In such
a situation, the initial state of the tier 3 model would be ap-
proximated. For instance, if the last executed action (in tier
2) was goto[’r1] then the state of the tier 3 model must
be one where arrive[’r1] can occur. An attempt would
then be made to synthesise a controller, and if successful
the service level would be raised to tier 3.

6. EXPERIMENT

Figure 2: Nao executing mission

We have experimented with our synthesis and enactment
infrastructure [3] in various robotic settings, including an
AR Drone 2.0, a Katana robotic arm and a Nao H25 hu-
manoid robot. A video of the latter executing a synthesised
mission control stack similar to the one described above can
be found at
http://www.doc.ic.ac.uk/"das05/quadrotor3.avi.

Controller enactment for these settings requires imple-
menting each of the controlled actions in the control stack
specification in terms of the existing behaviours provided by
the robot’s API. For instance, for the control of the Nao
robot, the detection of various types of reward is achieved
by recognising balls of different colours using the Nao’s on-
board camera. The balls are presented to the Nao upon
arrival in each region. The location of the Nao within the en-
vironment (an office) is determined using trilateration with
respect to a number of landmarks in positions known a pri-
ori (i.e. a structured environment). The landmarks them-
selves are recognised using the on-board camera. Similarly,
rewards and locations can be recognised on the AR Drone
using its front and bottom cameras respectively.

'In the case of manual intervention, it would be reasonable
to amend tier 3 to match a different observed bound.



The synthesised mission control stack is executed by the
enactor, which starts by assuming the runtime environment
behaves like the model in the upper tier. Initially, in the
video, we allow this assumption to hold by providing the Nao
with the reward it is expecting. Later, we break the bound
on the number of damage events expected in the uppermost
tier, forcing the enactor to gracefully degrade the level of
service. Execution continues seamlessly such that the Nao
immediately seeks a repair, as demanded by the lower tier
requirement.

The experiments demonstrate that our general approach
can be deployed in a robotics setting on top of a high-level
API that encapsulates the complexities of, for instance, con-
trol of the system dynamics that allows stable movement of
the AR Drone or the localisation of the Nao robot. The re-
sulting system can then ensure that mission-level guarantees
can be gracefully and automatically degraded (or enhanced)
when necessary to cope with unexpected mission-level events
in the environment.

7. RELATED WORK

There has been an increasing interest in the development
of robot planning motion techniques based on temporal logic
(TL) specifications [30, 4, 29, 19, 4, 28, 21]. One of the main
features such techniques provide is the ability to guarantee
satisfaction of the goals if the environmental assumptions
are met. This is especially relevant in robotics where strict
safety conditions must be ensured by robot motion plans,
which has been acknowledged by the community as a key
problem to be tackled [13].

In addition to safety properties, TL-based approaches pro-
vide efficient algorithms for generating plans for liveness
goals that allows a wide range of mission objectives to be
specified such as surveillance and navigation, among many
others. Techniques such as [29] and [6] automatically synthe-
sise high-level motion plans from discrete-event descriptions
of the environment and goals described as GR(1) [24] prop-
erties. In [28] goals are specified as co-safety formulas [20]
to be satisfied by a non-deterministic model of the environ-
ment.

Other approaches [21, 22, 30, 4] consider settings where
the environment is represented with stochastic transition
systems such as Markov decision processes and the goals are
expressed with temporal logic supporting probabilistic rea-
soning such as probabilistic computation tree logic (PCTL).
The resulting plans guarantee the satisfaction of the goals
up to a certain probability or expected reward.

However, all the aforementioned techniques have a single
environment model with a fixed level of risk. Hence, if the
real environment diverges from its model the plan would
fail with unforeseen consequences. Thus, engineers must
balance carefully the increased risk of introducing strong
assumptions that allow achieving sophisticated goals against
the robustness of having weak assumptions at the expense
of only being able to achieve simpler goals.

Controller hierarchies have been studied (e.g [16]), how-
ever focus is on synthesis-time scalability rather than run-
time robustness to invalid environment models.

Although we have implemented our approach in the MTSA
toolset [9], this is not the first tool in implementing LTL-
based controller synthesis. Tools such as Lily [17], Aca-
cia+ [2] or Unbeast [10] implement techniques for synthesis-
ing controller from general LTL specifications. Such spec-
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ifications are known to be 2EXPTIME Complete. Con-
sequently, we restrict attention to GR(1) as it allows for
tractable synthesis procedures. A number of tools support-
ing synthesis from GR(1) specifications have been devel-
oped [18, 25, 1, 26]. However, none of them work for event-
based models which are central to our specification proce-
dure.

8. CONCLUSIONS

In this paper we have presented an approach for robust
high-level control synthesis for robot missions, and applied it
in a various scenarios. In contrast to the ‘all or nothing’ ap-
proach of other work based on temporal logic, our approach
allows a mission specification to include a range of require-
ments of different ‘strengths’ which entail different levels of
risk when operating in the runtime environment. Our imple-
mentation ensures that when the stronger requirements of
higher tiers cannot be met due to environmental uncertainty,
the level of service degrades gracefully to a level at which
requirements can be guaranteed. It then permits progressive
enhancement at a later stage.

In future work we are interested in quantifying the level
of risk associated with the tiers of our control stack, and
combining the approach with techniques that can learn ap-
propriate environment models for disabled tiers in the stack
before progressive enhancement.
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ABSTRACT

One of the main challenges towards a software-based theory
of control consists in finding an effective method for decom-
posing monolithic event-based interactive applications into
modules. The task is challenging since this requires in turn
to decompose both the invariants to be maintained as well as
the main control loop. We present a formalisms for gathering
portion of behaviour by special units, called holons, which
are both parts and wholes and which can be arranged into
part-whole taxonomies. Each holon hosts a state machine
and embodies different invariants which give semantics to
its states. Control is achieved by both taking autonomously
internal actions by the state machine in order to maintain
such state invariants, as well as by having the the state ma-
chine move from one invariant to another by actions driven
by external events. Such an approach requires to introduce
non trivial solutions in order to allow communication among
such modules, mainly by implementing control loops among
couple of holons. The proposed model consists essentially
in shaping each module in order to be both a controller and
a controllable entity. Each module may control a definite
number of modules and is controlled by a single module.
Control is exercised by discrete events which travel through
a communication medium. Control actions as well as feed-
back events travel thus from a module to the another, thus
achieving local control loops which, taken globally, decom-
pose the main control loop.

Categories and Subject Descriptors
H.1 [MODELS AND PRINCIPLES]: General

Keywords

Holons, Part-Whole Statecharts, Compositional verification

1. INTRODUCTION

Time-dependent real-time software systems deal with fast
changing environments, to which they adapt in order to
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maintain a specific and often complex operation task. Chang-
ing environments are heavily dynamical, and their changing
behaviour is often revealed by events which reach the soft-
ware system [12]. Software systems react to external incom-
ing events by producing, in turn, other outgoing events to-
wards the environment, thus closing the loop and becoming
de facto control systems (Figure 1).

physical environment
(phenomenon under

control)

physical physical
status control
Sensors Actuators

logical
feedback

logical
action

M
Controller's logic

Figure 1: Asymmetry in the control process at first
glance. A generic controllable phenomenon does not
know its controller M, while the controller is de-
signed specifically for dealing with the phenomenon
through actuators and sensors.

Software systems are required to exhibit however other
features, mainly effectiveness, robustness, and dependabil-
ity: when dealing closely with real world, such features have
to ensure, in first place, liveness and safety properties. Al-
beit a control software may be even conceived as a mono-
lithic block modelling a single global behaviour, a really ef-
fective software development methodology requires to mod-
ularise the overall control software in order to defeat the
overall complexity. This requires in turn a coherent crite-
rion for decomposing, as well as composing, the control loop.
Though control engineers practiced such a decomposition for



many years, a deeper understanding of the basic software en-
gineering notion of module structure and connectivity would
improve both control theory and software engineering. If a
modelling paradigm is more efficient then it is presumably
more natural, i.e., ontologically sound. By the current view,
systems are seen “as transmitting and transforming signals
from the input channel to the output channel, and intercon-
nections are viewed as pathways through which outputs of
one system are imposed as inputs to another system” [13].
Such a view of systems seen as signal transformers is naively
accepted by both software and control engineering commu-
nities, but reveals its limitation especially when modelling
interconnected systems under a software engineering per-
spective, typically raising problems in terms of understand-
ability, reusability and maintainability. Even worse, once
systems are interconnected by direct links, model checking
becomes infeasible due to the exponentially growing com-
plexity of the resulting system. A paradigm shift is therefore
needed in order to ensure effective modularity. The paper
describes an ongoing research [6][8] in modular decomposi-
tions of behaviour of reactive and autonomic systems [7].
In particular this paper will focus on the hierarchic con-
trol of distributed invariants and can be seen a continuation
of [6]. We believe that the application to control theory of
the holonic approach may shed new light and bring further
ideas to the original research in software engineering.

As in [9] we are interested in the basic control problem
of ensuring that a logical predicate remains invariantly true
when it is initially satisfied. By the supervisory control ap-
proach [10] the problem bears to state space explosion that
is exponential in the number of system components. It be-
comes thus necessary to explore modular system architec-
tures with the property that the overall complexity can be
appropriately defeated. We devise a state-based tree-like
structure of modules as in [5]: our composition model and
general motivations are similar also to those in [2], but we
believe our model is conceptually cleaner and simpler.

Our approach is mainly focused on restricting communi-
cation among modules and on labelling states by invariant
state propositions as described in detail in [8]. State tran-
sitions laid among states have to comply with both arrival
and starting state propositions. In other words, each module
is “correct by construction” in the sense that it is guaran-
teed that when control is in a state a given proposition on
the states of its components is always satisfied. More com-
plex predicates can be existentially or universally verified by
exploring the state diagrams within the modules.

We start by examining (Section 2) how events reveal struc-
tural aspects of the domain, and as such may be used in
order to shape modelling constructs among which they flow.
Events are not only the basic elements of communication in
control, they reveal different aspects of entities participat-
ing in the scenario being controlled. The way events flow
to and from them may in fact help conceiving a method for
decomposing control around the participating entities and
for shaping control structures. Such control structures may
on their turn be centred around behavioural constructs, fi-
nite state automata, which indeed prescribe control by pars-
ing and generating event flows. Additionally, since the time
of the Fusion methodology [1], finite state automata pro-
vide a very effective tool for specifying software behaviour
in the development process [11] and notably they can be
easily transformed into code or directly executed by a suit-
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able interpreter. Holon inspired control modules are there-
fore shaped around such behavioural constructs. They pro-
vide a connection framework in which events flow from one
state machine to another by following a decomposition hier-
archy. Section 3 introduces finally holons as control units by
a working example adapted from [6] used in order to show
the feasibility of the approach.

2. FROM EVENTS TO MODULES

Events taken separately are not meaningful: their sequences
instead reveal complex phenomena happening in the real
world. Such sequences are part of a language built upon
them denoting indeed real-world phenomena. For example
it can be easily observed that “door-open, door-close, light-
green, engine-on” is a string of events belonging to the lan-
guage describing the interaction of an automated car and a
traffic light. Such a car is additionally provided with doors
for embarking and disembarking passengers along a track:
additionally, it stops and restarts its engine according to sig-
nals from traffic lights on its route. Doors are automatically
opened when the car has to embark/disembark passengers
and closed when it restarts. Doors are locked when the car
moves, but the locking mechanism may be bypassed and the
doors may be opened at any time, in which case the car
has to stop immediately. By the schema of Figure 2 it may
be hypothesised that a controller takes care of the mutual
interaction of the doors and of the engine.

DOOR ENGINE

(S’e@mr) @@

open, OPWoff
close close
CAR
Figure 2: Module Car parses and generates the

joint language which denotes the synchronization
of its controlled modules. Events may be distin-
guished between input events (bold) and output
events (italic) and travel, respectively, along double
and single arrow lines.

Entities belonging to the environment produce a language
built from a vocabulary of words, i.e. strings of events com-
ing from their respective event alphabet. Modelling some
sort of interaction means restricting the full set of sequences
that can be built from the alphabet of events of the partici-
pating entities. Consider for example the interaction of the
doors of the automated car and its engine. Once the engine
and the doors do not interact, that is when they are taken
physically apart, any sequence of events from their joint vo-
cabulary may be observed. We call it the free alphabet of
the doors and the engine, for example “door-open, engine-
off” and “door-open, engine-on” are both words belonging
to their joint free vocabulary. In order to model a useful



behaviour, the second word has to be banned, since a sim-
ple safety constraint does not allow the vehicle to move with
doors open.

In order to shape a useful joint language, that is a use-
ful behaviour, we therefore insert a module which is able
to observe and to prescribe events to both the involved en-
tities. Module Car of Figure 2, for example, is the place
where any aspect regarding the mutual interaction of the
car’s components, doors and engine, should be modelled. It
may be observed that there are now two distinct loops, each
carrying information from module Car to and from mod-
ule Door and Engine. An event can be either directed from
the controller towards a component (double arrow lines), in
this case driving its actuator, or being emitted by the sen-
sor of the component towards the controller (single arrow
lines). In the former case the event denotes an action that
the component has to undertake, in the latter the event de-
notes a spontaneous action that already happened within
the component.

Module Car may be conceived as hosting an automaton
which acts both as parser and generator of the joint lan-
guage of the two components. The parsing and generating
mechanism may be thought as being implemented by tran-
sitions of such automaton which are triggered by events be-
longing to the sublanguage being parsed while, at the same
time, forwarding events belonging to the sublanguage being
generated (Figure 3).

to module Engine

from module Doors
close _ on
. v

“ .
close /on
O, D,

Figure 3: Module Car parses and generates the joint
language of modules Doors and Engine by a tradi-
tional Statecharts diagram, whose transitions are
labelled by events belonging to the modules in the
form of triggers and forwarded events

2.1 From Modules to Holons

The car taken as a whole interacts with the traffic lights
signals, producing its own set of events, for example start,
stop and fail which in turn form meaningful words once
interleaved with the alphabet of the traffic light, for example
“light-green, car-start” and “light-red, car-stop”.

Such events denote the external behaviour of the car, that
is the behaviour of the car taken as a whole observable from
outside. Conversely, the joint behaviour of the components
of the car (the doors and the engine in the example) will be
referred to as the internal behaviour of the car. Both be-
haviours have to agree, and therefore the related languages
have to be parsed and generated accordingly. It is there-
fore necessary to endow the automaton within the module
of additional modelling capabilities, in order to have the two
behaviours match in a meaningful way. In other words, the
languages of the car components have to agree with the lan-
guage of the car taken as a whole.

This requires a more elaborated syntax and semantics
than traditional Statecharts. Part-Whole Statecharts [8] al-
low to label a state transition with specific constructs in or-
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der to account for internal and external events. Two differ-
ent transition typologies result, as shown in Figure 4. Syn-
chronisation amongst the internal and the external language
is achieved by allowing both internal and external events to
be present in the same state transition with specific opera-
tional meanings, which underly two different reactive mech-
anisms. For example, the transition of Figure 4 (a) models
an externally triggered behaviour. The car, seen as a whole,
is required to start by receiving event go from an exter-
nal module, and the doors and the engine are as a result
required of being, respectively, closed and turned on. Fig-
ure 4 (b) models instead an internally triggered behaviour.
In that case, the happening of an event within a component
(the opening of a door while moving) requires the engine
of being stopped and the car, seen as a whole, to emit an
undirected fail event towards an unspecified client module.

The need to take into account, at the same time and by
a single behavioural construct, an internal and an external
language, requires to introduce a new modular construct,
called holon, presented in the next Section.

to module d:Doors to module e:Engine

close on
v v internal aspects
T L. (implementation)
<d.close, &.on> /\
~( stop Go
= \&)
A
' external aspects
. (interface)
triggered
from unspecified
@) client module

triggered to module e:Engine
from module d.Door close

OP.E‘? ,’ internal aspects
(implementation)

EN .
{ co d.open <e.off> Fail
fail Safe
. external aspects
\ (interface)
to unspecified
client module

(b)

Figure 4: Part-Whole Statecharts is a state-based
formalism which is able, amongst other features, to
integrate internal and external behavioural aspects.
Two main reactive patterns are feasible, that is ex-
ternally (a) and internally (b) triggered transitions.
Events are syntactically distinguished into directed
and undirected ones.

3. THE HOLONIC FRAMEWORK

In the preceding sections we argued for constructs which
exhibit a “double behavioural nature”, that is they should
be able to account both for an internal language as well as
an external language. What we need are therefore modular
units which are able to conform to such a double nature.
Each module needs therefore four ports, two on the internal
and two on the external behavioural side. Such ports are
meant to be behavioural connection points to other mod-
ules. Modules should communicate one with the other by
connecting the internal ports of the module acting as compo-
nent to the external ports of the module acting as compound



entity. Each module should finally expose only its external
features, hiding the internal ones.

Holons, by Arthur Koestler [3][4], have a double, “Janus
face”, nature, thus being able to host both an implemen-
tation and an interface as in Figure 5-(a), referred to as
internal and external aspects in the previous sections. The
interface allows to view and use the module as “part”, the im-
plementation allows instead to view the module as “whole”,
that to coordinate a number of other holons as parts.

The interest of the holonic approach in the context of a
novel software-engineering based theory of control consists
indeed in the feasibility of composing holons through partial
control loops. Each holon playing the role of whole coordi-
nates n different holons playing the role of parts through
n control loops. Holons within a holarchy cooperate in or-
der to achieve a global task by exchanging control events of
different typologies which travel along the lattice of control
loops established among them.

The ontological rationale behind such a choice is that, as
shown in Figure 1, a monolithic control software (the con-
troller) acts upon the environment, aimed at changing its
current set of properties, called collectively state. As the
state of the environment changes, events are generated (for
example temperature changes) and broadcast towards the
controller. Vice versa, the controller prescribes directed ac-
tions to actuators, for example turning a furnace on in order
to raise the temperature of the room. In other words, this
marks an asymmetry since the controller knows the con-
trolled entity, but not vice versa, in the sense that trivially
the temperature of the room only implicitly and indirectly
acts on the temperature controller. The proposed framework
mimics such an ontological property of controlled processes
by having controllers the capability to observe controlled
entities, not vice versa.

This paves the road for an effective software development
method, where modular reusability is of primary concern
and underlies the general principle of asymmetry in control.
Each modular artifact is in fact totally reusable since it has
to be designed in full generality without having to know the
module to which it has to be composed.

3.1 Invariant-Based Holonic Control

Monolithic control applications fulfill different tasks, each
possibly consisting in maintaining different logical invari-
ants.

Holons have an asymmetrical and complementary nature
by which they can be composed into holarchies, as in Fig-
ure 5-(b). Root modules can be seen as bare implementa-
tions, since they do not need to be further composed in the
context of a control application. Leaf modules are simple
interfaces, since they are the logical view of sensors and ac-
tuators. A holarchy can be thus defined as a set of holon
modules connected through control loops by which events
flow upwards and downwards. Events can be classified into
different typologies depending on the direction in which they
travel and to the target to which they are directed. The
framework presented is aimed at maintaining equivalently
control of such state invariants dispersed amongst separate
component holons within a hierarchy. Within a specific
module of the holarchy such invariants become state invari-
ants of the PW-Statechart governing it. Internal and exter-
nal aspects of the PW-Statechart hosted by a single holon
match the communication ports, by following the schema
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Interface Interface
~
Implementation
Interface
Interface
J
) )
Implementation Implementation
Interface Interface

Implementation

(b)

Component Component
feedback requested
behavior

2 1

Implementation

Interface

7]
External Externally
(a) feedback requested
behavior

Figure 5: (a) Holon modules present four logical
ports and are split into an implementation and an
interface part; (b) By connecting iteratively port 2
with port 3 and port 1 with port 4 it is possible to ob-
tain hierarchical structures called “holarchies”, con-
sisting of nodes connected by partial control loops.

depicted in Figure 5-(a).

Koestler conceived indeed holons as self-regulatory units [4].
Each holon node is designed for maintaining a limited set of
invariants which are not visible to its components. Modules
Doors and Engine, in the example, do not know that their
current joint state must fulfill a limited set of state invari-
ants. Such invariants are encoded in the holon which has
them as components. Only module Car indeed knows for
example that the opening of the door requires the engine to
stop.

A holarchy may be seen therefore as a directed acyclic
graph of self-regulatory nodes, each node maintaining its
own invariants by perturbing its components and being per-
turbed by other nodes having it as component. A state
invariant can be seen indeed as a “configuration” of compo-
nents.

Module Car in Figure 6 has three invariants associated to
its states; state Stop for example is such that when the con-
trol is in the state then doors are opened and the engine
is stopped (C1), when in state Go doors are closed and the
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T e Engine

d.Open & e.Off <d.open>

<d.close, e.on>
2 go

Stop

.

stop restart
<d.open, e.off >

<d.close, e.on >

c: Car

c.go

tl: TrackLight
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Figure 6: The holarchy implemented by PW-Statecharts modelling the behaviour of the holon Car by its two
component holons (Doors and Engine) and of a GTM (Global Track Monitor) holon having Car and TrackLight

as components (adapted from [6]).

engine is running (C2). Finally, when in state FailSafe doors
are opened and the engine is stopped (C3). Observe that the
same state invariant may be associated to different states, for
example Stop and FailSafe share C; and C3. The holon Car
moves along the three state invariants above. Each state in-
variant may be invalidated by both an external as well as an
internal stimulus. External stimuli change the current state
and the associated invariant (Figure 7-(a)). Internal stim-
uli come from autonomous state changes happening within
components. Invariants need then to be restored by sending
commands to components (Figure 7-(b)).

3.2 Partitioning Control Invariants

A holonic application maintains global state invariants by
the recursive composition of control over partial invariants.
Each partial invariant is such that it logically constrains the
states belonging to the component holons. For example,
when the control is in state Main in module GTM (Global
Track Monitor) of Figure 6, then invariant condition cs™ —
c.GoAtl.Green holds, meaning that module car is moving and

traffic light is green.
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Control consists in comparing, at each clock step, whether
condition CS™ holds compared to the global state of its
components. In this way, only components at the immediate
upper level have to be checked in order to verify whether
the desired invariant holds. In case a difference is noticed
between CS™ and the current state of the components, for

example by the traffic light changing to red, either

1. current state invariant has to be restored by the global
track monitor GTM by sending a command to its im-
mediate upper level components Car and TrackLight;
this is not possible since the GTM would request the
light to switch back to green but the requested traffic
light behaviour is modelled through autonomous non
triggerable transition ts; or

2. the GTM module has to switch to a different state in-
variant which complies with the current global state
of the immediate upper level components, in the exam-
ple by moving from state Main to state Sec through
transition ¢3 in module GTM.
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Figure 7: (a) An external stimulus (event go) make
the holon change its current state from C; = d.OpenA
e.Off to C; = d.Closed A e.0n by forwarding additional
event stimuli towards its components, which modify
their configuration. (b) An internal stimulus (a door
is opened manually by event d.open) makes invariant
C3 = d.Closed A e.0n invalid and triggers a change of
state to the state having associated condition C3 =
d.OpenAe.Off, which becomes the new state invariant.
The holon then emits event fail towards the external
composition context.

In both cases the only current global state which has to
be looked up or modified is the one resulting form the cur-
rent state of the components at the immediate upper level.
Control is thus exercised only by establishing a control loop
consisting of a single level of composition. By such schema
of control, commands travel upward while feedback travels
downward and is used to establish, incrementally, the cur-
rent state of the components. Feedback from components
may implicitly trigger state transition, that is, feedback con-
sists in information regarding their current state, not the
transitions which have to be triggered in the client holon.
For example in Figure 6 a change of state in the doors is
revealed by feeding back the event d.open which denotes in-
deed the change of state which happened. Holon Car reacts
to such an event by triggering a state transition since the
current state invariant no longer holds (in fact, doors must
be closed when car is running). Other client holons (that is
holons using the doors holon as component) may not need
to react to doors opening since they implement a different
application policy (for example doors may be both opened or
closed while the car is stopped). In other words, the same
change of state in a component is dealt with in different
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ways, not foreseeable at design time.

Observe finally that since:

c.Go = (d.Close A e.On)

We have that

c.Go A tl.Green = d.Close A e.0On A tl.Green

In other words each state invariant denotes one or more
configuration of leaf holons, as depicted in Figure 8. For
example C$™ is equal to C§* A (tl.Red V tl.Blink) which in
turn is equal to d.Open A e.Off A (tl.Red V tl.Blink)

Open Closed Off On

cr o5 oS Red  Blink

GTM GTM
& Cs

™
Cs

Figure 8: Each invariant in the Car as well as
the GTM (Global Track Module) denotes one or
more configurations of leaf (i.e. basic, unstructured)
holons.

3.3 Discussion and Further Research

Further research is needed in order to answer some notice-
able questions. For example: does the holonic perspective
provide some guidance for decomposing the control loop as
well as the overall behaviour? Which are the general re-
quirements imposed by the holonic perspective? Which are
its limits?

Holons do not provide any criterion for decomposing the
control loop, rather they support the decomposition or par-
titioning of control by simply hosting portions of behaviour
which is strictly necessary in order to implement the reactive
behaviour among a finite and limite number of components.
Events are generated as part of such a working behaviour
and are therefore dependent from it. In other words there is
no criteria for decomposing the main loop, each more com-
plex behavioural level is simply built upon previous less com-
plex levels. Each level emits events towards both more and
less complex layers. Event loops simply connect the different
layers and give rise to unforeseeable patterns of behaviour,
as in Figure 9. Further research is needed in order to under-
stand whether non terminating sequences of events may be
occasionally generated.

The overall behaviour of a monolithic control application
is devoted at maintaining a number of invariants. Each
holon acts as a self regulatory node in order to maintain
only some invariants. Once a mutual dependence is detected
among two holon entities, a third holon having such entities
as “parts” is required in order to host the mutual behaviour
and the mutual invariants. Invariants within a holon hence
constrain only to its component parts. In the example of Fig-
ure 6 holon subsystem Car is devoted at maintaining state
invariants which deal with the mutual interaction of its com-
ponent holons, i.e. doors and engine. Invariants are modelled
through state propositions. Each state proposition is a log-
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Figure 9: Two execution traces from the example of Figure 6. Observe that, by the proposed approach,
events propagate both upwards and downwards. Propagation origin is marked by (*).

ical formula which denotes the current state of the current
upper less complex level. At the same time each state of
such level is in turn constrained by another formula. As
shown in Figure 8 global invariants are maintained by main-
taining simpler invariants at each level. Further research is
finally needed in order to understand whether any system is
decomposable through a holarchy.

4. CONCLUSIONS

Distinguishing between internal and external events re-
quires to adopt new behavioural constructs. Such constructs
may in turn be hosted by a suitable module, which provides
communication facilities by which modules are connected
one with the other. Internal aspects of the module imple-
ment the activity of the system by coordinating its com-
ponents, external aspects model instead the activity of the
system seen as a whole. Connecting internal aspects of a
module to external aspects of a component module allows
to implement a partitioned form of control by establishing
control loops which decompose the main loop. Each control
loop is simply devoted at controlling its immediate composi-
tion level, that is at controlling holons which in turn controls
their own component holons, and so on.

One of more invariants coexist within a holon state-based
behaviour. Such invariants are state propositions associ-
ated to the states of the state machine. Once such proposi-
tions are invalidated, regulating events are sent to its com-
ponents in order to restore them. In case no restoring action
is possible, the state machine performs a transition to an-
other state whose invariant is compatible with the internal
changes, making them self-regulatory units as in Koestler’s
vision. Modules can be moreover verified directly at design
time by visiting their state invariants along their finite and
limited state diagram and composed at any time within a
holarchy without having to check them again.

The more appealing benefit of adopting the holonic per-
spective is therefore related to the capability of reducing
the overall complexity by modular units, together with the
feasibility of composing off-the-shelf verified modules.

40

S.
[1]

REFERENCES
D. Coleman, P. Arnold, S. Bodoff, C. Dollin,

H. Gilchrist, F. Hayes, and P. Jeremaes.
Object-Oriented Development: the Fusion Method.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1994.

G. Delaval, S. Mak-Karé Gueye, E. Rutten, and

N. De Palma. Modular Coordination of Multiple
Autonomic Managers. In 17th International ACM
Sigsoft Symposium on Component-Based Software
Engineering (CBSE 2014), page 291, Lille, France,
June 2014.

A. Koestler. Beyond atomism and holism - the
concept of the holon. Perspectives in Biology and
Medicine, 13(2):131-154, 1970.

A. Koestler and J. R. Smythies. Beyond reductionism;
new perspectives in the life sciences. Macmillan New
York, 1970.

C. Ma and W. Wonham. Nonblocking supervisory
control of state tree structures. Automatic Control,
IEEE Transactions on, 51(5):782-793, May 2006.

L. Pazzi. Modeling systemic behavior by state-based
holonic modular units. In J. Dingel, W. Schulte,

I. Ramos, S. AbrahNo, and E. Insfran, editors,
Model-Driven Engineering Languages and Systems,
volume 8767 of Lecture Notes in Computer Science,
pages 99-115. Springer International Publishing, 2014.
L. Pazzi and M. Pradelli. Part-whole hierarchical
modularization of fault-tolerant and goal-based
autonomic systems. In Dependable Control of Discrete
Systems, 2009. DCDS ’09. 2nd IFAC Symposium on,
pages 175-180, 2009.

L. Pazzi and M. Pradelli. Modularity and part-whole
compositionality for computing the state semantics of
statecharts. In Application of Concurrency to System
Design (ACSD), 2012 12th International Conference
on, pages 193 —203, june 2012.

P. J. Ramadge and W. M. Wonham. Modular feedback
logic for discrete event systems. SIAM Journal on



Control and Optimization, 25(5):1202-1218, 1987.

P. J. Ramadge and W. M. Wonham. Supervisory
control of a class of discrete event processes. STAM
Journal on Control and Optimization, 25(1):206—230,
1987.

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual.
Addison-Wesley, 1998.

41

[12] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans.
Auton. Adapt. Syst., 4(2):14:1-14:42, May 2009.

[13] J. C. Willems. The behavioral approach to open and
interconnected systems. Control Systems Magazine,
pages 46-99, 2007.



Angelopoulos, Konstantinos ...17

Bartelt, Christian .............. 22
Braberman, Victor .......... 9,26
D’Ippolito, Nicolas .......... 9, 26
Iftikhar, M. Usman .............. 1

Author Index

Kramer, Jeff

Mylopoulos, John ............. 17
Papadopoulos, Alessandro Vittorio
E’;zzi, Luca ......cooviiinntn. 34
Rausch, Andreas .............. 22

Rehfeldt, Karina ............... 22
Shevtsov, Stepan ............... 1
Sykes, Daniel ............... 9, 26
Uchitel, Sebastian .......... 9, 26

Weyns, Danny .................. 1



