
6th International Workshop on
Automating Test Case Design,

Selection and Evaluation
(A-TEST 2015)

Proceedings

Tanja Vos, Sigrid Eldh, and Wishnu Prasetya

August 30-31, 2015
Bergamo, Italy

The Association for Computing Machinery, Inc.
2 Penn Plaza, Suite 701

New York, NY 10121-0701

Copyright c© 2015 by the Association for Computing Machinery, Inc (ACM). Permission to make digital or hard
copies of portions of this work for personal or classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permission to republish from: Publications Dept. ACM, Inc.
Fax +1-212-869-0481 or E-mail permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that
the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923.

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously published by ACM.
If you have written a work that was previously published by ACM in any journal or conference proceedings prior to
1978, or any SIG Newsletter at any time, and you do NOT want this work to appear in the ACM Digital Library, please
inform permissions@acm.org, stating the title of the work, the author(s), and where and when published.

ACM ISBN: 978-1-4503-3813-4

Additional copies may be ordered prepaid from:

Phone: 1-800-342-6626
ACM Order Department (U.S.A. and Canada)
P.O. BOX 11405 +1-212-626-0500
Church Street Station (All other countries)
New York, NY 10286-1405 Fax: +1-212-944-1318

E-mail: acmhelp@acm.org

Production: Conference Publishing Consulting
D-94034 Passau, Germany, info@conference-publishing.com

Message from the Chairs

Welcome to the Workshop on Automated Software Testing (A-TEST), in Bergamo, Italy, 30th -31st

August 2015. This workshop is co-located with 10th Joint Meeting of the European Software

Engineering Conference (ESEC) and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (FSE), 2015.

Software testing is at the moment the most important and mostly used quality assurance technique

applied in industry. Considering the activities that make up the testing life-cycle, test case design,

selection and evaluation is the activity that determines the quality and effectiveness of the whole testing

process. These are, however, the most difficult, time-consuming and error-prone activities during testing.

Much of these activities are still carried out manually, and the quality of the resulting tests is sometimes

low since they fail to find important errors in the system.

A-TEST workshop aims to provide a venue for researchers as well as the industry to exchange and

discuss trending views, ideas, state of the art work in progress, and scientific results on topics such as:

 Techniques and tools for automating test case design and selection, e.g. model-based,
combinatorial, search-based, or symbolic approaches.

 Test cases optimization.

 Test cases evaluation and metrics.

 Test cases design, selection, and evaluation in emerging test domains, e.g. Graphical User
Interface, Social Network, Cloud, Big Data, Games, or Security.

 Case studies that have evaluated an existing technique or tool on real systems, not only toy

problems, to show the quality of the resulting test cases compared to other approaches.

The workshop welcomes submissions in the form of full paper (10 pages) describing original and

completed research, either empirical or theoretical, or an industrial case study; as well as submissions in

the form of work-in-progress paper (4 pages) that describes novel, interesting, and highly potential work

in progress, but not necessarily reaching its full completion.

There were 12 submissions, each is peer-evaluated by at least three reviewers, with at least one reviewer

who are highly confident in the subject of the paper. Six full papers and one work-in-progress paper are

accepted for presentation in the workshop.

We are grateful to all authors for their submissions to A-TEST 2015, and to the Program Committee

members for their valuable time and effort in reviewing the submitted papers. Thank you, and we hope

that you enjoy this year’s workshop.

(Tanja Vos, Sigrid Eldh, Wishnu Prasetya. and Anna Esparcia)

iii

A-TEST 2015 Organization

Organizing Committee

General Chair

Tanja Vos Universitat Politècnica de València, Spain

Program Chairs

Sigrid Eldh Ericsson AB, Sweden

 Wishnu Prasetya Utrecht University, Netherlands

Publicity Chair

Anna Esparcia Universitat Politècnica de València, Spain

Program Committee

Pekka Aho VTT, Finland

Emil Alegroth Chalmers University, Sweden

Shaukat Ali Simula, Norway

Steve Counsell Brunel University, UK

Sheikh Umar Farooq University of Kashmir, India

Maria Fernanda Granda Universitat Politècnica de València, Spain

Mark Harman University College London, UK

Peter M. Kruse Berner & Mattner, Germany

Yvan Labiche Carleton University, Canada

Jenny Li Kean University, USA

Atif Memon University of Maryland, USA

John Penix Google, USA

Simon Poulding University of York, UK

Onn Shehory IBM, Israel

Daniel Sundmark Malardalen Univ., Sweden

Paolo Tonella Fondazione Bruno Kessler, Italy

iv

Contents
Foreword . iii
Model-Driven Test Case Design for Model-to-Model Semantics Preservation

Christopher Gerking, Jan Ladleif, and Wilhelm Schäfer — University of Paderborn, Germany 1
A Test Model for Graph Database Applications: An MDA-Based Approach

Raquel Blanco and Javier Tuya — University of Oviedo, Spain . 8
EvoSE: Evolutionary Symbolic Execution

Mauro Baluda — Fraunhofer SIT, Germany . 16
Testing Data Transformations in MapReduce Programs

Jesús Morán, Claudio de la Riva, and Javier Tuya — University of Oviedo, Spain; Universidad de Oviedo, Spain . . . 20
Deterministically Testing Actor-Based Concurrent Software

Piet Cordemans, Eric Steegmans, and Jeroen Boydens — KU Leuven, Belgium . 26
Concurrent Software Testing in Practice: A Catalog of Tools

Silvana M. Melo, Simone R. S. Souza, Rodolfo A. Silva, and Paulo S. L. Souza — University of São Paulo, Brazil . . 31
Bayesian Concepts in Software Testing: An Initial Review

Daniel Rodriguez, Javier Dolado, and Javier Tuya — University of Alcalá, Spain; University of the Basque Country,
Spain; University of Oviedo, Spain . 41

Author Index

v

Model-Driven Test Case Design for
Model-to-Model Semantics Preservation

Christopher Gerking
Software Engineering Group

Heinz Nixdorf Institute
University of Paderborn

Zukunftsmeile 1
33102 Paderborn, Germany

christopher.gerking@upb.de

Jan Ladleif
Software Engineering Group

Heinz Nixdorf Institute
University of Paderborn

Zukunftsmeile 1
33102 Paderborn, Germany

jladleif@mail.upb.de

Wilhelm Schäfer
Software Engineering Group

Heinz Nixdorf Institute
University of Paderborn

Zukunftsmeile 1
33102 Paderborn, Germany

wilhelm@upb.de

ABSTRACT
Model transformations used in model-driven software devel-
opment need to be semantics-preserving, i.e., the meaning
of a model must not be distorted by the transformation.
Testing whether a transformation preserves the dynamic se-
mantics of a model requires oracles such as model checkers,
which explore the runtime statespace of models. The high
amount of repetitive code to integrate heterogeneous trans-
formation engines and test oracles makes the design of se-
mantics preservation tests a tedious task. In this paper, we
apply the approach of model-driven testing to the domain of
model transformation. We present a visual domain-specific
language for the design of model transformation tests, which
reduces test cases to their essential components. Our lan-
guage enables an immediate execution of test cases with pre-
cise validation feedback. We evaluate our approach in terms
of a case study based on the MechatronicUML model-
ing language for the software development of cyber-physical
systems.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—model checking ; D.2.5 [Software Engineering]:
Testing and Debugging—testing tools; D.2.9 [Software En-
gineering]: Management—software quality assurance; I.6.4
[Computing Methodologies]: Simulation and Modeling—
model validation and analysis

General Terms
Design

Keywords
Model transformation, test case design, semantics preserva-
tion

1. INTRODUCTION
Model transformations are an integral part of contempo-

rary model-driven software development (MDSD) processes.
They play the vital role of bridging the gap between plat-
form-independent models and concrete execution platforms,
generating executable software systems from abstract spec-
ifications. In order to ensure that a generated software sys-
tem meets its specified requirements, model transformations
in MDSD need to be semantics-preserving, i.e., the meaning
of a model must not be distorted (only refined) by the trans-
formation. However, proof techniques for semantics preser-
vation during model transformations are still in the early
stages of development [10]. Therefore, viable quality assur-
ance for model transformations reduces mainly to testing
approaches [2].

Test cases for model-to-model semantics preservation are
characterized by a heterogeneous infrastructure in terms of
tools, technologies, and methods involved. On the one hand,
a variety of special-purpose model transformation languages
exists [3], and requires to invoke specific transformation en-
gines during the execution of test cases. On the other hand,
different requirements in terms of testing precision give rise
to various kinds of test oracles [16], which are consulted dur-
ing the execution of test cases in order to assess the correct-
ness of the transformation result. For example, validating
the output model against syntactic constraints could be a
sufficient oracle, when the primary goal is to exclude seman-
tic invalidity. In contrast, model comparison [13] represents
an established and more restrictive test oracle, demanding
syntactic equality between the output model and a carefully
selected, manually certified reference model. As syntactic
equality implies semantic equivalence, model comparison is
sufficient to test semantics preservation between output and
reference model.

However, syntactic equality is far from a necessary condi-
tion for semantics preservation, because two disparate mod-
els can still be equivalent with respect to a selection of rep-
resentative semantic properties. Therefore, model compari-
son often appears as a too strict oracle for the preservation
of semantic properties during model-to-model transforma-
tions. Especially when the model transformation is work in
progress, the structure of the output model might change
frequently and cause false positive test failures. MDSD suf-
fers from this problem in particular, as it involves behav-
ioral models with intrinsic dynamic semantics, which define
the runtime execution behavior of a software system. Static

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

A-TEST’15, August 30-31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3813-4/15/08...$15.00

http://dx.doi.org/10.1145/2804322.2804323

1

reasoning at syntax level is inappropriate to argue about
these dynamic semantic properties. Hence, testing seman-
tics preservation efficiently requires a test oracle that oper-
ates beyond the syntax level, and analyzes output models
in terms of their dynamic semantics. Thus, oracles need to
explore the runtime statespace of the models involved, using
dedicated tools for model simulation or model checking [7].

Test cases for model-to-model semantics preservation re-
quire a considerable amount of repetitive glue code, usually
written in a general-purpose programming language that
supports the integration of heterogeneous technologies. For
example, a test case could invoke a specific transformation
engine to transform an input model into an output model,
before invoking a specific model checker to analyse the out-
put model for certain semantic properties. Integrating such
heterogeneous technologies makes the test case design for
model transformations a tedious task, because the repeti-
tive integration code is irrelevant to the essential logic of
the test cases.

In this paper, we apply the approach of model-driven test-
ing to the domain of model transformation. We present a vi-
sual domain-specific language (DSL) for the design of model
transformation tests, which abstracts from irrelevant details
and reduces test cases to their essential components. Our
DSL supports the visual flow-based modeling of test cases,
and enables to specify the flow of models between different
components, while abstracting from the concrete execution
order. The approach also enables an immediate test execu-
tion with precise visual validation feedback. We evaluate our
approach in terms of a case study based on the Mechatro-
nicUML modeling language for the software development of
cyber-physical systems [4].

In summary, the contribution of this paper is (i) a lan-
guage concept for the model-driven design of test cases for
semantics preservation during model-to-model transforma-
tions, and (ii) a visual DSL as an application of our concept,
enabling the design and execution of semantics preservation
test cases in the context of MechatronicUML.

Our paper is structured as follows: Section 2 describes
our model-driven testing approach for model transforma-
tions. In Section 3, we demonstrate our approach in terms
of a visual DSL for the design and execution of test cases.
We discuss related work in Section 4, before concluding in
Section 5.

2. MODEL-DRIVEN TESTING OF MODEL
TRANSFORMATIONS

Common to the typical components of model transforma-
tion test cases (e.g., loading test models, invoking trans-
formation engines, or consulting oracles) is their usage of
models as inputs or outputs. Hence, regardless of the high
amount of repetitive glue code that is usually required to
integrate heterogeneous components, they share a common
type of interface in terms of models. Based on the observa-
tion of models as primary interfaces between components,
we abstract from their technological distinctions and apply
the approach of model-driven testing to the domain of model
transformation. In Section 2.1, we present a formal design
approach for model transformation test cases in terms of a
domain-specific modeling language. Based on this modeling
approach, Section 2.2 describes the execution of test cases
and how to determine the result of an execution.

2.1 Test Case Design
The core elements of a test case are its components, which

we model using nodes: Each node represents one specific
action, such as loading a model or verifying assertions. To
accomplish its task, a node exhibits individual input ports
from which it receives data. After its execution, it may issue
results to its individual set of output ports. These, in turn,
can be connected to input ports of other nodes, yielding a
dataflow network. As we specify test cases, each node may
also fail: If a node observes unexpected behavior or finds
its assertions are incorrect, it issues a relevant error message
and triggers the whole test case’s failure. Formally, such a
system can be summarized as follows:

Definition 1. A test case C is a 7-tuple (V, I,O,D, opt,
exe, L) with

• the set of nodes V ,

• the set of all input ports I,

• the set of all output ports O,

• the dataflow relation D ⊆ O × I,

• a function opt : I → {true, false} determining if an
input is optional,

• a function exe : V → {true, false} determining if the
execution of that node was successful, and

• a function L : (V ∪ I ∪ O) → Σ assigning labels to
nodes and ports, with Σ the set of labels.

For a node v ∈ V let I(v) ⊆ I be its disjoint set of input
ports and O(v) ⊆ O its disjoint set of output ports.

The above definition describes all possible test cases, but
also includes invalid ones that cannot be executed. For ex-
ample, one could define an input port that is part of more
than one node. To amend this, we introduce the notion of
valid test cases:

Definition 2. A test case C = (V, I,O,D, opt, exe, L) is
valid iff

• every input port (analog for output ports) is assigned
to exactly one node:

∀i ∈ I(∃! v ∈ V (i ∈ I(v))),

• the input ports (analog for output ports) have unique
labels:

∀v ∈ V (i1, i2 ∈ I(v)⇒ (i1 = i2 ∨ L(i1) 6= L(i2)),

• each input port is connected to at most one output
port:

∀i ∈ I ¬(∃o1, o2 ∈ O ((o1, i) ∈ D ∧ (o2, i) ∈ D)),

• every non-optional input port is connected to at least
one output port:

∀i ∈ I (opt(i) = false ⇒ ∃o ∈ O : (o, i) ∈ D) and

• the dataflow relation D is acyclic, i.e., you cannot ar-
rive at the same node using dataflows after leaving it
through an output port.

2

Load Model

model

Save Model

model

(a) (b)

Transformation
outputinput

String
string

(c) (d)

Model Checking

resultmodel
properties

Compare

resultmodel 1
model 2

(e) (f)

Assert Success

result

Assert Failure

result

(g) (h)

Figure 1: Different Types of Nodes Used to Test
Model Transformations

The number and type of ports as well as the concrete
nature of the function exe(v) of a node v ∈ V depend on
its type. Figure 1 shows a variety of node types that we
conceived as part of a visual DSL to test model transfor-
mations: Loading (a) and saving (b) models is essential, as
is executing model transformations (c). A way to specify
and output arbitrary strings (d) is required too, mainly to
parametrize model-to-model transformations. Also, a model
checker should be available (e) and two models should be
comparable on a syntactical level (f). Lastly, the results of
the model checking and comparison can either be asserted
to be a success (g) or a failure (h).

2.2 Execution of Test Cases
Ultimately, all nodes of a test case should be executed.

The order of the nodes’ execution is not an arbitrary deci-
sion, however. One has to take into account the dependen-
cies that are implied by the dataflow relation D.

Definition 3. A node v2 ∈ V directly depends on v1 ∈ V
(v1 ; v2) iff a dataflow (o, i) ∈ D with o ∈ O(v1) and
i ∈ I(v2) exists. The transitive closure ;∗ of ; contains all
dependencies.

A dependency v1 ;∗ v2 implies that v1 has to be exe-
cuted before v2. This is the case whenever a node directly
or indirectly requires the output of another one for its own
computations. A correct order of execution needs to respect
all dependencies imposed by ;∗ and actually always exists
for valid test cases:

Theorem 1. For every valid test case C = (V, I,O,D,
opt, exe, L) there exists a topological sorting, i.e., a bijective
mapping ord : V → {1, ..., n}, n = |V |, such that

v1 ;
∗ v2 ⇒ ord(v1) < ord(v2) ∀v1, v2 ∈ V .

Proof. The dependency relation ;∗ defines a strict par-
tial order over V : It is irreflexive because we required acyclic-
ity in Definition 2, and transitive because it is defined as
a transitive closure (see Definition 3). Thus, the implied
graph G = (V,;∗) is a directed acyclic graph (DAG). For
every DAG a topological sorting of its nodes exists, which
in particular yields a topological sorting for every valid test
case.

There are various canonical algorithms to calculate such
a topological sorting, e.g., by Kahn [11]. Once a topological
sorting has been acquired, a test case can be executed in its
entirety. Every node has to finish successfully in order for
the whole test case to be regarded a success:

Definition 4. A test case C = (V, I,O,D, opt, exe, L) with
a topological sort ord is successful iff

n∧
j=1

exe(ord−1(j)) = true .

3. CASE STUDY
The goal of this case study is to demonstrate that our DSL

enables an effective test case design and execution for model-
to-model semantics preservation. For evaluating our ap-
proach, we consider the MechatronicUML domain-specific
modeling language [4], which targets the model-driven soft-
ware development for cyber-physical systems. Mechatro-
nicUML supports modeling of behavioral contracts for real-
time coordination by means of Real-Time Statecharts, a
combination of UML statemachines and timed automata.
One of the key features of MechatronicUML is the verifi-
cation of these contracts against temporal logic safety prop-
erties (e.g., deadlock freedom) by means of model check-
ing. To this end, MechatronicUML provides a model-
to-model transformation which translates Real-Time Stat-
echarts into timed automata that can be analyzed by the
model checker Uppaal [5]. In order to ensure reliable re-
sults, the transformation needs to preserve the semantics of
the input Real-Time Statecharts, i.e., the output timed au-
tomata need to be semantically equivalent. In Section 3.1,
we describe our prototypical implementation of a domain-
specific testing language in the context of Mechatronic-
UML, using Eclipse and a variety of its tools. Afterwards, in
Section 3.2, we evaluate our approach by testing the model
transformation from MechatronicUML to Uppaal for se-
mantics preservation.

3.1 Implementation
The architectural basis is laid out by two separate meta-

models which we model using the Eclipse Modeling Frame-
work (EMF, [19]). Figure 2 shows an overview of our archi-
tecture. As EMF is a commonly used standard framework
for model-driven software development it makes our test case
models easily usable, allowing for a straightforward integra-
tion with existing software. The execution logic is added
to the metamodel by taking advantage of the EMF Valida-
tion Framework1: We supply our own strategy to calculate
a topological sorting (see Theorem 1), which the EMF Val-
idation Framework uses to execute our nodes in the correct
order. Furthermore, a graphical editor implementing our

1https://projects.eclipse.org/projects/modeling.
emf.validation

3

https://projects.eclipse.org/projects/modeling.emf.validation
https://projects.eclipse.org/projects/modeling.emf.validation

Test Framework

Test Cases

Topology

Behavior
(Specification)

EMF
Validation

Frameworkexecutes

Graphical
Editor

models

 accesses

External Software (SUT and Tools)

Figure 2: Relationship Between Components in our Framework’s Architecture

concrete syntax (see Figure 1) is realized using the Graphi-
cal Modeling Framework2 (GMF).

One metamodel (labeled Topology) contains all the topo-
logical aspects of the test cases, while the other (labeled
Behavior) uses a strategy pattern to easily define and imple-
ment new node types. They are intertwined such that each
topological node has access to its particular set of behav-
ioral instructions. The EMF Validation Framework accesses
the topological level to calculate the topological sorting, and
afterwards the behavioral level to execute the test case.

The nodes themselves may access any external tool that
they need to perform their computations. In our case, we im-
plement the node types given in Figure 1. For this we employ
QVTo, an Eclipse integration of the QVT Operational Map-
pings model transformation standard [18], Uppaal as an
external model checker, and EMF Compare [6] to compare
arbitrary EMF models. Additionally, our implementation is
tailored for use with the MechatronicUML tool suite. It
supports the specification of temporal logic properties us-
ing a domain-specific variant of the Timed Computation
Tree Logic [1], called MTCTL, as well as the transforma-
tion of MechatronicUML models to Uppaal-compatible
timed automata in order to conduct model checking.

3.2 Evaluation
The evaluation of our approach is based on the guide-

lines for case studies by Kitchenham et al. [12]. We consider
four different MechatronicUML software models of inter-
connected transportation systems (e.g., autonomous cars,
trains, or miniature robots). Our models include an over-
all amount of thirteen contracts for real-time coordination
behavior such as overtaking or collision avoidance. All con-
tracts are equipped with temporal logic verification proper-
ties expressed using MTCTL. According to the Mechatro-
nicUML semantics, all the attached properties hold on the
given models. Our expectation is that the transformation
from MechatronicUML to Uppaal preserves these seman-
tics. Thus, the evaluation hypothesis for our evaluation is
that our approach allows to design test cases which trans-

2http://www.eclipse.org/modeling/gmp/

form the given MechatronicUML models to Uppaal, and
then check for semantics preservation by model checking the
given properties on the output timed automata. To this end,
we also prepare an erroneous variant of our model transfor-
mation, which deliberately introduces semantic distortions
between input and output model. We regard our hypothesis
as fulfilled if the execution of our test cases clearly sepa-
rates the semantics-preserving model transformation from
the semantics-distorting variant.

Figure 3 illustrates the pattern that we used to design
our test cases. Using a Load Model node, we first load one
of the exemplary MechatronicUML models which already
includes a temporal logic property (meaning that once a
certain state x becomes active, the state y will invariably be
reached). A String node is used to specify the name of the
particular coordination contract to transform in a particular
test case. Both nodes act as inputs to a third node of type
Transformation, which represents the execution of our model
transformation from MechatronicUML to Uppaal using
the QVTo engine. The two outputs of the transformation
(a network of Uppaal timed automata, and the translated
TCTL properties) connect to a node of type Uppaal, which
invokes Uppaal’s command line verification tool. Finally,
we use an Assert Success node to express that the expected
model checking result is true for all verified properties.

According to the above pattern, we design one test case
for each of the thirteen contracts to test. Initially, the Trans-
formation nodes in all our test cases refer to the semantics-
preserving variant of our model transformation from Me-
chatronicUML to Uppaal. After the test case design,
we run all our test cases using our integration with the
EMF Validation Framework described in Section 3.1. We
observe that our tests run successfully, as the final Assert
Success node in each of our test cases can be executed with-
out any deviations from our specified expectations. In the
next step, we redesign all of our test cases to refer to the
semantics-distorting variant of our model transformation.
Again, we execute all of our test cases and observe the test
results. All of our thirteen test cases fail after switching to
the semantics-distorting model transformation, because at
least one of the specified MTCTL properties can not be ver-

4

http://www.eclipse.org/modeling/gmp/

Load Model

model
Transformation

ntamuml

String
string

name
nta

UPPAAL
Assert Success

resulttctl

stateActive(x)
leadsTo
stateActive(y) trans_x

-->
trans_y

Figure 3: Failing Test for Semantics Preservation of a Model-to-Model Transformation

ified successfully by the Uppaal model checking. Figure 3
depicts a failing execution of an exemplary test case. The
graphical editor gives a precise feedback, by marking the
Assert Success node as the point of failure.

In summary, our case study successfully separates the se-
mantics-preserving model transformation from its seman-
tics-distorting variant. We therefore regard our evaluation
hypothesis as fulfilled, and thus conclude that our approach
enables the effective testing of model-to-model semantics
preservation.

4. RELATED WORK
In this section, we discuss related work in terms of exist-

ing frameworks for model transformation tests, as well as
alternative testing techniques for semantics preservation.

Küster et al. [14] describe four test design techniques for
the incremental development of model transformations, and
discuss their integration into a test framework. Whereas
our DSL covers several of these techniques (such as integrity
testing against the syntactic constraints induced by the tar-
get metamodel, or model comparison against reference out-
comes), none of the mentioned techniques explicitly addresses
testing at the dynamic semantics level.

Garćıa-Domı́nguez et al. [8] present the EUnit framework
for testing of model management tasks such as model trans-
formations. Similar to our approach, they enable modeling
of executable test cases by means of dataflow networks. In
contrast to our approach, the Epsilon Object Language used
for the textual specification of test cases is less abstract than
our visual DSL. Although the presented framework is highly
extensible, the authors do not explicitly address testing at
the dynamic semantics level using model checking or com-
parable techniques.

Model transformation contracts [9] represent a contrary
approach for testing model transformation outputs at syntax
level. In general, a contract consists of syntax constraints
over the input/output models, whereas one single constraint
may also refer to both models and describe a certain relation
between model elements. Thus, a contract may restrict the
output model’s syntax depending on specific syntactic char-
acteristics of the input model, or vice versa. If the specified

characteristics are stable (i.e., remain unaffected by changes
to a transformation which is work in progress), contracts
can reduce the number of false positive test failures in com-
parison to plain model comparison approaches [13]. There-
fore, we regard the specification of contracts as a promising
extension to our DSL for test case design. In particular,
contracts specified in the scope of a trace model [15] could
help to define more precise contracts by referring explicitly
to the relations between particular input/output elements
recorded during a transformation.

Varró and Pataricza [20] explicitly address the testing of
dynamic semantics preservation by means of model checking.
In contrast to our approach, they propose a model checking
for both input and output models in order to compare the
results. Whereas our DSL basically supports this design
technique, model checking an input model given in terms of
a DSL requires its dynamic semantics to be fully formalized
and operational, which is usually a barrier to a successful
implementation of the proposed technique. In comparison,
we focus on model checking only the output model.

Narayanan and Karsai [17] analyze the semantic equiva-
lence of particular input/output models with respect to a
given property. To this end, they check the bisimilarity be-
tween particular runtime snapshots, and therefore require
an exploration of the runtime statespace for both models.
In contrast, whereas our approach explores the statespace
of the output model as well, it increases the applicability
by employing a general-purpose model checking tool for this
task.

5. CONCLUSION AND FUTURE WORK
In this paper, we propose a model-driven design approach

for semantics preservation tests in the scope of model-to-
model transformations. We provide a concept for a domain-
specific modeling language, which abstracts from the repeti-
tive code required to integrate different technologies for load-
ing test models, invoking transformation engines, or consult-
ing oracles. Our modeling approach also enables the test
execution with appropriate validation feedback.

Our case study reports the successful implementation of
the aforementioned language concept in terms of a test de-

5

sign language in the context of MechatronicUML, a do-
main-specific modeling language for the software develop-
ment of cyber-physical systems. We design a range of test
cases including the transformation from MechatronicUML
to timed automata, and the verification of particular tem-
poral logic properties on these automata, using the Uppaal
model checker as test oracle. The execution of these test
cases successfully separates the semantics-preserving model
transformation from a semantics-distorting variant.

Design engineers for test cases benefit from our approach,
as they require less effort to create executable test cases that
integrate different technologies. Both our language concept
and implementation are highly extensible in terms of differ-
ent transformation engines/languages, or alternative tools
used as oracles.

Future work on our approach encompasses the integration
of alternative testing techniques to our DSL. As discussed
in Section 4, model transformation contracts [9] represent a
promising approach towards testing model transformations
by specifying syntactic relations between input/output mod-
els. Especially promising is the approach of specifying such
contracts in the scope of a trace model [15], which explic-
itly relates particular input/output elements and therefore
enables a more precise contract definition. Additionally,
future work includes design support for parametrized test
cases, differing only in terms of their particular input data.
Our evaluation demonstrated that test case design often re-
duces to a common pattern, such that designers highly ben-
efit from a parametrized approach.

6. ACKNOWLEDGMENTS
We thank Stefan Dziwok for providing test models for

our case study. Christopher Gerking is member of the PhD
program “Design of Flexible Work Environments – Human-
Centric Use of Cyber-Physical Systems in Industry 4.0”, sup-
ported by the federal state of North Rhine-Westphalia.

7. REFERENCES
[1] R. Alur, C. Courcoubetis, and D. L. Dill.

Model-checking in dense real-time. Information and
Computation, 104(1):2–34, 1993.

[2] B. Baudry, T. Dinh-Trong, J.-M. Mottu,
D. Simmonds, R. France, S. Ghosh, F. Fleurey, and
Y. Le Traon. Model transformation testing challenges.
In H. Eichler and T. Ritter, editors, Proceedings of the
ECMDA Workshop on Integration of Model Driven
Development and Model Driven Testing. Fraunhofer
IRB, 2006.

[3] B. Baudry, S. Ghosh, F. Fleurey, R. B. France,
Y. Le Traon, and J. Mottu. Barriers to systematic
model transformation testing. Communications of the
ACM, 53(6):139–143, 2010.

[4] S. Becker, S. Dziwok, C. Gerking, C. Heinzemann,
W. Schäfer, M. Meyer, and U. Pohlmann. The
MechatronicUML method: Model-driven software
engineering of self-adaptive mechatronic systems. In
P. Jalote, L. Briand, and A. van der Hoek, editors,
36th International Conference on Software
Engineering (ICSE Companion 2014), pages 614–615,
New York, 2014. ACM.

[5] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson,
and W. Yi. Uppaal – a tool suite for automatic

verification of real-time systems. In R. Alur, T. A.
Henzinger, and E. D. Sontag, editors, Hybrid Systems
III, volume 1066 of LNCS, pages 232–243,
Berlin/Heidelberg, 1996. Springer.

[6] C. Brun and A. Pierantonio. Model differences in the
Eclipse Modelling Framework. CEPIS Upgrade,
9(2):29–34, Apr. 2008.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, Cambridge/London, 2000.

[8] A. Garćıa-Domı́nguez, D. S. Kolovos, L. M. Rose,
R. F. Paige, and I. Medina-Bulo. EUnit: A unit
testing framework for model management tasks. In
J. Whittle, T. Clark, and T. Kühne, editors, Model
Driven Engineering Languages and Systems, 14th
International Conference, MODELS 2011, volume
6981 of LNCS, pages 395–409, Berlin/Heidelberg,
2011. Springer.

[9] M. Gogolla and A. Vallecillo. Tractable model
transformation testing. In R. B. France, J. M. Küster,
B. Bordbar, and R. F. Paige, editors, Modelling
Foundations and Applications, 7th European
Conference, ECMFA 2011, volume 6698 of LNCS,
pages 221–235, Berlin/Heidelberg, 2011. Springer.

[10] M. Hülsbusch, B. König, A. Rensink, M. Semenyak,
C. Soltenborn, and H. Wehrheim. Showing full
semantics preservation in model transformation – a
comparison of techniques. In D. Méry and S. Merz,
editors, Integrated Formal Methods, 8th International
Conference, IFM 2010, volume 6396 of LNCS, pages
183–198, Berlin/Heidelberg, 2010. Springer.

[11] A. B. Kahn. Topological sorting of large networks.
Communications of the ACM, 5(11):558–562, Nov.
1962.

[12] B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case
studies for method and tool evaluation. IEEE
Software, 12(4):52–62, July 1995.

[13] D. S. Kolovos, R. F. Paige, and F. A. Polack. Model
comparison: A foundation for model composition and
model transformation testing. In Proceedings of the
2006 International Workshop on Global Integrated
Model Management, pages 13–20, New York, 2006.
ACM.

[14] J. M. Küster, T. Gschwind, and O. Zimmermann.
Incremental development of model transformation
chains using automated testing. In A. Schürr and
B. Selic, editors, Model Driven Engineering Languages
and Systems, 12th International Conference,
MODELS 2009, volume 5795 of LNCS, pages 733–747,
Berlin/Heidelberg, 2009. Springer.

[15] N. D. Matragkas, D. S. Kolovos, R. F. Paige, and
A. Zolotas. A traceability-driven approach to model
transformation testing. In B. Baudry, J. Dingel,
L. Lucio, and H. Vangheluwe, editors, Proceedings of
the Second Workshop on the Analysis of Model
Transformations, (AMT 2013), volume 1077 of CEUR
Workshop Proceedings, 2013.

[16] J.-M. Mottu, B. Baudry, and Y. Le Traon. Model
transformation testing: oracle issue. In 2008 IEEE
International Conference on Software Testing,
Verification and Validation Workshop (ICSTW’08),
pages 105–112. IEEE, 2008.

6

[17] A. Narayanan and G. Karsai. Towards verifying model
transformations. Electronic Notes in Theoretical
Computer Science, 211:191–200, Apr. 2008.

[18] Object Management Group. Meta Object Facility
(MOF) 2.0 Query/View/Transformation Specification.
Number formal/15-02-01. 2015.

[19] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, 2nd edition, 2008.

[20] D. Varró and A. Pataricza. Automated formal
verification of model transformations. In J. Jürjens,
B. Rumpe, R. France, and E. B. Fernandez, editors,
2rd International Workshop on Critical Systems
Development with UML (CSD-UML 2003), pages
63–78, 2003.

7

A Test Model for Graph Database Applications: An MDA-
Based Approach

Raquel Blanco
Department of Computing

University of Oviedo
Gijón, Spain

rblanco@uniovi.es

Javier Tuya
Department of Computing

University of Oviedo
Gijón, Spain

tuya@uniovi.es

ABSTRACT
NoSQL databases have given rise to new testing challenges due to
the fact that they use data models and access modes to the data
that differ from the relational databases. Testing relational
database applications has attracted the interest of many
researchers; but this is still not the case with NoSQL database
applications. The approach presented in this paper defines a test
model for graph database applications that takes into account the
data model of this technology and the system specification. To
automate the derivation of the test cases and the evaluation of
their adequacy we propose a framework that places model-based
testing into the model-driven architecture context.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

Keywords
Graph database testing, model-based testing, MDA, specification-
based testing.

1. INTRODUCTION
Databases are probably the most important asset of an
organization, and constitute the core of most software systems.
Nowadays, many organizations need to store a vast amount of
information, and they are increasingly turning to NoSQL
databases to manipulate this large amount of data with higher
performance [21].

There are numerous NoSQL technologies (currently 150) [28],
which are classified into four popular types according to their data
model [26]: key-value, document-based, column-family and graph
databases. These types of database have something in common:
they do not require a schema that restricts the data that can be
stored.

Testing NoSQL database applications is a crucial and a
challenging process for several reasons. On the one hand, NoSQL
technologies do not work with SQL and each one uses its own
APIs and tailored query languages, which are not as widely

known as SQL by the developers. Moreover, the programming of
complex queries can be difficult [21]. In particular, queries of
graph database technologies can be especially verbose and
difficult to write, understand and maintain [2]. Due to these
difficulties, faults can appear in the code that accesses the
database.

On the other hand, despite the fact that NoSQL databases do not
require a schema, the applications usually have an underlying
conceptual model that represents the data stored (henceforth
conceptual data model). As there are no constraints that restrict
their storage, the physical database could contain data that do not
satisfy the conceptual data model. These data can produce
application malfunctions and/or incorrect outputs to the user.

To test database applications, many approaches have been
developed, such as [7], [9], [13], [15], [24]. However, as these
works rely on SQL statements and/or the existence of an explicit
database schema, they cannot be applied to testing NoSQL
database applications. So, it is necessary to develop new testing
approaches for this type of applications, which take into account
the new data models and specific characteristics of each NoSQL
technology.

The scope of this paper is the development of an approach to test
graph database applications that considers the data model
characteristics of this technology. Data are stored in nodes and
relationships among nodes, and both nodes and relationships can
contain properties. The graph databases are gaining in popularity
and thousands of organizations use them in applications such as
social recommendations, logistics, fraud detection, identity and
access management, etc. [27]. To achieve this goal, we propose a
model-based testing approach in the context of model-driven
architecture, so that we benefit from the support of automation of
both paradigms.

The main contributions of this work are:

• The definition of a framework that integrates model-
based testing (MBT) into the model-driven architecture
(MDA) paradigm.

• The definition of a test model for graph database
applications that relies on both the underlying
conceptual data model and the system specification.

The remainder of this paper is organized as follow: Section 2
presents the related work. Sections 3 and 4 describe the
architecture of our MBT/MDA framework and the test model,
respectively. Section 5 presents a case study. The paper ends with
conclusions and future work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

A-TEST’15, August 30-31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3813-4/15/08...$15.00

http://dx.doi.org/10.1145/2804322.2804324

8

2. RELATED WORK

2.1 Testing Database Applications
Several approaches in the literature address the problem of testing
database applications. To guide the generation of test inputs and
evaluate their adequacy, several criteria have been developed.
Works that define program-based adequacy criteria range from
criteria for procedural code that take into account the SQL queries
[10], to criteria specially designed to deal with the SQL
statements [14], [15], [32], [33], [35] and tools to automate the
criteria [16], [31], [39]. Other works define specification-based
adequacy criteria, such as [4]. The generation of test inputs has
been addressed in several works: [3], [23], [36] generate test
databases and [7], [24] both test database and program inputs.

With regard to testing the database schema, works are focused on
defining adequacy criteria [25], [37], generating data to test the
schema constraints [17] or prioritizing the test cases when the
database schema changes [12], [13].

As stated before, these works depend on SQL code and/or explicit
relational database schemas, while our approach is totally
independent. The closest works to ours are those of [17], [37] as
they use the database schema to generate test cases. These works
are focused on testing the database schema. However, our
approach uses a conceptual data model as the basis for designing
the test model according to the system specification.

2.2 Model-Based Testing and Model-Driven

Architecture
Model-based testing (MBT) has been used in several database
testing works, such as [4], [9], [11], [18]. In MBT, the system is

modelled to identify the important aspect to be tested regarding
the expected system behaviour, obtaining a test model. Next, a
test selection criterion is chosen to derive the abstract test cases,
which are then concretized by means of a test generation
technology and translated into executable test cases that can be
run against the software under test (SUT) [34].

On the other hand, MBT can be placed into the MDA context,
obtaining the abstraction levels PIT (Platform Independent Test)
and PST (Platform Specific Test) [8]. The PIT level contains the
test models that are platform independent, whereas at the PST
level the test models contain information about the specific
underlying platform.

Works in the MBT/MDA context are mainly focused on
transforming the system model at the PIM level into the test
model at PIT level [1], [5], [6], [19], [22], and defining
transformations from the PIT level to the PST level and/or the test
code [1], [20], [22], [38]. However, it is important to have some
independence between the system models and the test models,
because mistakes in the system models can be propagated to the
code and the tests and, therefore, they are impossible to detect
[30], [34]. In our approach the test model is designed by the
testers, instead of being generated from a system model.

3. THE MBT/MBA FRAMEWORK
The architecture of the MBT/MDA framework we propose is
depicted in Figure 1. At the PIT level, we have identified two
important viewpoints: PITM (Platform Independent Test Model)
and PITGM (Platform Independent Test Generation Model).

Conceptual
Data Model

Test Model

Conforms

to
Composed of

Test

view

Test coverage

item
Test Case

Generation Model

Composed of

Executable Test
Case Model

Composed

of

T
ra

n
sfo

rm
a
tio

n

Test generation technology

Test Code

P
IT

M
P

IT
G

M

P
S

T
P

IT
Test coverage

itemTest coverage

itemTest coverage
item

Test

viewTest
view

Test selection criterion

Output
Database

Test
Database

User Input User Output

Inputs Outputs

Figure 1. Architecture of the MBT/MDA framework

9

The PITM level is focused on the definition of the testing
objectives, according to the system specification of the SUT.
Here, the test model is designed as a composition of one or more
important features of the SUT to be tested, called test views.
Related to the scope of testing database applications, the
conceptual data model of the database plays an important role, so
the test model must conform to it in order to specify the test views
correctly. If the conceptual data model is not explicitly stated (the
NoSQL databases are schema-optional), the tester prepares this
model as part of the testing process.

The PITGM level is centred on the definition of the test case
generation model that is formed by the specific items that must be
tested, which are called test coverage items. In the context of
MBT, the test generation model represents a model of the abstract
test cases. The mapping between the test model and the test
generation model is performed by transformations that are guided
by the test selection criterion chosen, which leads the test
coverage items. In this mapping, a test view can give rise to
several test coverage items. From a PITM, several PITGM can be
automatically derived by appropriate transformations.

The PST level contains the executable test case model, which is
obtained by means of transformations from the test case
generation model and depends on the specific graph database
management system used. These transformations are guided by
some test generation technology that concretizes the test inputs,
formed by the state of the database before the execution of the test
case (test database) and the values supplied by the user (user
input); and the expected outputs, formed by the state of the
database after the execution of the test case (output database) and
the values shown to the user (user output). Finally, the executable
test cases can be transformed into an executable test code.

An important benefit of the MDA paradigm consists in reaching a
high level of automation by defining transformations among
models. In our framework, the tester specifies the test model and,
after that, the processes of deriving the test case generation model,
the executable test cases and the test code can be carried out
automatically.

The elaboration of a test database with meaningful data is a
determining factor, as these data are transformed to produce the
test output and the test database has to represent the situations of
interest to be tested, so the SUT can exercise them. This paper is
focused on the definition of test views for unit testing, which are
specially tailored for managing the database of graph database
applications.

4. TEST VIEWS FOR GRAPH DATABASE

APPLICATIONS
Consider, for example, a database application (“illness risk”)
which determines the level of risk of suffering an illness
according to different factors such as the severity of previous
episodes suffered by the person (which is classified in three
levels), the existence of previous episodes of the illness in his/her
family, etc.. The conceptual data model of the database is depicted
in Figure 2.

Person Illness

Severity

- level

FATHER_OF

MOTHER_OF

SUFFERED_BY* *
origin

*

*

1

1 origin

origin

Figure 2. Conceptual data model of the “illness risk”

application

Some interesting features to test are situations in which: (a) a
person has only one mother; (b) a person can suffer several
episodes of the same illness with different severity levels; (c) an
illness can be suffered by several people of the same family.

Our approach allows the tester to define test views based on the
system specification, which indicate interesting nodes and
relationships of the test database to test the application behaviour.
Figure 3 depicts the test views that correspond to the
aforementioned features to test. The elements that compose a test
view are also identified:

• View node or vNode: a type of node of the database.
The vNode label indicates the class that represents the
vNode in the conceptual data model. A type of node can
be unique in a test view, generating only one vNode
(like the vNode “Illness”), or have several instances,
giving rise to several vNodes denoted by classi, (the
subscript represents the number of the instance of this
vNode). For example, the vNodes “Person1”, “Person2”
and “Person3” are three different instances of the same
type of node “Person”.

• View path or vPath: a directed path that relates two
vNodes according to a specific semantic derived from
the relationships of the conceptual data model, which is
indicated by the label vPath semantic. There are two
types of vPaths: allowed and not allowed, which specify
that a vPath can appear or cannot appear in a database,
respectively.

• Mock path: a not completely defined path that relates
two or more vNodes. The testing objective is not
focused on any specific path that relates these vNodes,
but it is focused on its existence.

• vPath constraint: a restriction over a group of vPaths,
which constraints whether each one can, cannot or must
appear at the same time in the database. There are three
types of vPath constraints: XOR (represented by “X”)
indicates that only one allowed vPath must appear in the
database; OR (represented by “O”) indicates that several
allowed vPaths can appear at the same time in the
database; AND (represented by “+”) indicates that all
allowed vPaths constrained must appear at the same
time in the database.

• vPath connector (connector, for short): joins a group of
vPaths that are restricted by the same vPath constraint.
A connector can join vPaths that start in the same
vNode or vPaths that end in the same vNode.

10

Person1 X

mother_of

Person2

Person3
mother_of

vPath (not allowed)

(a) a person has only one mother

Person1 O Illness

level:1

level:2

level:3

(b) a person suffers several episodes of the same illness

Illness

O

level:1

Person2

Person3

Person1

level:2

level:3

vPath (allowed)

vPath connector

vPath constraint

vPath semanticvNode label

vNode

mock

path

(c) an illness can be suffered by several people of the same family

Figure 3. Examples of test views

The test view of Figure 3(a) indicates that the vPath between
“Person2” and “Person1” must appear in the database, whereas the
vPath between “Person3” and “Person1” cannot appear. Figure
3(b) indicates several vPaths that represent different severity
levels of an illness. One or more of these vPaths can appear in the
database between an instance of “Person” and an instance of
“Illness”. Finally, the test view of Figure 3(c) indicates that three
different people have suffered an illness with different severity
levels (vPaths from “Illness” to “Person1”, “Person2” and
“Person3”). One or more of these vPaths can appear in the
database. The mock path indicates that there can be family
relationships between “Person1”, “Person2” and “Person3”, but
these relationships are not exactly defined.

After defining the test views, transformations guided by some test
selection criterion can derive automatically the test coverage
items. These test coverage items can be automatically mapped to
executable test cases by means of transformations guided by a test
generation technique.

Our approach allows the tester to define several types of test
views, however, due to the lack of space we only present three
examples.

5. CASE STUDY
To illustrate how our approach can be applied, a real-world
example of a graph database application, called “authorization and
access control” [29], has been used. This application represents
the business of an international communications services

company, which offers its customer organizations the ability of
self-service their accounts. Organization administrators can add
and remove services on behalf of their employees. To ensure that
resources are only seen and changed by the entitled users, a
complex access control system has been designed, considering
different types of permissions and hierarchy structures among
organizations. The conceptual data model of the database is
depicted in Figure 4.

Administrators are assigned to one or several groups, and these
groups have several permissions against the organizational
structure. Each organization can be the parent of several
organizations, with their own employees and accounts to manage.
The permissions defined among groups and organizations are: (1)
allowed_inherit allows administrators within the group to manage
the accounts of both the organization and its children; (2)
allowed_do_not_inherit allows the administrator with the group
to manage the organization, but not its children; (3) denied
forbids administrators with a group to manage the organization
and its children. The access control system also establishes a
permission precedence, because an administrator can be a member
of two groups within different permissions against the same
organizations. So, the permission denied takes precedence over
allowed_inherit, and allowed_do_not_inherit prevails over
denied.

The system specification defines three queries to find all
accessible accounts for an administrator (shown in Figure 5), to
determine whether an administrator has access to an account and
to find all administrators for an account.

Organization

Type

- type

CHILD_OF

PERMISSION* *
origin

* 0..1
Admin MEMBER_OF*

origin

Group*

origin

Account

WORKS_FOR

Employee

*

1
origin

HAS_ACCOUNT

1 *origin

Figure 4. Conceptual data model of the “authorization and access control” application

11

START admin=node:administrator(name={administratorName})

MATCH paths=(admin)-[:MEMBER_OF]->()-[:ALLOWED_INHERIT]->()

 <-[:CHILD_OF*0..3]-(company)<-[:WORKS_FOR]-(employee)

 -[:HAS_ACCOUNT]->(account)

WHERE NOT ((admin)-[:MEMBER_OF]->()-[:DENIED]->()<-[:CHILD_OF*0..3]-(company))

RETURN employee.name AS employee, account.name AS account

UNION

START admin=node:administrator(name={administratorName})

MATCH paths=(admin)-[:MEMBER_OF]->()-[:ALLOWED_DO_NOT_INHERIT]->()

 <-[:WORKS_FOR]-(employee)-[:HAS_ACCOUNT]->(account)

RETURN employee.name AS employee, account.name AS account

Figure 5. Cypher query for finding all accessible accounts for an administrator

First, we designed several test views, according to the system
specification. One of them can be seen in Figure 6: a group can
have different permissions against different organizations, which
have a hierarchical structure. The “void” permission indicates that
the group does not have an explicit permission against
“Organization4”. The objective of this test view is to test the
inheritance of the different types of permissions.

Group O

denied

allowed

_inherit

allowed_do
_not_inherit

void

Organization1

Organization2

Organization3

Organization4

Figure 6. Test view of the “authorization and access control”

application

Then, we transformed the test views into the test coverage items
using a script that implements a combinatorial technique based on
permutations without repetition. For example, for the test view of
Figure 6 the script carried out permutations without repetition
over the vNodes related by the mock path to generate different
hierarchical orders between them. As a result, 24 test coverage
items were generated automatically. Two of these test coverage
items are shown in Figure 7. Note that the mock paths are now
directed paths to indicate the particular hierarchical structure
represented by the test coverage item.

From the test coverage items, we generated the test database,
considering the specific graph database (Neo4j in our case [27]).

Group

allowed

_inherit

allowed_do

_not_inherit

void

Organization2

Organization4

Organization1
denied

Organization3

(a)

Group

allowed_do
_not_inherit

allowed
_inherit

void

Organization3

Organization4

Organization1
denied

Organization2

(b)

Figure 7. Test coverage items of the “authorization and access

control” application

Figure 8 shows the nodes and relationships that were introduced
into the test database to cover the test coverage items of Figure 7.
The nodes “G1”, “O1”, “O2”, “O3” and “O4” (and their
relationships) cover the test coverage item of Figure 7(a), while
the nodes “G1”, “O5”, “O6”, “O7” and “O8” (and their
relationships) cover the test coverage item of Figure 7(b). The
other nodes and relationships were used to conform to the
conceptual data model. Finally, we generated the test code that
was executed against the SUT using the languages Cypher and
Java. At present, the test database and the test code are generated
by hand, however both tasks will be automated in the future.

12

allowed
_inherit

allowed_do
_not_inherit

A1 G1

allowed_do_
not_inherit

allowed
_inherit

member_of

Administrator Group Organization Employee Account

denied

denied

child_of

E6

O3

O1

O2

O5

O6

E5

E3

E2

E1
works_for

E7

AC6

AC5

AC3

AC2

AC1
has_account

AC7O7

O4

O8 E8 AC8

E4 AC4

Figure 8. Extract of the test database of the “authorization and access control” application

The execution of the test cases, which take as input the test
database generated, reported that “A1” has access to the accounts
“AC1”, “AC2“, AC3”, “AC5”, “AC6” and “AC7”, but should
“A1” have access to the accounts “AC3”, “AC6” and “AC7”? We
do not know because the system specification does not indicate
the preference between the allowed_inherit and the
allowed_do_not_inherit permissions. So, the test cases detected a
fault. If the observed output is equal to the expected output, the
specification has a fault because it is incomplete. If the observed
output is not equal to the expected output, both the specification
and the implementation have a fault.

6. CONCLUSIONS AND FUTURE WORK
We have presented an approach to test graph database
applications. This approach defines a test model taking into
account the conceptual data model of the SUT and the system
specification. The test model is composed of several test views
that represent the important features of the SUT to be tested. To
automate the generation of test cases from the test model we have
proposed a framework that places MBT in the MDA context.

The results of the case study show that the test cases obtained
from the test model reported that an administrator had access to
some resources that could be forbidden (the system specification
is not complete). An incomplete specification can cause defects in
the applications, as developers could make erroneous assumptions
about what the system must do; the increase of costs, since new
code could be developed, and of course tested, when the omission
is detected; and even the dissatisfaction of the customers, as the
system does not meet their needs.

Future work includes several avenues. On the one hand, the
definition of test selection criteria that consider the characteristics
of the test views to derive the test coverage items and the
development of techniques to generate executable test cases for
graph database applications. Furthermore, the elaboration of the
test views could be partially automated to represent different
strategies and patterns of features that should be tested. At
present, the generation of test coverage items has been automated,

however other aspects can be automated, such as the
transformations between the other models. As part of future work,
we will define transformations between models that allow
automating the process and we will develop a tool implementing
the framework proposed.

7. ACKNOWLEDGMENTS
This work was supported by projects TIN2013-46928-C3-1-R,
funded by the Spanish Ministry of Science and Technology, and
GRUPIN14-007, funded by the Principality of Asturias (Spain)
and ERDF funds.

8. REFERENCES
[1] Alves, E.L.G., Machado, P.D.L., Ramalho, F. 2014.

Automatic generation of built-in contract test drivers.
Software and Systems Modelling, 13(3), 1141-1165.

[2] Barmpis, K., Kolovos, D.S. 2014. Evaluation of
Contemporary Graph Databases for Efficient Persistence of
Large-Scale Models. Journal of Object Technology, 13(2),
pp 3:1-26.

[3] Binnig, C., Kossmann, D., Lo, E. 2008. MultiRQP -
Generating test databases for the functional testing of OLTP
applications. In Proceedings of the 1st International

Workshop on Testing Database Systems.

[4] Blanco, R., Tuya, J., Seco, R.V. 2012. Test adequacy
evaluation for the user-database interaction: a specification-
based approach. In Proceedings of the 5th International

Conference on Software Testing, Verification and

Validation, pp. 71-80.

[5] Busch, M., Chaparadza, R., Dai, Z., Hoffmann, A., Lacmene,
L, Ngwangwen, T., Ndem, G., Ogawa, H., Serbanescu, D.,
Schieferdecker, I., Zander-Nowicka,J. 2006. Model

transformers for test generation from system models.
Technical report, Fraunhofer FOKUS,Germany and Hitachi
Central Research Laboratory Ltd., Japan.

13

[6] Ciccozzi, F., Cicchetti, A., Siljamäki, T, Kavadiya, J. 2010.
Automating test cases generation: from xtuml system models
to qml test models. In Proceedings of International

Workshop on Model-Based Methodologies for Pervasive and

Embedded Software, pp. 9–16.

[7] Chays, D., Deng, Y., Frankl, P.G., Dan, S., Vokolos, F.I.,
Weyuker, E.J. 2004. An AGENDA for testing relational
database applications. Software Testing, Verification and

Reliability, 14(1), 17-44.

[8] Dai, Z.R. 2004. Model-driven testing with UML 2.0. In
Proceedings of the Second European Workshop on Model

Driven Architecture, pp. 179-187.

[9] de la Riva, C., Suárez-Cabal, M.J., Tuya, J. 2010. Constraint-
based test database generation for SQL queries. In
Proceedings of the 5th International Workshop on

Automation of Software Test, pp. 67-74.

[10] Emmi, M., Majumdar, R., Sen, K. 2007. Dynamic Test input
generation of database applications. In Proceedings of the

International Symposium on Software Testing and Analysis,
pp. 151-162.

[11] Fujiwara, S., Munakata, K., Maeda, Y., Katayama, A.,
Uehara, T. 2011. Test data generation for web application
using a UML class diagram with OCL constraints.
Innovations in Systems and Software Engineering, 7(4), 275-
282.

[12] Gardikiotis, S.K., Malevris, N. 2009. A Two-folded Impact
Analysis of Schema Changes on Database Applications.
International Journal of Automation and Computing, 6(2)
109-123.

[13] Garg, D., Datta A. 2012. Test Case Priorization due to
Database Changes in Web Applications. In Proceedings of

the 5th International Conference on Software Testing,

Verification and Validation, pp. 726-730.

[14] Halfond, W.G.J., Orso, A. 2006. Command-form coverage
for testing database applications. In Proceedings of the 21st

IEEE/ACM International Conference on Automated

Software Engineering, pp. 69-80.

[15] Kapfhammer, G.M., Soffa, M.L. 2003. A family of test
adequacy criteria for database-driven applications. In
Proceedings of the 9th European Software Engineering

Conference held jointly with 11th ACM SIGSOFT Int’l

Symposium on the Foundations of Software Engineering, pp.
98-107.

[16] Kapfhammer, G.M., Soffa M.L. 2008. Database-aware test
coverage monitoring. In Proceedings of the 1st India

Software Engineering Conference, pp. 77-86

[17] Kapfhammer, G.M., McMinn, P., Wright, C.J. 2013. Search-
Based Testing of Relational Schema Integrity Constraints
Across Multiple Database Management Systems. In
Proceedings of the 6th International Conference on Software

Testing, Verification and Validation, pp. 31-40.

[18] Khalek, S.A., Elkarablieh, B., Laleye, Y.O., Khurshid, A.
2008. Query-aware test Generation using a relational
constraint solver. In Proceedings of the 23rd IEEE/ACM

International Conference on Automated Software

Engineering, pp. 238-247.

[19] Lamancha, B.P., Reales, P., García, I., M. Polo, Piattini, M.
2009. Automated Model-based Testing using the UML

Testing Profile and QVT. In Proceedings of the 6th

International Workshop on Model-Driven Engineering,

Verification and Validation, pp. 1-10.

[20] Lamancha, B.P, Reales P., Polo M., Caivano, D. 2011.
Model-driven testing: transformations from test models to
test code. In Proceedings of the 6th International Conference

on Evaluation of Novel Approaches to Software

Engineering, pp. 121-130.

[21] Leavitt, N. 2010. Will NoSQL databases live up to their
promise? IEEE Computer, 43(2) 12-14.

[22] Liu, Y., Li, Y., Wang, P. 2010. Design and implementation
of automatic generation of test cases based on model driven
architecture. In Proceedings of the 2nd International

Conference on Information Technology and Computer

Science, pp. 344-347.

[23] Lo, E., Binnig, C., Kossmann, D., Özsu, M.T., Hon, W.K.
2010. A framework for testing DBMS features. The VLDB

Journal, 19(2), pp. 203-230.

[24] Marcozzi, M., Vanhoof, W., Hainaut, J.L. 2013. A relational
symbolic execution algorithm for constraint-based testing of
database programs. In Proceedings of the 13th International

Working Conference on Source Code Analysis and

Manipulation, pp. 179-188.

[25] McMinn, P., Wright, C.J., Kapfhammer, G.M. 2015. An
Analysis of the Effectiveness of Different Coverage Criteria
for Testing Relational Database Schema Integrity
Constraints. Technical Report CS-15-01, University of
Sheffield.

[26] Moniruzzaman, A.B.M., Hossain, S.H. 2013. NoSQL
Database: New Era of Databases for Big data Analytics-
Classification, Characteristics and Comparison. International

Journal of Database Theory and Application, 6(4) 1-14.

[27] Neo4J, http://neo4j.com

[28] NoSQL databases, http://nosql-database.org

[29] Robinson, I., Webber, J., Eifrem, E. 2013. Graph databases.
O’Reilly.

[30] Schieferdecker, I. 2012. Model-based testing. IEEE Software

29, 14-18.

[31] Tuya, J., Suárez-Cabal M.J., de la Riva, C. 2006.
SQLMutation: a tool to generate mutants of SQL database
queries. In Proceedings of the Second Workshop on

Mutation Analysis.

[32] Tuya, T., Suárez-Cabal, M.J., de la Riva, C.2007. Mutating
database queries. Information and Software Technology,
49(4) 398-417.

[33] Tuya, T., Suárez-Cabal, M.J., de la Riva, C. 2010. Full
predicate coverage for testing SQL database queries.
Software Testing Verification and Reliability, 20(3) 237-288.

[34] Utting, M., Pretschner, A., Legeard, B. 2012. A taxonomy of
model-based testing approach. Software Testing, Verification

and Reliability, 22(5) 297-312.

[35] Willmor, D., Embury, S.M. 2005. Exploring test adequacy
for database systems. In Proceedings of the 3rd UK Software

Testing Research Group, pp. 123-133.

[36] Willmor, D., Embury, S.M. 2006. Testing the
implementation of business rules using intensional database

14

tests. In Proceedings of Testing: Academic & Industrial

Conference on Practice and Research Techniques, pp. 115-
126.

[37] Wright, C.J., Kapfhammer, G.M., McMinn, P. 2013.
Efficient Mutation Analysis Of Relational Database Structure
Using Mutant Schemata And Parallelisation. In Proceedings

of the 6th International Conference on Software Testing,

Verification and Validation Workshops, pp. 63-72.

[38] Zander, J., Dai, Z.R., Schieferdecker, I., Din, G. 2005. From
U2TP models to executable tests with TTCN-3 - an approach
to model driven testing. In Testing of Communicating

Systems. LNCS 3502, pp.289-303.

[39] Zhou, C., Frankl, P. 2011. JDAMA: Java Database
Application Mutation Analyzer. Software Testing,

Verification and Reliability, 21(3), 241-263.

15

EvoSE: Evolutionary Symbolic Execution

Mauro Baluda
Fraunhofer SIT

Darmstadt, Germany
mauro.baluda@sit.fraunhofer.de

ABSTRACT
Search Based Software Testing (SBST) and Symbolic Exe-
cution (SE) have emerged as the most effective among the
fully automated test input generation techniques. However,
none of the two techniques satisfactorily solves the problem
of generating test cases that exercise specific code elements,
as it is required for example in security vulnerability testing.

This paper proposes EvoSE, an approach that combines
the strengths of SBST and SE. EvoSE implements an evo-
lutionary algorithm that searches the program control flow
graph for symbolic paths that traverse the minimum number
of unsatisfiable branch conditions. Preliminary evaluation
shows that EvoSE outperforms state-of-the-art SE search
strategies when targeting specific code elements.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Verification

Keywords
Test automation, search-based software testing, symbolic
execution

1. INTRODUCTION
Test automation has the potential to drastically reduce

the cost of quality assurance in software development. With
this motivation, a great amount of research has been devoted
in particular to the problem of generating test input values
that thoroughly exercise a software system. Search Based
Software Testing (SBST) and Symbolic Execution (SE) are
two of the most popular approaches to generate test suites
automatically [1].

The problem of finding an input that exercise a specific
code element and the dual problem of proving that a code

element is infeasible are well known undecidable problems. To
avoid wasting resources towards infeasible goals, most recent
SBST and SE approaches aim to maximize code coverage
measures instead of focusing on specific code elements [4,
7]. EvoSE instead aims to generate test cases targeting
specific code elements as this is required, for example, in
security testing where one wishes to exploit a presumable
vulnerability or test the validity of an assertion.

A number of goal oriented SE search strategies have been
proposed to address the problems of testing software patches,
improve code coverage and exploiting security vulnerabili-
ties [12, 13, 14]. These approaches employ ad hoc heuristic
to rank the program branches that should be expanded first
in the next SE iterations with the goal of reaching quickly
the target code elements. EvoSE instead implements a meta-
heuristic exploration of the program execution space thus
overcoming the well known limitations of deterministic best-
first search algorithms.

EvoSE follows the recent line of work that combines SBST
and SE approaches to benefit from their complementary
strengths and weaknesses [17, 3, 8, 5]. However, instead of
searching in the numeric space of program inputs, EvoSE
considers the combinatorial space of the program execu-
tion paths. Metaheuristic algorithms have been successfully
applied in the context of combinatorial problems like the
traveling salesman problem and software model checking [11,
9]. To the best of our knowledge, EvoSE is the first approach
that investigates the use of evolutionary algorithms to guide
the exploration of symbolic execution paths.

2. THE EVOSE APPROACH
EvoSE is a novel test generation approach that combines

SBST and SE aiming to exercise specific program elements.
The main departure from existing SBST approaches is the
identification of a different search space. While classic SBST
techniques perform a search in the input space of a program,
EvoSE considers the space of the program execution paths
that may lead to the target program element.

Classic SBST techniques try to minimize a fitness function
that measures the distance between the concrete execution
and the target code element, this is because most of the pro-
gram inputs produce executions that do not reach the target
code element. Instead EvoSE considers the program execu-
tion paths that reach the target code element in the program
Control Flow Graph (CFG). The CFG is an approximation
of the program behavior and also includes infeasible paths,
that is, paths that cannot be executed under any program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

A-TEST’15, August 30-31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3813-4/15/08...$15.00

http://dx.doi.org/10.1145/2804322.2804325

16

input. In essence, EvoSE implements a search in the CFG
for feasible program paths that reach the target code element.

Evolutionary algorithms come in different forms, we de-
signed EvoSE as a memetic algorithm, a metaheuristic al-
gorithm that combines a classic Genetic Algorithm (GA)
with systematic local optimization. In the following we de-
scribe the EvoSE design and in particular we focus on the
problem representation, the fitness function, the crossover
and mutation operators, and finally on the systematic local
search algorithm. The description as well as the current
implementation are limited to the intraprocedural case.

2.1 Problem Representation
EvoSE searches for feasible paths in the program CFG.

The individuals that compose the evolving population are
represented by variable-length lists of branches that are con-
tiguous in the CFG graph. Each list begins with the program
entry point and ends with the target program element. The
initial population of candidate solutions is seeded performing
random walks in the CFG.

1: int s=read();

2: for(int i=0; i < s; i++) {

3: if(i > 100) {

4: exit(ERROR);

5: } else {

6: ...

7: }

8: }

9: exit();

(a) Example program

2

3

4

6

Ind2Ind1

9

CFG

2

3

4 4

3

2

6

3

(b) CFG of the program in Figure 1a and two individuals
of the GA population Ind1 and Ind2

PC1: i=0 && i<s && i>100
PC2: i=0 && i<s && i<=100 && i+1<s && i+1>100

(c) Path conditions of the GA individuals in Figure 1b

Figure 1: Example EvoSE problem

As an example, consider the code in Figure 1a and the
corresponding CFG in Figure 1b. The CFG nodes are la-
beled by the corresponding line numbers in the code, dashed
lines represents CFG portions that can be ignored as they
cannot be part of a path reaching the target node 4. In this
program, the only feasible path that reaches the target is
one that enters the loop 100 times. The two infeasible paths
encoded by the individuals Ind1 and Ind2, constitute the
initial population of the GA, they enter the loop one time
and two times respectively.

2.2 Fitness Function
It is well known that metaheuristic search techniques per-

form better when the search landscape is smooth, that is,
when elements that are nearby in the search space have
similar fitness values [6]. For this reason, state of the art
SBST techniques employ fitness functions that combine two
different metrics: approach level and branch distance. The
approach level is a discrete distance value that is computed
by counting the nodes that separate the exercised path and
the target element in the program CFG. The branch distance
is a smooth measure that, considering the branch with the
smallest approach level, tells how far the execution went from
taking the opposite side of the conditional (the interested
reader can refer to [15] for more details). Similarly, the fitness
function adopted in EvoSE is not a binary value that tells
if the considered execution path is feasible or not, but is in-
stead a continuous value obtained by performing a Dynamic
Symbolic Execution (DSE) of the program along that path.

Classic SE allows to map a certain program execution path
to a program input, if it exists, that produces an execution
following the same path. This can be achieved automatically
by solving the conditions that appear on the path with the
help of an SMT solver. EvoSE uses a MaxSMT solver and
can therefore obtain a smoother measure of how far the path
is from being feasible. Given a list of constraints, MaxSMT
solvers identify the largest subset of elementary constraints
that is satisfiable. The fitness function is computed dynami-
cally by executing the program along the desired path using
as input the solution provided by the MaxSMT.

EvoSE guarantees that the dynamic symbolic execution
follows the desired path by forcing the concrete evaluation of
branch conditions in the style of execution hijacking [16]. The
symbolic evaluation of branch conditions instead is computed
as usual. EvoSE defines a graded feasibility measure by
counting the number of branches that are not in the subset
identified by MaxSMT, this measure is used to direct the
search towards maximally satisfiable paths and eventually
identify feasible execution paths. Graded feasibility can be
regarded as a replacement for the approach level metric.
EvoSE computes the classic branch distance measure for
each unsatisfiable branch along the execution and normalizes
it according to the formula proposed by Arcuri in [2].

In summary, given an execution path p, the fitness value
f(p) that needs to be minimized is the sum of the path’s
graded feasibility grad feas(p) and the normalized branch
distance b dist(p, bi) for all the branch conditions bi that
are not satisfied by the MaxSMT solution maxsmt(p) to the
symbolic constraints collected for path p:

f(p) = grad feas(p) +
∑

bi /∈maxsmt(p)
norm(b dist(p, bi))

(1)

17

Consider the GA individuals Ind1 and Ind2 in Figure 1b.
Both their respective path conditions PC1 and PC2 reported
in Figure 1b are infeasible and their MaxSMT solutions
contains all but the last branch condition (represented with
a bold line). Both the individuals have therefore graded
feasibility 1. The branch distance however is smalled for P2
because the value of i is 0 and thus the expression i + 1 is
closer to 100 compared to i. This matches our intuition that
an execution that gets closer to executing the loop 100 times
should be favored in the population evolution.

The fitness function used in EvoSE, while being closely
related to the classic branch distance, is computed for each
unsatisfied condition along the path and not only for the
branch that is closest to the target code element. For this
reason, the genetic algorithm favors individuals that con-
tain a large number of jointly-satisfiable branch conditions,
independently of their position in the path. In light of Gold-
berg’s building block hypothesis, we suggest that sequences of
jointly-satisfiable branch conditions constitute the fundamen-
tal building blocks of the optimal, fully satisfiable, execution
path.

2.3 Crossover Operator
Cut and splice is a typical choice as a one-point crossover

operator for individuals of variable length like the paths in a
graph. Given two individuals of the form A|B (list A followed
by list B) and C|D, the new offsprings will have the form A|D

and C|B respectively.
To guarantee that the newly generated offsprings encode

existing paths in the CFG, EvoSE combines cut and splice
with a repair strategy that uses the CFG to connect part A of
the first individual with the longest possible postfix of part D
of the second individual. In the example from Figure 1, the
crossover operator could try to join the prefix [2,3] of Ind1
with the postfix [3,6,3,4] of Ind2. Such crossover produces
the path [2,3,3,6,3,4] which is not a valid path and needs to
be repaired.

The repair strategy would use the CFG to reconnect the
two sub-paths and would produce the individual Ind3 that
encodes the path [2,3,6,3,6,3,4]. If connecting the last branch
in the prefix of Ind1 to the first branch in the postfix of Ind2
is not possible, the repair strategy would consider the next
branch in the postfix of Ind2. Eventually the process will
produce a valid individual as Ind1 and Ind2 share at least
the last branch, that is, the target code element.

2.4 Mutation Operator
The EvoSE mutation operator selects randomly a branch

in the individual and replaces it with the paired branch in the
CFG. This produces an individual that encodes an execution
path in which one branch condition evaluates differently
respect to the original individual. Consider Ind3 from the
previews paragraph, the mutation operator might decide for
example to replace branch 4 with the paired branch 6 (the
execution of branch 4 or 6 being the two possible outcomes
of the evaluation of the condition at line 2).

As for the case of the crossover operator in Section 2.3,
the individual obtained after the mutation might not encode
a valid CFG path. This is the case in our example where the
mutated path would end on branch 6 and not on the target
branch 4. The repair strategy described earlier is finally
used to reconnect branch 6 to branch 4 producing the valid
individual Ind4 that encodes the path [2,3,6,3,6,3,6,3,4].

2.5 Local Search
GA can be very effective in finding solutions that ap-

proximate the global optimum but might miss some local
optimization opportunity due to their stochastic nature. To
overcome this limitation, memetic algorithms combine GA
with deterministic local optimization [10].

For a given notion of neighborhood, a local search is per-
formed by systematically evaluating all the neighbors of a
candidate solution, retaining the individual with the best
fitness. The process is repeated until no further improvement
is possible. In our problem representation we could identify
as neighbor of a given individual, any individual produced
by flipping one of the conditions along the path, that is,
any individual that can be obtained by a single application
of the mutation operator defined in Section 2.4. This defi-
nition however produces a very large neighborhood that is
impractical for a deterministic local search.

In EvoSE we included a local search strategy that visits
all the neighbors that can be obtained by replacing one of
the infeasible branches along the individual’s execution path.
We called this simple strategy regret minimization and we
applied it as a fourth genetic operator operator after selec-
tion, crossover and mutation. Our preliminary evaluation
showed that regret minimization is effective in improving
the optimization process and does not affect negatively the
EvoSE performance.

Consider again the individual Ind1 from Figure 1b. The
only unsatisfied condition in the encoded path is the last one:
i>100. Flipping this condition produces the individual Ind2
that has a better fitness then Ind1 as the only unsatisfied
condition (i.e. i+1>100) leads to a smaller branch distance.

3. PRELIMINARY EVALUATION
We implemented EvoSE with the help of the open source

evolutionary algorithms framework DEAP 1 and the sym-
bolic execution engine CREST 2. We implemented the evo-
lutionary operators described in Section 2 using the DEAP
infrastructure . We modified CREST to symbolically execute
(possibly) infeasible paths using execution hijacking, inte-
grate the MaxSMT solver Yices 3, and compute the fitness
function from Equation 1.

1: extern char *curr_ptr;

2: GetKeyword(char *kw) {

3: char word[KWDSLEN+1];

4: char ch=getchar(curr_ptr);

5: int i=0;

6: while((isalnum(ch)||ch==’_’) && i<KWDSLEN) {

7: word[i++]=ch;

8: ch = getchar(curr_ptr);

9: }

10: word[i]=0;

11: if(strcmp(kw, word) == 0) {

12: printf("TARGET!");

13: }

14: }

Figure 2: A two-pass text parser.

1 https://deap.readthedocs.org
2 https://code.google.com/p/crest
3 http://yices.csl.sri.com

18

We evaluated EvoSE on the function GetKeyword that
implements a two-pass text parser. A simplified version of
the parser code is in Figure 2. The function execution reaches
the target branch at line 12 when the keyword pointed by the
variable kw is found on the input buffer pointed by curr_ptr.
The loop at lines 6—9 filters out the input characters that
are not alphanumeric.

From our experience, it is very hard for classic SE to gener-
ate an input buffer that reaches line 12. This is because the
decision at line 11 depends from which branch was traversed
earlier at line 6. Only characters that are alphanumeric in
fact, can match the alphanumeric keyword kw, this relation
however cannot be observed by an analysis that explores
paths independently. In EvoSE, paths that correspond to in-
puts with many alphanumeric characters will produce smaller
fitness values due to the small branch distance at line 11 and
will therefore be favored in the evolutionary process.

We compared EvoSE against the different SE search strate-
gies implemented by CREST. We used keywords kw of vari-
able lengths and limited the execution time to 60 minutes for
each of the experiments. We found that EvoSE could discover
keywords of length up to 50 characters while CREST could
only identify keywords up to 4 characters long. The anal-
ysis of the results revealed that EvoSE needed to generate
paths over 1000 branches long to reach the target line, such
depth analysis of the symbolic execution space is normally
considered out of reach. These first empirical results indicate
that evolutionary algorithms can be effective in directing the
exploration of SE paths towards target program elements.

4. CONCLUSION
EvoSE is a novel, goal-oriented test generation technique

that combines SBST and SE. The core of the technique is a
metaheuristic search strategy to efficiently explore program
executions paths. Preliminary experimental results indicate
that EvoSE can be more effective then classic SE strategies
in producing test inputs that exercise specific code elements.

Future research directions include the extension of the
genetic operators to the interprocedural case, the investi-
gation of alternative population seeding strategies and a
thorough evaluation of the EvoSE effectiveness, in particular
for problems arising in the context of security testing.

5. REFERENCES
[1] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B.

Cohen, W. Grieskamp, M. Harman, M. J. Harrold, and
P. Mcminn. An orchestrated survey of methodologies for
automated software test case generation. J. of Systems
and Software, 86(8):1978–2001, 2013.

[2] A. Arcuri. It really does matter how you normalize the
branch distance in search-based software testing.
Software Testing, Verification and Reliability,
23(2):119–147, 2013.

[3] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia,
P. McMinn, P. Tonella, and T. Vos. Symbolic
search-based testing. In Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International Conference
on, pages 53–62, Nov 2011.

[4] M. Baluda, P. Braione, G. Denaro, and M. Pezzè.
Enhancing structural software coverage by incrementally
computing branch executability. Software Quality
Journal, 19(4):725–751, 2011.

[5] P. Dinges and G. Agha. Solving complex path conditions
through heuristic search on induced polytopes. In
Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
FSE 2014, pages 425–436, New York, NY, USA, 2014.
ACM.

[6] A. E. Eiben and J. E. Smith. Introduction to
Evolutionary Computing. SpringerVerlag, 2003.

[7] G. Fraser and A. Arcuri. Whole test suite generation.
IEEE Transactions on Software Engineering, 39(2):276
–291, feb. 2013.

[8] J. P. Galeotti, G. Fraser, and A. Arcuri. Improving
search-based test suite generation with dynamic
symbolic execution. In IEEE International Symposium
on Software Reliability Engineering, 2013.

[9] P. Godefroid and S. Khurshid. Exploring very large state
spaces using genetic algorithms. In J.-P. Katoen and
P. Stevens, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 2280 of
Lecture Notes in Computer Science, pages 266–280.
Springer Berlin Heidelberg, 2002.

[10] H. Ishibuchi, T. Yoshida, and T. Murata. Balance
between genetic search and local search in memetic
algorithms for multiobjective permutation flowshop
scheduling. Evolutionary Computation, IEEE
Transactions on, 7(2):204–223, April 2003.

[11] P. Larrañaga, C. Kuijpers, R. Murga, I. Inza, and
S. Dizdarevic. Genetic algorithms for the travelling
salesman problem: A review of representations and
operators. Artificial Intelligence Review, 13(2):129–170,
1999.

[12] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks.
Directed symbolic execution. In Proceedings of the 18th
International Conference on Static Analysis, SAS’11,
pages 95–111, Berlin, Heidelberg, 2011. Springer-Verlag.

[13] P. D. Marinescu and C. Cadar. Katch: High-coverage
testing of software patches. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 235–245, New
York, NY, USA, 2013. ACM.

[14] S. Sidiroglou-Douskos, E. Lahtinen, N. Rittenhouse,
P. Piselli, F. Long, D. Kim, and M. Rinard. Targeted
automatic integer overflow discovery using goal-directed
conditional branch enforcement. SIGPLAN Not.,
50(4):473–486, Mar. 2015.

[15] N. Tracey, J. Clark, K. Mander, and J. McDermid. An
automated framework for structural test-data generation.
In Proceedings of the 13th IEEE International
Conference on Automated Software Engineering, ASE
’98, Washington, DC, USA, 1998. IEEE Computer
Society.

[16] P. Tsankov, W. Jin, A. Orso, and S. Sinha. Execution
hijacking: Improving dynamic analysis by flying off
course. In Proceedings of the 2011 Fourth IEEE
International Conference on Software Testing,
Verification and Validation, ICST ’11, pages 200–209,
Washington, DC, USA, 2011. IEEE Computer Society.

[17] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte.
Fitness-guided path exploration in dynamic symbolic
execution. In Proceedings of the 39th Annual IEEE/IFIP
International Conference on Dependable Systems and

Networks (DSN 2009), pages 359–368, June-July 2009.

19

Testing Data Transformations in MapReduce Programs
Jesús Morán

University of Oviedo
Computer Science Department

Campus de Viesques, Gijón, Spain
(+34) 985 18 2153

moranjesus@lsi.uniovi.es

Claudio de la Riva
University of Oviedo

Computer Science Department
Campus de Viesques, Gijón, Spain

(+34) 985 18 2664

claudio@uniovi.es

Javier Tuya
University of Oviedo

Computer Science Department
Campus de Viesques, Gijón, Spain

(+34) 985 18 2049

tuya@uniovi.es

ABSTRACT

MapReduce is a parallel data processing paradigm oriented to

process large volumes of information in data-intensive

applications, such as Big Data environments. A characteristic of

these applications is that they can have different data sources and

data formats. For these reasons, the inputs could contain some

poor quality data that could produce a failure if the program

functionality does not handle properly the variety of input data.

The output of these programs is obtained from a number of input

transformations that represent the program logic. This paper

proposes the testing technique called MRFlow that is based on

data flow test criteria and oriented to transformations analysis

between the input and the output in order to detect defects in

MapReduce programs. MRFlow is applied over some MapReduce

programs and detects several defects.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification –

Validation

General Terms

Reliability, Verification.

Keywords

Software Testing, Data Flow Testing, MapReduce programs.

1. INTRODUCTION
The MapReduce paradigm [11] is based on the "divide and

conquer" principle, which is the breaking down (Map) of a large

problem into several sub-problems (Reduce). MapReduce is used

in Big Data and Cloud Computing to process large data. The unit

of program information is a <key, value> pair, where the value

has data relative to the sub-problem identified by the key. The

program output is the result of a series of transformations about

the input information stored in the <key, value> pairs.

The quality in MapReduce programs is important due to their use

in critical sectors, like health (ADN alignment [27]) or security

(image processing in ballistics [17]). Software testing is one of the

industrial practices most used to ensure quality. In recent years

testing technique research has advanced [6], but few efforts have

been focused on massive data processing like MapReduce [8].

These paradigms have new challenges in the field of testing

[23][21][29], and some authors [15][26] estimate respectively that

3% and 1.38%-33.11% of MapReduce programs do not finish.

Another MapReduce issue is that in some scenarios the developers

create several subprograms with a few transformations instead of

creating one program [26]. In these scenarios, the subprograms

take more resources and underperform in comparison with a

whole program.

On the other hand, a study about the MapReduce field has

discovered that 84.5% of faults are due to data processing [19]. In

order to detect these defects, this paper proposes a testing

technique that analyzes the program transformations which could

produce the failures. The testing technique named MRFlow

(MapReduce data Flow) is based on data flow test criteria [25].

The program functionality is represented by means of program

transformations, and then the test cases are derived from these

transformations in order to test the functionality. Firstly, a

program graph is elaborated with information about the program

transformations, then the paths under test are extracted

representing the transformations, and finally each path under test

is tested with different data (empty, not empty, valid, non-valid,

with emission of result and without emission of result). The main

contributions of this paper are (1) a testing technique specifically

tailored to test MapReduce programs in order to detect defects,

and (2) the application over two popular case studies.

The rest of the paper is organized as follows: the MapReduce

paradigm, data flow test criteria and the related work are

summarized in Section 2. Next, Section 3 describes the MRFlow

testing technique, the elaboration of the graph in Subsection 3.1

and the derivation of test cases in Subsection 3.2. In Section 4

MRFlow is applied to two programs and reveals some defects.

Finally, Section 5 contains the conclusions.

2. BACKGROUND
The MRFlow testing technique is based on data flow criteria that

analyze the evolution of variables in MapReduce programs. In

Subsection 2.1 the MapReduce paradigm is summarized, data

flow test criteria basis is in Subsection 2.2, and the related work is

described in Subsection 2.3.

2.1 MapReduce
The MapReduce paradigm solves a problem by splitting it into

sub-problems that can run in parallel. Fundamentally, MapReduce

has two functions: Map that splits the problem into sub-problems,

and Reduce which solves each sub-problem. Both functions

handle <key, value> pairs, where key is the identifier of each sub-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

A-TEST’15, August 30-31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3813-4/15/08...$15.00

http://dx.doi.org/10.1145/2804322.2804326

20

problem and the value corresponds to some data relative to that

sub-problem. The Map function receives the data input and emits

a <key, value> pair, then the Reduce function receives <key,

list(values)> pairs that contain all the information about each sub-

problem, and finally solves it with a <key, value> pairs.

Consider as an example a program that counts the number of

occurrences of each word in a text. This problem is divided into as

many sub-problems as there are different words, then each sub-

problem only counts the occurrences of one word and the key is

that word. The goal of the program is to count, so the value

should contain information relative to the counting of the word,

then the value contains a number of occurrences. For example, if

the input texts are “hi Hadoop” and “hi”, the Map function emits

<hi, 1>, <Hadoop, 1> and <hi, 1>. Then there are two sub-

problems, so the Reduce function receives <Hadoop, 1> and <hi,

[1,1]> and emits <Hadoop, 1>, <hi, 2> which is the number of

occurrences of each word in the texts.

The MapReduce programs are often used in Big Data programs

[28], which process large data (Volume), with a necessary

performance (Velocity) and with different types of data, data from

different sources, and data without apparently a data model such

as for example emails or videos (Variety). To handle this data a

parallel and fault tolerant infrastructure is necessary, for this

reason typically the MapReduce programs run over frameworks,

excelling Hadoop [1] due to its impact on corporations [2].

2.2 Data Flow Test Criteria
The goal of data flow test criteria is to derive tests through the

analysis of program variables. Several testing techniques are

based on data flow, for example to test web applications through

the analysis of state variables [5]. Data flow is a structure testing

technique [4] created from the program P. A control flow graph

G(P) is created from the program, where the edges represent each

statement, and the vertices indicate the following possible

statements. In addition to the graph, the definition and uses of

every variable are determined [25]. In a node n∈N, when a value

is assigned to the variable v∈V, the variable v is defined and the

representation is DEF(v,n). If the variable v is in a predicate of a

condition (i.e., if (v)), then the representation is P-USE(v,n), and

in other uses of v the representation is C-USE(v,n). For example,

in the statement a = b+1, a is defined and b is used.

2.3 Related Work
Several testing approaches exist over the MapReduce programs,

but most of them are focused on testing the performance

[16][14][9] and few are oriented to testing the functionality, that

is the goal of this paper. A classification of testing in Big Data is

proposed by Gudipati et al. [13]. On this point Camargo et al. [7]

and Morán et al. [22] elaborate a classification of defects, and

Csallner et al. [10] test one defect automatically based on a

symbolic execution framework. Another defect can be detected in

compilation time by Dörre et al. [12]. In order to create test

inputs, Mattos [20] develops a bacteriological algorithm

supported by a function created by the tester, and Li et al. [18]

design a test framework which validates the large database

procedures. Our paper is different from other studies in the sense

that it obtains the test cases from the program transformations

systematically.

3. MRFLOW TESTING TECHNIQUE
The MapReduce program logic is represented by the

transformations of keys and values into the program output. In

these transformations, the keys and values can be transformed into

one variable, this variable can be transformed into another, and so

on until the final output.

Usual data flow test criteria like "all-du-paths" analyzes the

definitions and uses of each variable, but does not consider the

transformations between variables in enough degree of detail. In

this sense, the testing technique proposed (MRFlow) analyzes the

transformations from keys and values. This paper focuses on the

Reduce function because it has a large part of the program

functionality, but it can also be applied over the Map function

because both handle key and values. Subsection 3.1 describes the

elaboration of the graph, and the derivation of the test is detailed

in Subsection 3.2.

3.1 Elaboration of MRFlow Graph
In the MRFlow graph, the statements of the program are in the

nodes and each edge represents the next potential statement. In

this graph, as described below, each node also contains

information about the uses of variables coming from

transformations, definition of key/values, and the output.

USE nodes: It contains only the use of a variable var coming

from a key/value transformation. A transformation occurs when a

variable is formed by information coming from key, part of key,

all/part of values, a unique value or combinations of the above. A

sequence of these elements of keys and values is labeled in the

node and represents a transformation between the input key/values

variable and another variable.

Given a variable var, a statement n and a transformation seq, P-

USE-TRANS(var, n, seq) is defined when variable var is used in

the conditional statement n and comes from a transformation seq;

and C-USE-TRANS(var, n, seq) when var is used in a non-

conditional statement. The seq label contains the transformation

of var in a sequence of key/values with conjunction and

disjunction connectors. The conjunction connector indicates

that a transformation exists with both elements of the sequence,

and the disjunction connector indicates that several

transformations exist, one for each part of the sequence. For

example, P-USE-TRANS(var, 6, (key value) key) means that

the variable var is used in the conditional statement 6 with two

possible transformations, one is formed by the key and value, and

the other only by the key. Because the transformation can be

formed by parts of key/values, the seq sequence uses the following

expressions:

 Key transformations:

- [K]: Transformation over the whole key. For example: var

= key, or var = key.length().

- Ki: Transformation over the part i of key. Sometimes the

key is composed of several elements. For example if the

program should obtain the counting of every word in

every year, the key is the compound of word and year. A

transformation that involves the key part "word" (Kword)

could be: var = getWord(key).

21

Figure 1. MRFlow graph of WordCount program.

.

0 Reduce (Key key, List values){

1 sum = 0;

2 while (values.hasNext()){

3 sum += values.next();

4 }

5 emit(key, sum);

6 }

0 DEF-K(key, 0) DEF-V(values, 0)

P-USE-TRANS(values, 2, [V])

EMIT({key}, {sum}, 5)

C-USE-TRANS(key, 5, [K])

C-USE-TRANS(sum, 5, [V])

C-USE-TRANS(values, 3, [V])

1

2

5 3

 Values transformations:

- [V]: Transformation over several values. For example: var

= values[0] + values[1].

- V: Transformation over one value. For example: var =

values.next().

 Values transformations with categories: The Reduce function

could receive several values of a different nature and handle

them in a different way. Such different values are considered a

category and could come from different Map functions, a

different data source or contain very different information. For

example, a SPAM detector that receives several types of

messages as a values (sms and email) has two categories:

V:sms and V:email. The character of the sms and email, and

the processing in the program is very different, so there are

two categories.

- [V:cat]: Transformation over several values of cat

category. For example, the statement var = values[0] +

values[1] could be a [V] transformation, but if values[0]

and values[1] are from category sms, then the

transformation is [V:sms].

- V:cat: Transformation over one value of cat category. For

example: if(isSms(values[0])) var = values[0].

DEF nodes: It contains the assignation of new content in the

input key or in the list of values. Given a variable var and a

statement n, DEF-K(var, n) is defined when new content is

assigned to the variable var in the statement n, and var is the input

key variable. DEF-V(var, n) is defined when var is the input

list(values) variable.

Emit Nodes: The Reduce output is emitted by a special statement

in <key, value> pairs. Given the variables {k1,k2,…km}, the

variables {v1,v2,…,vp} and a statement n, EMIT({k1,k2,…km},

{v1,v2,…,vp}, n) is defined when the n emits a <key, value> pair,

the key is created by the variables {k1,k2,…km}, and the value by

{v1,v2,…,vp}.

As an example consider the Reduce function of Wordcount

program [3] that counts the occurrences of each word. Figure 1

illustrates the MRFlow graph. The Reduce function receives a

word as a key, and a list of numbers of occurrence as values, for

instance <hello, [1,1,1]> means that the word “hello” has 3

occurrences in the text. In this program, the variables key, values

and sum come from a transformation of key/values input variables.

If the statement 3 is reached the values variable is transformed

into sum by the addition of all values [V], but in other cases

values is not transformed. The graph contains in node 0 the

definition of key and values. The node 1 is empty because the sum

variable is not created from key/values at this point. The node 2

contains a conditional statement of values variable. In node 3

there is a transformation of values in sum, and finally in node 5

the output, which contains key and sum, is emitted. The program

does not combine key and values in any variable, and each value

only represents the number of occurrences, so the program has

neither categories nor connectors in the sequence of

transformation (seq label).

3.2 Derivation of Test Cases
The goal of MRFlow is to derive tests in order to analyze the

different key/value transformations with or without categories. In

MRFlow graph, the paths under test start in definition of key/value

and finish in each possible last transformation of such variables.

Unlike data flow test criteria where each path is covered by a test

case, in MRFlow for each path under test several situations to be

covered (test coverage items) are defined and represent the

transformations which are the goal of the test cases. Then the test

cases are designed to cover the test coverage items in the path

under test.

Transformation paths (tp): The paths under test, called

transformation paths (tp), are extracted from transformations

between input and output in MRFlow graph. One tp is created

between each DEF-K/DEF-V node and C-USE-TRANS/P-USE-

TRANS of each last transformation of key or list(values). In the

case of DEF-K/DEF-V to P-USE-TRANS(var, n, seq), instead of

creating one tp, several tp are created following all of the next

nodes after the conditional statement n, as in other data flow test

criteria [25]. For example, the transformations and tp of

WordCount [3] program are represented in Figure 2. The program

has 5 tp obtained from the transformation between values and sum

(tp1), the non-existence of values transformations (tp2, tp3 and tp4)

and the non-existence of key transformations (tp5). The values

variable is defined in node 0 and the last transformations are sum

and values depending on whether statement 3 is reached or not.

The sequence of transformation (seq label) between values and

sum is [V] because it involves all values. In the case of key there

is no transformation, so key is the last transformation. Finally, the

transformation paths are obtained between DEF-K/DEF-V and C-

USE-TRANS/P-USE-TRANS of last transformations. In the case of

P-USE-TRANS like P-USE-TRANS(values, 2, [V]), one tp is

created following the next nodes after node 2, that is node 3 (tp2)

and node 5 (tp3).

Test coverage items: Each tp represents the transformations and

the uses of transformation variables. Depending on the type of

transformation (key, part of key, values, value or combination)

22

Figure 2. Example of transformation paths (tp) in WordCount program.

.

Values
[V]

sum

DEF-V

KeyDEF-K

C-USE-TRANS(sum, 5, [V]) tp1: 0→…→3→…→5→…

C-USE-TRANS(key, 5, [K]) tp5: 0→...→5→...

Values
P-USE-TRANS(values, 2, [V])

tp3: 0→...→2→5→...

tp2: 0→...→2→3→...

C-USE-TRANS(values, 3, [V]) tp4: 0→...→3→...

tp

tp
5

30

3

5
2

3

0

0 5

several situations have to be tested. These situations (test coverage

items) are usual in these types of programs and for each tp are

defined next:

 Existence of information: tp created with empty data or non-

empty data. Depending on the type of transformation (seq

label in MRFlow graph) can occur:

- If tp contains [V]: for each category cat, the

transformation is created with cat data, or without cat

data.

- If tp contains [K]: the transformation is created with data

in all key, or with empty data for each part of key.

 Validation: tp created with valid data or non-valid data.

Depending on the type of transformation (seq label in

MRFlow graph) can occur:

- If tp contains [V]: for each category cat, the

transformation is created with valid cat data, or non-valid

cat data.

- If tp contains [K]: the transformation is created with valid

data in all key, or with non-valid data for each part of key.

 Output: tp reaches EMIT node or not.

Consider the Reduce function in the WordCount example (Figure

1). The test cases are designed in order to cover the test coverage

items in each tp. For example, the test coverage items in all tp:

"transformation with non-empty data", "with valid data" and "with

output emission", can be covered by a test case with Reduce input

<hi, [1,1]> which means that the word "hi" is repeated twice. In

order to cover the other test coverage items (transformation with

non-valid key, with empty values, and so on), new test cases have

to be created, but it is possible that some test coverage items

cannot be covered, as for example "Transformation without output

emission" in all tp of WordCount because the EMIT node is

always reached.

4. CASE STUDIES
In order to explore the applicability of the testing technique,

MRFlow is applied over two popular programs: WordCount [3]

which counts the occurrences of each word in a text, and

IPCountry [24] which counts the number of IPs (Internet Protocol

addresses) in each country. The goal of both programs is to count

elements represented by the key. Further, in both programs the

value is a list of numbers and the functionality consists of adding

the elements of the lists. In WordCount the key is each word and

the value represents the occurrence of the word, and in IPCountry

the key is each country and the value represents the existence of

IPs associated with the country.

For each program an MRFlow graph is created, from which the tp

are extracted, then the test coverage items are derived, and finally

the test case is created. The information of each step is

summarized in Table 1, and in brackets is the information relative

to the key transformations and values transformations. The first

part focuses on the MRFlow graph, the second part summarizes

the test coverage items, and in the third part the test case results

Table 1. Summary of program features and test results

 WordCount (Reduce) IPContry (Reduce)

Number of transformations 3 (Key:1, Values:2) 3 (Key:1, Values:2)

DEF-K/DEF-V nodes 2 (Key:1, Values:1) 2 (Key:1, Values:1)

C-USE-TRANS nodes 3 (Key:1, Values:2) 5 (Key:2, Values:3)

P-USE-TRANS nodes 1 (Key:0, Values:1) 1 (Key:0, Values:1)

EMIT nodes 1 2

Transformation paths (tp) 5 (Key:1, Values:4) 6 (Key:2, Values:4)

Test coverage items 30 (Key:6, Values: 24) 30 (Key:6, Values:24)

Number of test cases 2 2

Test coverage items covered 16 (Key:4, Values:12) 16 (Key:4, Values:12)

Test coverage items not covered 14 (Key:2, Values:12) 14 (Key:2, Values:12)

23

are described. In the MRFlow graph of both programs, the <key,

list(value)> input variables has one definition and the program

contains 3 transformations: transformation of values into another

variable, no values transformation and no key transformation.

Then the C-USE-TRANS/P-USE-TRANS are created from these

variables: 1 P-USE-TRANS in each program, 3 C-USE-TRANS in

WordCount and 5 in IPCountry. In the graph, finally, the EMIT

nodes are created from each emission statement.

From the above graph, the transformation paths (tp) are obtained,

and then for each tp the test coverage items are derived. The

Wordcount has 5 tp and IPCountry has 6 tp, but in both cases

there are 30 test coverage items.

It is not possible to cover 14 of the test coverage items due to

some program constraints such as it is impossible to create values

with empty content, the node EMIT is always reached, and so on.

The rest of the test coverage items, 16, are covered with two test

cases: <hi, [1,1]> and <hello,, [1,1]> (hello with a comma) for

WordCount, and <Spain, [1,1,1]> and <###, [1,1,1]> for

IPCountry.

The test cases detect two defects because of the non-validation of

key. If WordCount program receives "hello, hello, hello", the

expected output is hello:3, but the real output is hello:1, hello,:2

because the Reduce function receives an invalid key "hello," that

is not a word. In IPCountry the program fails when it receives a

non-country as key, for example Reduce receives <###, [1,1,1]>

in the test case and the expected output is nothing because "###"

can be an unexpected log/exceptional data but it is not a country.

The two defects found in the programs are caused by the non-

validation of input data together with exceptional/non-valid data.

In these two programs, MRFlow allows to test the functionality

with a few test cases that cover many test coverage items.

5. CONCLUSIONS
The MapReduce development and programs contain characteristic

defects such as the incorrect validation or incorrect processing of

different types of data. These defects produce a failure when the

key or the values contain some data that is not correctly processed

in the MapReduce programs. In this work, the testing technique

MRFlow is introduced in order to test the MapReduce programs.

MRFlow is based on data flow test criteria and analyzes the

program transformations under several situations to cover. This

testing technique is applied over two popular programs and with

two test cases covers several situations in the transformations

which reveal one defect in each program. The faults are caused by

the non-validation of key, but MRFlow in other programs could

detect other defects relative to the transformations of keys and

values.

As future work we plan to apply MRFlow in more programs and

to automate the technique in areas such as test coverage items, the

execution of test cases, the derivation of test cases or the graph on

which these test cases are derived.

6. ACKNOWLEDGMENTS
This work was supported in part by project TIN2013-46928-C3-

1-R, funded by the Spanish Ministry of Science and Technology,

and GRUPIN14-007, funded by the Principality of Asturias

(Spain) and ERDF funds.

7. REFERENCES
[1] Hadoop: open-source software for reliable, scalable,

distributed computing. http://hadoop.apache.org/ Accessed

May, 2015.

[2] Institutions that are using hadoop for educational or

production uses. http://wiki.apache.org/hadoop/PoweredBy

Accessed May, 2015.

[3] Wordcount 1.0.

http://hadoop.apache.org/docs/r2.7.0/hadoop-mapreduce-

client/hadoop-mapreduce-client-

core/MapReduceTutorial.html#Example:_WordCount_v1.0

Accessed May, 2015.

[4] IEEE draft international standard for software and systems

engineering–software testing–part 4: Test techniques, 2014.

[5] Alshahwan, N., and Harman, M. State aware test case

regeneration for improving web application test suite

coverage and fault detection. In Proceedings of the 2012

International Symposium on Software Testing and Analysis

(2012), ACM, pp. 45–55.

[6] Bertolino, A. Software testing research: Achievements,

challenges, dreams. In 2007 Future of Software Engineering

(2007), IEEE Computer Society, pp. 85–103.

[7] Camargo, L. C., and Vergilio, S. R. Classicação de defeitos

para programas mapreduce: resultados de um estudo

empírico. In AST - 7th Brazilian Workshop on Systematic

and Automated Software Testing (2013).

[8] Camargo, L. C., and Vergilio, S. R. Mapreduce program

testing: a systematic mapping study. In Chilean Computer

Science Society (SCCC), 32nd International Conference of

the Computation (2013).

[9] Chen, Y., Ganapathi, A., Griffith, R., and Katz, R. The case

for evaluating mapreduce performance using workload

suites. In Modeling, Analysis & Simulation of Computer and

Telecommunication Systems (MASCOTS), 2011 IEEE 19th

International Symposium on (2011), IEEE, pp. 390–399.

[10] Csallner, C., Fegaras, L., and Li, C. New ideas track: testing

mapreduce-style programs. In Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European conference on

Foundations of software engineering (2011), ACM, pp. 504–

507.

[11] Dean, J., and Ghemawat, S. Mapreduce: simplified data

processing on large clusters. Communications of the ACM

51, 1 (2008), 107–113.

[12] Dörre, J., Apel, S., and Lengauer, C. Static type checking of

hadoop mapreduce programs. In Proceedings of the second

international workshop on MapReduce and its applications

(2011), ACM, pp. 17–24.

[13] Gudipati, M., Rao, S., Mohan, N. D., and Gajja, N. K. Big

data: Testing approach to overcome quality challenges. Big

Data: Challenges and Opportunities (2013), 65–72.

[14] Huang, S., Huang, J., Dai, J., Xie, T., and Huang, B. The

hibench benchmark suite: Characterization of the mapreduce-

based data analysis. In Data Engineering Workshops

(ICDEW), 2010 IEEE 26th International Conference on

(2010), IEEE, pp. 41–51.

[15] Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P. An

analysis of traces from a production mapreduce cluster. In

24

Cluster, Cloud and Grid Computing (CCGrid), 2010 10th

IEEE/ACM International Conference on (2010), IEEE,

pp. 94–103.

[16] Kim, K., Jeon, K., Han, H., Kim, S.-g., Jung, H., and Yeom,

H. Y. Mrbench: A benchmark for mapreduce framework. In

Parallel and Distributed Systems, 2008. ICPADS’08. 14th

IEEE International Conference on (2008), IEEE, pp. 11–18.

[17] Kocakulak, H., and Temizel, T. T. A hadoop solution for

ballistic image analysis and recognition. In High

Performance Computing and Simulation (HPCS), 2011

International Conference on (2011), IEEE, pp. 836–842.

[18] Li, N., Escalona, A., Guo, Y., and Offutt, J. A scalable big

data test framework. In Software Testing, Verification and

Validation (ICST), 2015 IEEE 8th International Conference

on (2015), IEEE, pp. 1–2.

[19] Li, S., Zhou, H., Lin, H., Xiao, T., Lin, H., Lin, W., and Xie,

T. A characteristic study on failures of production distributed

data-parallel programs. In Proceedings of the 2013

International Conference on Software Engineering (2013),

IEEE Press, pp. 963–972.

[20] Mattos, A. J. d. Test data generation for testing mapreduce

systems. Master’s thesis, Universidade Federal do Paraná,

2011.

[21] Mittal, A. Trustworthiness of big data. International Journal

of Computer Applications 80, 9 (2013), 35–40.

[22] Morán, J., De La Riva, C., and Tuya, J. Mrtree: Functional

testing based on mapreduce’s execution behaviour. In Future

Internet of Things and Cloud (FiCloud), 2014 International

Conference on (2014), IEEE, pp. 379–384.

[23] Nachiyappan, S., and Justus, S. Getting ready for bigdata

testing: A practitioner’s perception. In Computing,

Communications and Networking Technologies (ICCCNT),

2013 Fourth International Conference on (2013), IEEE,

pp. 1–5.

[24] Owens, J. R., Femiano, B., and Lentz, J. Hadoop Real World

Solutions Cookbook. Packt Publishing Ltd, 2013.

[25] Rapps, S., and Weyuker, E. J. Selecting software test data

using data flow information. Software Engineering, IEEE

Transactions on, 4 (1985), 367–375.

[26] Ren, K., Kwon, Y., Balazinska, M., and Howe, B. Hadoop’s

adolescence: an analysis of hadoop usage in scientific

workloads. Proceedings of the VLDB Endowment 6, 10

(2013), 853–864.

[27] Schatz, M. C. Cloudburst: highly sensitive read mapping

with mapreduce. Bioinformatics 25, 11 (2009), 1363–1369.

[28] Sharma, M., Hasteer, N., Tuli, A., and Bansal, A.

Investigating the inclinations of research and practices in

hadoop: A systematic review. In Confluence The Next

Generation Information Technology Summit (Confluence),

2014 5th International Conference- (2014), IEEE, pp. 227–

231.

[29] Sneed, H. M., and Erdoes, K. Testing big data (assuring the

quality of large databases). In Software Testing, Verification

and Validation Workshops (ICSTW), 2015 IEEE Eighth

International Conference on (2015), IEEE, pp. 1–6.

25

Deterministically Testing Actor-Based Concurrent
Software

Piet Cordemans
KU Leuven -

Technology campus Ostend
Zeedijk 101

8400 Ostend, Belgium
piet.cordemans
@kuleuven.be

Eric Steegmans
KU Leuven - Department of

Computer Science
Celestijnenlaan 200A
3000 Leuven, Belgium

eric.steegmans
@cs.kuleuven.be

Jeroen Boydens
KU Leuven -

Technology campus Ostend
Zeedijk 101

8400 Ostend, Belgium
jeroen.boydens
@kuleuven.be

ABSTRACT
Non-deterministic concurrent behavior of software prohibits
the idempotent property of tests. XUnit frameworks tra-
ditionally do not offer support to deal with these concur-
rency issues which reduces the significance of unit testing
concurrent software. In this paper we propose a tool which
supports deterministic testing of concurrent software based
on the Actor model. This tool reveals race conditions and
seamlessly integrates with xUnit-like frameworks. In our
approach, a Coloured Petri Net model is constructed per
test as well as the code under test. This model allows iso-
lation of concurrent behavior from the effective actor state.
Subsequently, the state space is calculated and traces cov-
ering all states are constructed. Corresponding with these
traces our tool issues test runs, guaranteeing full state space
coverage of each test. Moreover, each failed trace can be
backtracked, revealing valuable information concerning the
race condition.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.2 [Software Engineering]: Design Tools and
Techniques—Petri nets

General Terms
Reliability

Keywords
Concurrent software, Deterministic Testing, Actor Model

1. INTRODUCTION
In concurrent software two major issues exist. On the

one hand data races occur when at least two write oper-
ations, access the same memory location concurrently and

are not synchronization operations. On the other hand race
conditions happen when at least two events have multiple
orderings. When the correctness of a program depends on a
specific ordering, the race condition becomes an issue.

Testing concurrent software is considered difficult because
of two conflicting properties. Whereas concurrent software
potentially exhibits non-deterministic behavior, software tests
desirably execute in a deterministic fashion. Yang [11] de-
scribed four challenges to deal with testing concurrent soft-
ware. (1) Detecting unintentional races and deadlock; (2)
forcing a path in the state space to be executed; (3) repro-
ducing test execution; and (4) defining test coverage criteria.

By introducing concurrency, the state space quickly en-
larges, a phenomena called state space explosion [3]. Non-
deterministic behavior is introduced with a conventional sched-
uler as execution of a path in the state space is indeterminate
at run-time in the test. Therefore, it is hard to guarantee
state coverage while testing models of concurrent computa-
tion with mutable shared state.

1.1 Actor Model
The Actor model defines an actor as a concurrent entity

which reacts to messages [2]. Upon receiving a message,
an actor can (1) send a number of messages, (2) create a
number of actors, (3) change its local state or (4) alter the
behavior upon receiving a subsequent message. Messages
received are stored in a mailbox from which the actor selects
a message to react upon. Once a message is selected to be
processed, the actor completes the corresponding action in
a single atomic step. As long as messages are immutable,
these are messages which do not change once created, the
Actor model prevents data races as mutable data is only
accessed in an Actor’s local state. However race conditions
are not prohibited by this model as the ordering of message
handling is non-deterministic.

Lu et al. [9] reported that around one third of the non-
deadlock concurrency bugs are due to a violation of the in-
tended order by the programmer. Therefore, detecting race
conditions requires meticulous testing of the state space, be-
cause these issues might exist in a single path of this state
space.

1.2 Contributions
We expand on the ideas of applying state space explo-

ration and the Actor model in the context of testing concur-
rent software. Our goal is to provide a deterministic testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

A-TEST’15, August 30-31, 2015, Bergamo, Italy
ACM. 978-1-4503-3813-4/15/08...$15.00
http://dx.doi.org/10.1145/2804322.2804327

26

technique for actor-based software which alleviates the ef-
fects of the state space explosion problem. More specifically,
with this paper we tackle the challenges as posed by Yang:

• Allow automated unit tests to detect unintentional
race conditions.

• Construct the state space of unit tests and forcing the
execution of a test to follow a specific path in its state
space.

• Provide information on paths leading to a failing test,
in order to replay the paths of interest.

• Guarantee state coverage in the state space of the test.

Furthermore, we implement a lightweight tool implement-
ing the model which seamlessly integrates with the specific
run-time environment. More specifically, it integrates with
an x-Unit and Actor model framework.

The paper is organized as follows: in section 2 we describe
the model which allows to construct the traces in unit tests
for software based on the Actor model. Then, in section 3
we describe a tool implementing the model.

2. ACTOR STATE SPACE EXPLORATION
In order to deterministically test actors, the state space of

tests must be fully explored. However, to deal with the state
space explosion problem, the concurrent behavior should be
isolated from the state of the actors. This results in a state
space which does not represent the local state managed by
the actors. Rather it only contains the state of actor mail-
boxes and the different actor life cycle states. Once this
state space has been constructed, paths of specific message
ordering are composed.

2.1 Coloured Petri Net of the Actor Model
In our approach, we model the test and actors under test

with a Coloured Petri Net (CPN) [7] model. This CPN
model isolates concurrent behavior of actors and partitions
the state space of the actor system. From this model, the
state space can be constructed, as well as the minimum set
of paths in order to visit each state at least once.

A CPN combines Petri Net (PN) modeling with features of
high level programming languages. Most importantly, CPNs
introduce the concept of a color set and token color which
respectively describes place and token types. This type sys-
tem allows to construct models which are more concise than
regular PNs, while maintaining the possibility to decompose
any CPN to a regular PN. PN models and by extent CPN
models are well suited to model parallel computation, as
their execution semantics are inherently non-deterministic.

Figure 1 represents a simplified CPN model of a single
actor. Idle, mailbox and processing are states, while receive
and return are transitions. Both idle and mailbox contain
a token, respectively the actor state token and the mailbox
token. The mailbox token is a list of messages. The arrows
with annotations between transitions and states describe the
behavior when firing the transition. For instance, when fir-
ing receive, the actor state token of idle is consumed, a mes-
sage is consumed from the mailbox state, while the mailbox
token is returned to the mailbox state and a tuple token of
message and actor state is produced in the processing state.

idle

ACTOR_STATE

()

mailbox

In
MAILBOX

[]

processing

MESGxSTATE

receive

[m = Message]

return

m::box
box

(m,x)

(m,x)

x

x

In

1 1`()

1 1`[]

Figure 1: Simplified CPN model of the Actor model

2.1.1 Isolating Concurrent Behavior
Figure 2 is the generic CPN model of a single actor. Two

tokens are always present in this model, one to depict ac-
tor state, while the other is the representation of its mail-
box. The typical message reception procedure is as follows:
upon reception of a message, a token is added to the mail-
box token. This activates the respective receive transition,
on condition that the actor state token is in the idle state.
Subsequently, the token traverses to the processing state and
is incremented to depict a new local actor state. While the
token resides in the processing state, no other messages will
be processed. After the processing state, the token for actor
state returns to idle which enables the receive transitions to
process a new message. After processing, the four resulting
effects can be defined as follows:

1. Change of local state: local decisions result in a corre-
sponding action. This includes either no continuation
effect or one of the other resulting effects. Neverthe-
less, the local state of the actor does not affect the
state space of concurrent behavior.

2. Change behavior upon reception of a subsequent mes-
sage: by counting the number of received messages the
subsequent concurrent behavior can be selected. How-
ever, the resulting effect does not affect the concurrent
state space.

3. Send X messages: tokens are produced in the respec-
tive mailboxes of the recipients, as shown in the Msg
branch of Figure 2.

4. Create N actors: tokens are produced in the activation
places of the child actors. A token from the activa-
tion and the notAlive place are needed to activate the
transition to the idle place. The activation place is an
input socket in the hierarchical CPN model.

Once the message has been processed, its state on the one
hand is modeled as either:

1. return the state token to the idle state,

2. return the state token to the notAlive state.

On the other hand the continuation behavior has one of
three possible actions:

1. there is no effect on the test entity or any other actor,

27

actor_idle

ACTOR_STATE

actor_process_msg

MESGxSTATE

actor_mailbox

In
MAILBOX

[]

In

actor_activation

In
ACTOR_STATE

actor_process_kill

MESGxSTATE

actor_notAlive

ACTOR_STATE

1`0

mailbox_out

Out
MAILBOX

[]

receive_msg

[m = Msg]

actor_return

become_alive

receive_kill

[m = Kill]

actor_die

(m,x+1)

(m,x)

x

x

m::box

box

x

x

m::box box

(m,x+1)

(m,x)

x

x

1`0

box
m::box

Out

In

1 1`0

1 1`[]

1 1`[]

Figure 2: CPN model of the Actor model

2. generate X tokens in Y mailbox places. With X and
Y integers equal or larger than 1,

3. generate N tokens in M activation places. With N and
M integers equal or larger than 1.

2.2 Hierarchical Test Model
The top level CPN contains all actors involved, the test

actor, and a set of initial messages. The generic CPN model
for actors provides two places accessible from the top level
CPN model. These are the mailbox and activation place.
Tokens are produced in these places from the continuation
transitions of other actors.

Finally, the top level CPN model contains a representa-
tion of the xUnit test definition. This entity initiates the
test and captures the results. Furthermore, the test be-
haves as an actor, because it has an implicit mailbox to
allow message-based communication. Therefore, the CPN
of the test definition is derived from the generic CPN of the
Actor model. The generic CPN actor model can be reduced,
because test actors do not need life cycle management. In-
stead, a test has a place which contains the set of messages
to drive the test. Additionally, this place is represented in
the top level CPN.

2.2.1 Constructing the Test State Space
The state space can be deduced from the test CPN model.

Each state represents a particular set of tokens, state and
message tokens, at the corresponding places. Arcs between
these places are transitions which upon activation reach the
designated state. This is an implementation of the basic al-
gorithm for state space construction as described by Jensen
and Kristensen [7]. This algorithm generates the state space
of concurrent behavior with regard to the test.

However, this set of states might consist of unreachable
states. Namely, some states represent the path of the con-
tinuation of a local decision branch. Due to the test setup,
only a single path is chosen in the set of possible continua-
tions. On account of isolating concurrency from local actor

test_processing

MESGxTEST_STATE

msg_order

INT

1

dst_Mailbox

In/Out
MAILBOX

[]

In/Out

test_mailbox

In/Out
MAILBOX

[]

In/Out

src_Mailbox

In/Out
MAILBOX

[]

In/Out

test_messages

In
INTxMESG

1`(1, Transfer, SRC) ++
1`(2, Balance, DST)

In

receive_message

test_finish

test_execute

(m, t)

(m, n)

n+1

n

n

dst_box

m::box

src_box

if d = SRC
then src_box^^[m]
else src_box

(n, m, d)

if d = DST
then dst_box^^[m]
else dst_box

box

t

1 1`1

1 1`[]

1 1`[]

1 1`[]

2

1`(1,Transfer,SRC)++
1`(2,Balance,DST)

Figure 3: CPN model of the test actor

state, it is impossible to indicate which states cannot been
chosen in the model for concurrent behavior. However, by
considering each state of the set of continuation states as
valid, the effective continuation behavior will be identified
at run-time.

2.3 Deterministic Traces
The purpose of constructing the state space of concurrent

behavior is to determine message ordering in the test. In
this state space, traces are designated to provide coverage
of the state space of the test. Traces are paths in the state
space graph which are chosen deterministically, guaranteeing
coverage and reproducibility. As the number of traces is
proportional to the run-time performance of the tool, the
number of traces per test needs to be minimized.

When considering test coverage, two different viewpoints
can be adopted. First is the coverage of the state space of the
test, i.e. state space coverage with the set of messages and
local actor state as defined by the test. This deals with the
problem of non-deterministic test execution. Furthermore
is the coverage of the test state space as part of the larger
system. Namely which partition of the state space of the
larger system is covered by the test.

2.3.1 State Space Coverage of a Single Test
In order to guarantee determinism in a test with actors,

state coverage of the concurrency state space is sufficient.
Namely, non-determinism is introduced when multiple mes-
sages are bound to arrive at a single actor. Therefore, states
with different message tokens at a mailbox place determine
the effect of this non-determinism. Consequently, the occur-
ring binding element which led to this state is insignificant
for the purpose of identifying race conditions. Furthermore,
outgoing arcs are either the sequential continuation effect of
an actor, or an unrelated event to the current token in the
actor state.

With respect to determinism guarantees, the minimum

28

set of traces to cover all states is proportional to the maxi-
mum number of messages in concurrent execution across all
states. For instance, a test containing only actors forward-
ing a single message, will not contain any non-determinism.
In effect, only a single trace will be generated for this test.
On the other hand, a test with n concurrent messages, effec-
tively leads to n! traces, as n! represents the combinatorial
set of message orderings. In general, in order to cover all
states a minimum set of n! traces will be needed with n be-
ing the maximum number in a concurrency race. In order
to construct these traces, a depth-first search algorithm for
a directed acyclic graph is implemented.

2.3.2 Partitioning the State Space
Tests partition the state space of the system under test.

Namely, a unit test consists of a limited set of actors and
messages. Moreover, unit tests typically focus on a specific
functionality of the system, thus most unit tests only explore
a single logical path. Multiple tests are combined in a test
suite to cover a larger set of states in the state space. This
rationale does not change for concurrent software, however
the strategy of state space exploration relies on the narrow
focus of unit tests to be scalable. Namely, the combinatorial
set of messages in concurrency, n, is defining for the worst
case of the number of traces in the state space. With a
limited set of messages and actors, the resulting set of traces,
is limited, especially when considering the size of the state
space of the system.

3. IMPLEMENTATION
In order to test the CPN model of the Actor model, a

tool called ActorRunner has been developed. ActorRunner
is implemented in Scala with the Akka actors library [6].
The x-Unit test runner of choice is ScalaTest and JUnit [1].

3.1 ActorRunner
The purpose of ActorRunner is to accept a set of traces

and adapt the execution of unit tests to match these traces.
This tool integrates with a conventional x-Unit framework
and seamlessly intercepts and resends messages, in order to
control message ordering. The general structure of this tool
is illustrated in Figure 4.

For each test, ActorRunner starts with a set of traces
which have been derived from the unit test and actors un-
der test. For each trace, ActorRunner issues the x-Unit
framework to run the test anew. Furthermore, ActorRun-
ner instructs the marshal component with a list of states
to conduct the test in a specific message ordering. Follow-
ing these states, the test explores a specific path in the state
space of the test. Finally, the test executes its assertions and
determines whether the test passes or fails. Consequently,
if there are traces which have not been executed yet, Actor-
Runner issues another test run with a different trace. Even-
tually, all the individual test results are aggregated. If a
single trace of the test fails, the test is considered to fail
altogether. Trace information is added to the test report,
to facilitate debugging on the race condition. The coverage
criteria, as defined in Section 2.3.1 ensure that the test runs
deterministically, regardless of processor load, or properties
of the non-deterministic scheduler.

The marshal component is an actor introduced to inter-
cept all messages and resend them in compliance with the
order of trace input. In order to intercept all messages, all

Figure 4: ActorRunner takes a set of traces as input,
schedules N tests and reorders messages as defined
in the trace.

actors are created under supervision of the marshal actor.
Furthermore, once the test sends its first message the test ac-
tor reference is registered. At creation, instead of returning
the real actor reference, a proxy is returned which redirects
all messages to the marshal.

In the marshal all messages are gathered, as well as the
current state in the trace is indicated. As the marshal is an
actor, it acts upon the arrival of messages. Once the set of
conditions have been obtained to advance to the next state,
the marshal component advances. In effect, these conditions
are defined in the following state of the trace. On the one
hand these condition can be reached as messages arrive as
defined in the following state of the trace. On the other
hand one of the actors under test processes a message and
the marshal actor internally continues to the next state.

3.2 Limitations
This approach is limited by the implementation of the

Actor model. Namely, only race conditions can be detected,
while data races should be prohibited by the Actor model
itself. However, should a programmer violate against this
condition, by sharing mutable data, sending mutable mes-
sages or no longer ensuring the Actor behavior as atomic,
the deterministic state space exploration approach will not
be able to detect these concurrency issues or correctly iden-
tify race conditions.

Furthermore, regarding liveness issues, such as deadlock or
livelock, this approach will invoke the conditions leading to
this behavior. However, depending on the properties of the
testing framework, it will likely lead to a time-out, without
any valuable debugging information. In effect, this approach
is ineffective in detecting these issues.

4. RELATED WORK
State space exploration has been introduced by Edelstein

et al. [5]. They proposed to explore the state space by rerun-
ning existing tests, while manipulating thread interleaving.
This technique allows to explore and replay different paths
in the state space of the test. However, their approach suf-
fers from the state space explosion problem, as each atomic
operation can be interleaved. Moreover, each of the test
runs is slowed down by the run-time performance cost of the
multitude of context switches. Therefore, the tool provides
a heuristic solution to detect concurrency problems which
allows configuration of the number of context switches to
explore.

Chess [10] is a tool which conducts state space exploration
for .NET. However, this implementations did not deal with
the state space explosion problem and relied on heuristics to
indicate concurrency problems. Namely the number of ex-

29

plored thread interleaving is limited to constrain the number
of paths explored.

State space exploration has been adopted in Basset [8] for
Actor systems. Lauterburg et al. [8] continued on the idea of
state space exploration. Instead of manipulating thread in-
terleaving on the level of bytecode, they apply it to a higher
level model, more precisely, the Actor model. Lauterburg
et al. decided to build a model checker for actor programs
based on Java Pathfinder [4]. However, instead of focusing
on tests, their tool explores the state space of the whole ac-
tor program. By doing so, the state space explosion problem
deteriorates, and to mitigate this effect, the tool is based on
a heuristic to linearize the set of states. Furthermore, Actor-
Runner does not need to run an adapted JVM which Basset
needs for Java Pathfinder.

5. FUTURE WORK
Firstly, decisions based on local state might change the

concurrent behavior. Consequently, a similar test with dif-
ferent modalities might cover a different state space. Yet,
as part of the concurrent state space analysis, these tests
will partition a part of the state space of the test and even
share some states. This is a possible optimization which
might reduce the number of states and traces. Moreover
when considering the test space over a multiple test span, it
might be possible to indicate concurrency states which are
not covered by the test suite, due to local state. This in-
formation might be included in a coverage report, so that
a tester is aware that the test suite might be lacking some
tests.

Secondly, the deterministic state space exploration ap-
proach requires an extensive case study, within a larger ex-
isting code base. This will allow to prove the feasibility
and scalability of this approach. This will also require that
some steps, such as CPN generation from code become au-
tomated, as described by the scheme in Section 2.1.

6. CONCLUSION
Due to indeterminism, the result of a test run on con-

current software is not reliable. In order to deal with this
problem, this paper described an approach to conduct deter-
ministic state space exploration for the Actor model. This
approach allows to deterministically run a conventional test
suite for concurrent software, as defined by the criteria of
Yang. Coloured Petri Net models of tests isolate the con-
current behavior from the local state of the actors. This
partitions the state space of the system, in which a limited
set of traces allow to cover all states of tests. A marshal ac-
tor is introduced which reorders messaging in tests accord-
ing to the generated traces. By aggregating the results of

all traces, tests become deterministic. We implemented this
approach in a tool called ActorRunner. This tool provides
a proof of concept to introduce a seamless message schedul-
ing system which in the context of unit testing is scalable,
contains valuable debugging information and is effective to
detect race conditions in a deterministic fashion.

7. REFERENCES
[1] Junit.org: Resources for test driven development,

http://www.junit.org/.

[2] G. A. Agha. Actors: a model of concurrent
computation in distributed systems. 1985.

[3] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer,
and S. K. Rajamani. Partial-order reduction in
symbolic state space exploration. In Computer Aided
Verification, pages 340–351. Springer, 1997.

[4] G. Brat, K. Havelund, S. Park, and W. Visser. Java
pathfinder-second generation of a java model checker.
In In Proceedings of the Workshop on Advances in
Verification. Citeseer, 2000.

[5] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for testing multi-threaded java
programs. Concurrency and Computation: Practice
and Experience, 15(3-5):485–499, 2003.

[6] P. Haller. On the integration of the actor model in
mainstream technologies: the scala perspective. In
Proceedings of the 2nd edition on Programming
systems, languages and applications based on actors,
agents, and decentralized control abstractions, pages
1–6. ACM, 2012.

[7] K. Jensen and L. Kristensen. Coloured Petri Nets:
modelling and validation of concurrent systems.
Springer, 2009.

[8] S. Lauterburg, M. Dotta, D. Marinov, and G. Agha. A
framework for state-space exploration of java-based
actor programs. In Proceedings of the 2009
IEEE/ACM International Conference on Automated
Software Engineering, pages 468–479. IEEE Computer
Society, 2009.

[9] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes - a comprehensive study on real world
concurrency bug characteristics. In Architectural
Support for Programming Languages, 2008.

[10] M. Musuvathi, S. Qadeer, T. Ball, G. Basler,
P. Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In Symposium on
Operating Systems Design and Implementation, 2008.

[11] C.-S. D. Yang. Program-based, structural testing of
shared memory parallel programs. PhD thesis,
University of Delaware, 1999.

30

Concurrent Software Testing in Practice:
A Catalog of Tools

Silvana M. Melo, Simone R. S. Souza, Rodolfo A. Silva, and Paulo S. L. Souza
Institute of Mathematics and Computer Sciences, University of São Paulo

Avenida Trabalhador São-carlense, 400 - 13566-590
São Carlos, São Paulo, Brazil

{morita, srocio, adamshuk, pssouza}@icmc.usp.br

ABSTRACT
The testing of concurrent programs is very complex due to
the non-determinism present in those programs. They must
be subjected to a systematic testing process that assists in
the identification of defects and guarantees quality. Although
testing tools have been proposed to support the concurrent
program testing, to the best of our knowledge, no study
that concentrates all testing tools to be used as a catalog
for testers is available in the literature. This paper proposes
a new classification for a set of testing tools for concurrent
programs, regarding attributes, such as testing technique
supported, programming language, and paradigm of develop-
ment. The purpose is to provide a useful categorization guide
that helps testing practitioners and researchers in the selec-
tion of testing tools for concurrent programs. A systematic
mapping was conducted so that studies on testing tools for
concurrent programs could be identified. As a main result,
we provide a catalog with 116 testing tools appropriately
selected and classified, among which the following techniques
were identified: functional testing, structural testing, muta-
tion testing, model based testing, data race and deadlock
detection, deterministic testing and symbolic execution. The
programming languages with higher support were Java and
C/C++. Although a large number of tools have been catego-
rized, most of them are academic and only few are available
on a commercial scale. The classification proposed here can
contribute to the state-of-the-art of testing tools for concur-
rent programs and also provides information for the exchange
of knowledge between academy and industry.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.1.3 [Programming Techniques]: Concurrent Programs

General Terms
Systematic review, Software Testing, Concurrent programs

Keywords
Systematic mapping, Concurrent programs, Testing tools

1. INTRODUCTION
The activities of Verification, Validation, and Testing en-

sure quality of the software. Software testing is the process
of executing a program for finding errors. Mistakes can occur
in the software development process, therefore, the testing
activity should be conducted throughout the software devel-
opment cycle. Different testing phases, namely unit testing,
integration testing, functional testing, system testing and
acceptance testing should be performed. This study focuses
on unit testing tools, in which each system module is tested
separately so that logical and implementation faults can be
found [71].

Testing techniques, such as structural, functional, and
fault-based testing proposed to sequential programs have
been adapted for use in concurrent programs. Other tech-
niques have been developed specially for concurrent programs
and consider features, as non-determinism, synchronization
and communication of concurrent/parallel processes. They
also look on common mistakes found in the concurrent soft-
ware, such as race conditions, deadlocks, livelocks, and atom-
icity violation.

The use of concurrent software has increased, mainly be-
cause of the availability of multicore processors and computer
clusters. Modern business applications use concurrency to
improve the overall system performance, consequently, a va-
riety of testing techniques (and their associated tools) have
been proposed to test concurrent programs. However, no
classification methodology of testing tools that helps the
testing practitioner in the analysis and selection of a tool ad-
equate to their needs has been designed. This paper proposes
a new classification for a set of testing tools for concurrent
programs regarding attributes, such as testing technique,
programming language and paradigm of development. A
useful categorization is provided to guide the tester during
the selection of testing tools for concurrent programs.

The paper is organized as follows: Section 2 presents
the concepts and challenges related to concurrent software
testing; Section 3 provides a catalog with 116 testing tools for
concurrent programs with some of their descriptions; finally,
Section 4 addresses the conclusions and future work.

2. CONCURRENT SOFTWARE TESTING
AND CHALLENGES

Concurrent programming enables a smart use of features

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

A-TEST’15, August 30-31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3813-4/15/08...$15.00

http://dx.doi.org/10.1145/2804322.2804328

31

Figure 1: Example of non-determinism in concurrent programs.

for the increase in efficiency (in terms of time of execution),
avoiding idleness of resources (as it occurs in the sequential
process) and lowering computational costs [32]. However,
some challenges may raise in the testing of such programs.
The non-determinism enables different executions of a pro-
gram with a single input and production of different and
correct outputs. This non-deterministic behavior is due to
communication and synchronization of concurrent (or par-
allel) processes (or threads). Figure 1 shows an example of
non-determinism, in a program composed of four parallel
processes. In Exec1 a race condition occurs between s1 and
s2, related to r1 and r2, and s3 and s4 related to r3 and r4.
Each execution represents a likely synchronization sequence
in the concurrent program. The testing activity identifies all
possible synchronization sequences and analyzes the outputs.
The deterministic execution technique can be used to force
the execution of a sequence for a given input in the presence
of non-determinism [57].

Other features related to communication and synchroniza-
tion between processes (or threads) impose challenges on
concurrent program testing, such as development of tech-
niques for static analysis, detection of errors related to syn-
chronization, communication, data flow, deadlocks, livelocks,
data race, and atomicity violation, adaptation of testing tech-
niques for sequential programming to concurrent programs,
definition of a data flow criterion that considers message
passing and shared variables, automatic test data generation,
efficient exploration of interleaving events, reduction of costs
in testing activities, deterministic reproduction for a given
synchronization sequence, and representation of a concurrent
program that captures relevant information to the test.

Studies in the domain of software testing for concurrent
programs have proposed solutions for such problems and some
testing tools have been developed to support the utilization
of the techniques. The need for the execution and testing
of different synchronization sequences and the deterministic
execution of the program are solutions to this issue. However,
they impose high costs on the testing activity. Regarding
of this, we consider the building of tools to automatize this
activity very promising.

Li et al. [41] propose a taxonomical overview of soft-
ware testing tools for both sequential and concurrent pro-
grams. The classification is based on testing activities and
testing stages. The considered activities were test plan-
ning/designing, test generation, test execution, test adequacy,
test feedback/fault localization, assess readiness and test pro-
cess management. In relation to testing stages, the following

stages are covered: static checking, unit testing, integration
testing, system testing/ maintenance testing. In relation to
concurrent testing, the authors cite just one model checking
tool. Differently, in this paper we present several testing
tools for concurrent programs, mainly for the unit testing
stage.

Muhammad and Labiche [97] conducted and described a
systematic review on state-based testing tools. They pro-
posed a classification of the tools found. The authors high-
light that just a few commercial tools were found in the
review. The authors argue that this happened due the use
of only academic databases for selection of studies. In our
study we face with the same problem, but nevertheless, we
believe that the academic databases are the most reliable
bases for systematic mapping.

3. A CATALOG OF TESTING TOOLS FOR
CONCURRENT PROGRAMS

We conducted a systematic mapping (following the process
defined by Petersen et al. [80]) to identify tools proposed
for testing concurrent programs. The focus of this paper
is not the systematic mapping and, therefore, details about
the mapping are not shown due to space restrictions The
conducted mapping was more extensive, including other re-
search questions (out of scope of this paper). Thus, only
the necessary information to understand how the catalog
was generated is shown here. A search string was defined
with the words “testing”, “concurrent software” and their syn-
onyms. The search was performed in 5 research databases
and 6316 papers were returned, of which 334 were selected.
We identified 116 different testing tools for concurrent pro-
grams. Figure 2 shows the number of testing tools developed
from 1992 to 2014.

We can observe a continuous increase in the number of
papers in this research area. The bubble chart in Figure
3 illustrates the current state-of-the-art of the concurrent
software testing domain in relation to the total number
of tools available for each testing technique proposed and
programming language supported.

Although a large number of supporting tools for concurrent
program testing has been proposed, their maturity level
should be analyzed. Most tools represent concepts proof of
academic proposals, which may be a threat to the validity
of this study that considered only academic data bases to
conduct the search of primary studies. Finding commercial
tools is hard because the vendors offer only user’s manuals

32

Figure 2: Proposition of concurrent testing tools over the years (1992-2014).

Figure 3: Testing tools by testing approach and implementation language.

and case studies with no technique information in scientific
paper for proprietary reasons. The transference of technology
from the academy to the industry still remains a challenge in
the concurrent software testing domain. Therefore, a closer
interaction between the interests of academy and industry
is required so that a feedback loop can be created between
them.

We have defined a set of relevant attributes to classify the
concurrent testing tool selected from the systematic map-
ping. The definition was based on features of the concurrent
programs and information considered relevant for the tester
to select the desired testing tool. The following attributes
were defined: testing technique, paradigm programming, and
language supported. Based on such attributes, we have de-
veloped a catalog of tools for testing concurrent programs,

shown in Table 1. Subsections 3.1 and 3.2 address some most
important tools divided into two groups: one containing
tools that apply testing techniques (functional, structural,
and mutation testing) and another with tools that test spe-
cific characteristics of concurrent programs (model checking,
deadlock and data race detection, deterministic testing, and
symbolic execution).

3.1 Structural Testing Tools
For the structural testing technique, ValiPar [105] sup-

ports the application of control flow and data flow criteria
for concurrent programs in different programming languages
and using different paradigms of development. For programs
that use the message-passing paradigm, ValiPVM [103]
supports the testing of programs in PVM (Parallel Virtual

33

Table 1: A testing tools catalog for concurrent programs
Technique Paradigm Language Tools

Shared
Pthread

ValiPthread [88], DellaPasta
[118]memory

Structural Message MPI ValiMPI [35]
testing passing C Monitoring tool [40], Maple [121]

Pascal Steps [51], Pet [33]
PVM ValiPVM [103]

Both
Ada CATS [120]
Java ValiJava [104], New JLint [5], JML toolset [4]
C Valipar [105]

Shared Java Oshajava [116], Tiddle [86], Ndetermin [10], Race-
Fuzzer [93], Rstest [107]

memory C TMUnit [34], Storm [83], Relaxer[11]
Functional Message MPI ISP-GEM [38]
testing passing Ada TSG [13]

Both

UML TCaseUML [2]
PLINQ SLUG [108]
Ada TCgen [47]
C/C++ ATEMES [49]

Shared Java Javalanche [91], MutMut [30], ConMan [8]
Mutation memory C, C++ Comutation [31], CCmutator [54]
testing Message

MPI ValiMut [100]
passing

Java Vyrdmc [25], Cute [94], Fusion [113], Bandera [21],
TJT [1], TIE [65], SearchBestie [55]

C, C#, Java Chess [70]
Shared C, C++ CDSchecker [74], Inspect [119]
memory C, Pthread Concurrit [9], C2Petri [48], RegressionMaple [110]

Model .Net Gambit [20]
Based C#, Java, D DemonL [115]
testing Message C Magic [14]

passing C, MPI MPI-SPIN [99]

Both
C, C++ VIP [23]
LISP Spin [36]
Java, LTL EDA [106]
Java Droidracer [66], ConEE [76], Carisma [123], Jcute [95],

Concrash [64], Contest [53], Epaj/Eprfj [90], Have
[17], Javapathfinder [112], Omen [87], Penelope [102],
RccJava [27], Enforcer [6], Calfuzzer [92], ConcJunit
[85], Kivati [18]

C, C++ ConMem [3], Ctrigger [79], Light64 [72], Pike [28],
SPin [12], Racez [98], MultiRace [81], ThreadSanitizer
[96], Gadara [114]

Data race Shared C, Pthread MDAT [56]
and memory .Net Colfinder [117], AutoRT/CorrRT [43]
deadlock UPC UPC-Check [22]
detection Fortran Eraser [68]

Message
C, MPI

Marmot [50], MPIRace-Check
[78]passing

C, C++ Dthreads [59], InstantCheck [73], DeSTM [84]
Pthreads Kendo [77], FPDet [124], Synctester [122], DetLock

[69]
Java,C, C++ RichTest [58]
Java Conan [60], IMunit [42], Dejavu [19], SAM [16], Coop-

erari [67], Java PathExplorer [37], TransDPOR [109]
Shared C Direct [15]

Deterministic memory Titanium Titanium [46]
Testing C++, Pthreads RFDet [62]

STM,C,C++ DeTrans [101]
Ruby DPR/TARDIS [63]

Message PVM Viper [75]
passing C, PVM DEIPA [61]

Ada SpyLayer [7], AIDA [24]
C Concrest [26]

Symbolic Shared Java SPF [82], Z3 [44], LCT [45]
execution memory C/C++/Java BEST [29]

C/Pthread MultiOtter [111], CDT-Eclipce [39]

34

Machine) and ValiMPI [35] for programs in MPI (Mes-
sage Passing Interface). For programs that use the shared
memory paradigm, ValiPthread [89] tests programs using
Posix standard for threads (PThreads) and ValiJava [104]
supports the testing of Java concurrent programs. Other
tools, such as STEPS [52] and Dellapasta [118] use a
graphical representation of the program to derive test cases
and apply coverage testing criteria to evaluate the testing
activity. MonitoringTool [40] the coverage of concurrent
programs according to the testing criterion k-tuples of con-
current commands, proposed by the same authors. This
criterion requires implementation of all sequences of k length
concurrent commands. This tool can be applied to concur-
rent C programs and the coverage analysis is achieved by
monitoring of the testing execution. Mechanisms to force the
execution of concurrent commands are implemented on tool.

3.2 Functional Testing Tools
For functional testing technique, OSHAJAVA [116] uses

dynamic analysis to test the specification of concurrent pro-
grams written in Java annotations. The instrumentation of
the bytecode is used to set each “write” operation with the
state of the communication updated and the “read” opera-
tion to check if a method violated or not its specification.
The semantic formalism is used to indicate when a dynamic
operation has violated the specification of an inter-thread
communication, so that the safety properties of multithreaded
programs can be checked. Other tools, such as SLUG [108]
and Ndetermin [10] also use a program specification to
derive test cases and evaluate the testing results.

3.3 Mutation Testing Tools
For mutation testing, MutMut [30] proposes an approach

for an efficient execution of mutants in multithreaded pro-
grams. It uses a technique for the selection of mutants to
be executed. When the original program is executed, the
technique selects points in the code for mutation considering
relevant aspects of the concurrent programs. The approach
also enables the tester to select a thread to be executed,
forcing the mutation introduced to be executed. ConMan
[8] implements a set of mutation operators for concurrent
programs in Java (J2SE 5.0). The mutation operators are
classified into operators that modify critical regions, key-
words, and calls for concurrent methods and operators that
replace concurrent objects. CCmutator [54] implements
those operators as well as new specific mutation operators
for concurrent programs in PThreads. It utilizes the High
Order Mutation technique, in which two or more mutations
are inserted in the program for the creation of strong mu-
tants and improvements in the quality of the testing case
set. Comutation [31] uses selective mutation based on the
mutation operators for concurrent Java programs. Selective
mutation selects a subset of mutation operators in which test
cases that have a high mutation score for this subset also
feature for the other operators. The objective is reduce the
mutation testing cost.

3.4 Model Checking Testing Tools
The model checking technique has been widely used in

concurrent software testing and enables the analysis of sys-
tem properties by a formal model. It can also be used to
explore the state space of a system. Techniques for state
space reduction are used to limit the testing search space.

Inspect [119] uses model checking for concurrent programs
in C language. The exploration of relevant interleavings
is facilitated by the use of an executable model of the in-
strumented version of the program and enables the tool to
communicate with the scheduler. CHESS [70] implements
a model checker to analyze the correctness of concurrent
programs in relation to the expected properties (e.g. inter-
leavings) derived from a test scenario. Testing scenarios are
defined by the tester and explore all possible synchronizations
among threads. Magic [14] analyzes events and states of the
operating system. The temporal logic language LTL (Linear
Temporal Logic) is used to instantiate finite state machines.
Also considering a concurrent system formalized in LTL, it
is proposed SPIN [36] which implements a model checker to
analyze the correctness of concurrent systems in relation to
the properties formally defined. This tool is instantiated for
the MPI pattern, MPISpin [99] and later used as the basis
for verification of concurrent code in Java, Bandera [21].

3.5 Deadlock and Data Race Detection Tools
Carisma [123] implements a data race detector based on

statistic sampling. A program, in a single site of the code,
can perform multiple accesses to the memory, therefore, the
tool uses an analysis of the trace of execution to estimate and
distribute sampling between such locations and collects a
fraction of all memory accesses. The information assists the
tool in detecting data races. In an attempt to prevent data
races, programmers generally write a code that will result
in a deadlock when executed with some inputs, due to the
misuse of synchronization primitives. Some tools, such as
Gadara [114], Marmot [50], and UPC-Check [22] address
the problem of deadlock detection. They analyze the code
and insert delays into it to force the execution of a given
synchronization sequence and then detect the presence of
deadlocks, or monitor the execution through a scheduler of
processes. Javapathfinder (JPF) [112] was developed by
NASA Research Center. It uses model checking to detect
deadlock and data race in Java programs (bytecode). The
user can also define the property classes to be analyzed. JPF
monitors the execution, extracts events (synchronization and
communication) that occur and analyzes them through an
observer process. The observer performs a verification based
on the information of the monitoring and information of an
analysis of error pattern. JPF is especially useful for the
verification of concurrent Java programs due its systematic
exploration of scheduling sequences of threads, which is a
difficult task in traditional testing tools. MPIRace Check
[78] performs data race detection for programs in MPI by
checking the communication messages between the processes.

3.6 Deterministic Testing Tools
Tools are developed for provide threads control and deter-

ministic execution/re-execution in a non-deterministic envi-
ronment. They usually store information about a preliminary
execution (traces) to enable its re-execution, performing the
same synchronization sequence. Dejavu [19] records thread
schedules and the reproduction of a schedule in a controlled
execution. Dthreads [59] ensures deterministic execution,
even in the presence of data race, forcing the program to
produce the same output for each input sequence. SPY-
Layer [7] records and re-runs concurrent or distributed Java
programs, verifying and validating synchronization sequences.
The re-execution is used for error detection.

35

3.7 Symbolic Execution Tools
Symbolic execution is a powerful technique for the explo-

ration of systematic paths of a program with symbolic values
as inputs. MultiOtter [111] uses a symbolic executor to
trace values following the control flow of the program and
conceptually changes the execution if it finds a conditional
dependence of a symbolic value. LCT [45] uses a combina-
tion of dynamic and symbolic executions, known as Concolic
testing, in which the program under testing is executed in a
hybrid way with real test data and symbolic values for the
exploration of different behaviors of the program.

4. CONCLUSIONS
This paper presents a catalog that has addressed the state-

of-the-art of concurrent software testing area. The study
covered the period from 1992 to 2014 and 116 testing tools
were identified and classified into different testing techniques
and programming languages. We strongly believe the catalog
of tools and the other results provided in this study will be
useful for future research and also to help practitioners of
the area in the selection of testing techniques and tools.

The results also show concurrent software testing is still a
domain for new studies and a research trend. In recent years,
researchers have concentrated their efforts mainly on the C/C
++ and Java languages and on techniques for concurrent
context, such as: formal verification techniques, model check-
ing, static and dynamic analysis and deterministic execution.
Many tools implement a testing approach that combines
different testing techniques for increases in the quality of
testing.

In future studies, we aim at the development of an online
iterative catalog with information on all tools identified by
each technique, paradigm, language and others important
attributes. Additional research will be focus on analyses of
the benefits of the catalog to different stakeholders (testing
practitioners, enterprises and researchers) and how such
techniques and tools can be employed to improve higher
software quality.

5. ACKNOWLEDGMENT
This research is sponsored by FAPESP under process no.

2013/05046-9 and 2013/01818-7.

6. REFERENCES

[1] D. Adalid, A. Salmerón, M. D. M. Gallardo, and
P. Merino. Using spin for automated debugging of
infinite executions of java programs. J. Syst. Softw.,
90:61–75, Apr. 2014.

[2] C. ai Sun. A transformation-based approach to gen-
erating scenario-oriented test cases from uml activity
diagrams for concurrent applications. In COMPSAC,
pages 160–167. IEEE Computer Society, 2008.

[3] B. Aichernig, A. Griesmayer, E. Johnsen, R. Schlatte,
and A. Stam. Conformance testing of distributed con-
current systems with executable designs. In F. de Boer,
M. Bonsangue, and E. Madelaine, editors, Formal
Methods for Components and Objects, volume 5751
of Lecture Notes in Computer Science, pages 61–81.
Springer Berlin Heidelberg, 2009.

[4] W. Araujo, L. Briand, and Y. Labiche. On the ef-
fectiveness of contracts as test oracles in the detec-
tion and diagnosis of functional faults in concurrent
object-oriented software. Software Engineering, IEEE
Transactions on, 40(10):971–992, Oct 2014.

[5] C. Artho. Finding faults in multi-threaded programs.
Master’s thesis, Swiss Federal Institute of Technology
ETH Zǔrich, Zǔrich, 2001.

[6] C. Artho, A. Biere, and S. Honiden. Enforcer - efficient
failure injection. In Proceedings of the 14th Interna-
tional Conference on Formal Methods, FM’06, pages
412–427, Berlin, Heidelberg, 2006. Springer-Verlag.

[7] A. Bechini, J. Cutajar, and C. Prete. A tool for testing
of parallel and distributed programs in message-passing
environments. In Electrotechnical Conference, 1998.
MELECON 98., 9th Mediterranean, volume 2, pages
1308–1312 vol.2, May 1998.

[8] J. S. Bradbury, J. R. Cordy, and J. Dingel. Mutation
operators for concurrent java (J2SE 5.0). Workshop
on Mutation Analysis, page 11, 2006.

[9] J. Burnim, T. Elmas, G. Necula, and K. Sen. Concurrit:
Testing concurrent programs with programmable state-
space exploration. In Proceedings of the 4th USENIX
Conference on Hot Topics in Parallelism, HotPar’12,
pages 16–16, Berkeley, CA, USA, 2012. USENIX Asso-
ciation.

[10] J. Burnim, T. Elmas, G. Necula, and K. Sen. Nde-
termin: Inferring nondeterministic sequential specifi-
cations for parallelism correctness. SIGPLAN Not.,
47(8):329–330, Feb. 2012.

[11] J. Burnim, K. Sen, and C. Stergiou. Testing concurrent
programs on relaxed memory models. In Proceedings of
the 2011 International Symposium on Software Testing
and Analysis, ISSTA ’11, pages 122–132, New York,
NY, USA, 2011. ACM.

[12] Y. Cai, W. Chan, and Y. Yu. Taming deadlocks in
multithreaded programs. In Quality Software (QSIC),
2013 13th International Conference on, pages 276–279,
July 2013.

[13] R. Carver and R. Durham. Integrating formal methods
and testing for concurrent programs. In Proceedings
of the Tenth Annual Conference on Computer Assur-
ance, 1995. COMPASS ’95. Systems Integrity, Software
Safety and Process Security., pages 25–33, Jun 1995.

[14] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha. Concurrent software verification with states,
events, and deadlocks. Formal Aspects of Computing,
V17(4):461–483, December 2005.

[15] K. Chatterjee, L. de Alfaro, V. Raman, and C. Sánchez.
Analyzing the impact of change in multi-threaded pro-
grams. In Proceedings of the 13th International Con-
ference on Fundamental Approaches to Software Engi-
neering, FASE’10, pages 293–307, Berlin, Heidelberg,
2010. Springer-Verlag.

36

[16] Q. Chen, L. Wang, and Z. Yang. Sam: Self-adaptive
dynamic analysis for multithreaded programs. In Pro-
ceedings of the 7th International Haifa Verification
Conference on Hardware and Software: Verification
and Testing, HVC’11, pages 115–129, Berlin, Heidel-
berg, 2012. Springer-Verlag.

[17] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller. Have:
Detecting atomicity violations via integrated dynamic
and static analysis. In M. Chechik and M. Wirsing, edi-
tors, FASE, volume 5503 of Lecture Notes in Computer
Science, pages 425–439. Springer, 2009.

[18] L. Chew and D. Lie. Kivati: Fast detection and preven-
tion of atomicity violations. In Proceedings of the 5th
European Conference on Computer Systems, EuroSys
’10, pages 307–320, New York, NY, USA, 2010. ACM.

[19] J.-D. Choi and A. Zeller. Isolating failure-inducing
thread schedules. In Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA ’02, pages 210–220, New York,
NY, USA, 2002. ACM.

[20] K. E. Coons, S. Burckhardt, and M. Musuvathi. Gam-
bit: Effective unit testing for concurrency libraries. In
Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’10, pages 15–24, New York, NY, USA, 2010.
ACM.

[21] J. Corbett, M. Dwyer, and J. Hatcliff. Bandera: a
source-level interface for model checking java programs.
In Software Engineering, 2000. Proceedings of the 2000
International Conference on, pages 762–765, 2000.

[22] J. Coyle, I. Roy, M. Kraeva, and G. Luecke. Upc-
check: a scalable tool for detecting run-time errors in
unified parallel c. Computer Science - Research and
Development, 28(2-3):203–209, 2013.

[23] J. Dingel and H. Liang. Automating comprehensive
safety analysis of concurrent programs using verisoft
and txl. In In Proceedings of the International Sym-
posium on Foundations of Software Engineering ACM
SIGSOFT 2004/FSE12, 2004.

[24] F. E. Eassa, L. J. Osterweil, and M. Z. Abdel Mageed.
Aida: A dynamic analyzer for ada programs. J. Syst.
Softw., 31(3):239–255, Dec. 1995.

[25] T. Elmas and S. Tasiran. Vyrdmc: Driving runtime
refinement checking with model checkers. Electr. Notes
Theor. Comput. Sci., 144(4):41–56, 2006.

[26] A. Farzan, A. Holzer, N. Razavi, and H. Veith.
Con2colic testing. In ESEC/FSE 2013, pages 37–47,
New York, NY, USA, 2013. ACM.

[27] C. Flanagan and S. N. Freund. Type-based race detec-
tion for java. In PLDI ’00, pages 219–232, New York,
NY, USA, 2000.

[28] P. Fonseca, C. Li, and R. Rodrigues. Finding complex
concurrency bugs in large multi-threaded applications.
In EuroSys ’11, pages 215–228, New York, NY, USA,
2011.

[29] M. Ganai, N. Arora, C. Wang, A. Gupta, and G. Bal-
akrishnan. Best: A symbolic testing tool for predicting
multi-threaded program failures. In ASE 2011, pages
596–599, 2011.

[30] M. Gligoric, V. Jagannath, and D. Marinov. Mut-
mut: Efficient exploration for mutation testing of mul-
tithreaded code. In ICST ’10, pages 55–64, Washington,
DC, USA, 2010.

[31] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam.
Selective mutation testing for concurrent code. In
ISSTA 2013, pages 224–234, New York, NY, USA,
2013. ACM.

[32] A. Grama, G. Karypis, V. Kumar, and A. Gupta.
Introduction to Parallel Computing. Addison Wesley,
2o edition, January 2003.

[33] E. L. Gunter and D. Peled. Path exploration tool. In
TACAS ’99, pages 405–419, London, UK, UK, 1999.

[34] D. Harmanci, P. Felber, V. Gramoli, and C. Fetzer. C.:
TMunit: Testing software transactional memories. In
TRANSACT 2009, 2009.

[35] A. C. Hausen, S. R. Vergilio, S. Souza, P. Souza, and
A. Simao. Valimpi: Uma ferramenta para teste de
programas paralelos. In XX SBES, pages 1–6, Floria-
nopolis, SC, 2006.

[36] K. Havelund, M. Lowry, and J. Penix. Formal analysis
of a space-craft controller using spin. IEEE Trans.
Softw. Eng., 27(8):749–765, Aug. 2001.

[37] K. Havelund and G. Rosu. Monitoring java programs
with java pathexplorer. Technical report, 2001.

[38] A. Humphrey, C. Derrick, G. Gopalakrishnan, and
B. Tibbitts. Gem: Graphical explorer of mpi programs.
In ICPPW 2010, pages 161–168, Sept 2010.

[39] A. Ibing. Path-sensitive race detection with partial
order reduced symbolic execution. In Software Engi-
neering and Formal Methods, volume 8938 of Lecture
Notes in Computer Science, pages 311–322. 2015.

[40] E. Itoh, Z. Furukawa, and K. Ushijima. A prototype
of a concurrent behavior monitoring tool for testing of
concurrent programs. In APSEC 1996, pages 345–354,
Dec 1996.

[41] E. M. J. Jenny Li and D. M. Weiss. Software Testing:
Tools, pages 1178–1187. In: Encyclopedia of Software
Engineering Two-Volume Set (Print). Auerbach Publi-
cations, 2010.

[42] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu,
and D. Marinov. Improved multithreaded unit testing.
In T. Gyimothy and A. Zeller, editors, SIGSOFT FSE,
pages 223–233, 2011.

[43] A. Jannesari and F. Wolf. Automatic generation of
unit tests for correlated variables in parallel programs.
International Journal of Parallel Programming, pages
1–19, 2015.

37

[44] K. Kahkonen and K. Heljanko. Testing multithreaded
programs with contextual unfoldings and dynamic sym-
bolic execution. In ACSD 2014, pages 142–151, June
2014.

[45] K. Kähkönen, O. Saarikivi, and K. Heljanko. Lct: A
parallel distributed testing tool for multithreaded java
programs. Electronic Notes in Theoretical Computer
Science, 296:253 – 259, 2013.

[46] A. Kamil and K. Yelick. Enforcing textual alignment
of collectives using dynamic checks. In LCPC’09, pages
368–382, Berlin, Heidelberg, 2010.

[47] T. Katayama, Z. Furukawa, and K. Ushijima. Design
and implementation of test-case generation for concur-
rent programs. In Software Engineering Conference,
1998. Proceedings. 1998 Asia Pacific, pages 262–269,
Dec 1998.

[48] K. M. Kavi, A. Moshtaghi, and D.-J. Chen. Modeling
multithreaded applications using petri nets. Int. J.
Parallel Program., 30(5):353–371, Oct. 2002.

[49] C.-S. Koong, C. Shih, P.-A. Hsiung, H.-J. Lai, C.-H.
Chang, W. C. Chu, N.-L. Hsueh, and C.-T. Yang. Au-
tomatic testing environment for multi-core embedded
software—atemes. Journal of Systems and Software,
85(1):43 – 60, 2012.

[50] B. Krammer, M. S. Müller, and M. M. Resch. Mpi
application development using the analysis tool mar-
mot. In ICCS 2004, volume 3038 of Lecture Notes in
Computer Science, pages 464–471, 2004.

[51] H. Krawczyk and B. Wiszniewski. Systematic testing
of parallel programs. Technical report, Massachusetts
Institute of Technology, 1999.

[52] H. Krawczyk, B. Wiszniewski, P. Kuzora, M. Neyman,
and J. Proficz. Integrated static and dynamic analysis
of pvm programs with steps. Computers and Artificial
Intelligence, 17(5), 1998.

[53] B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar.
Healing data races on-the-fly. In PADTAD ’07, pages
54–64, New York, NY, USA, 2007.

[54] M. Kusano and C. Wang. Ccmutator: A mutation
generator for concurrency constructs in multithreaded
c/c++ applications. In ASE, pages 722–725, 2013.

[55] B. Křena, Z. Letko, T. Vojnar, and S. Ur. A platform
for search-based testing of concurrent software. In 8th
Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging, pages 48–58, 2010.

[56] E. Larson and R. Palting. Mdat: A multithreading
debugging and testing tool. In SIGCSE ’13, pages
403–408, New York, NY, USA, 2013.

[57] Y. Lei and R. H. Carver. Reachability testing of concur-
rent programs. IEEE Trans. Software Eng., 32(6):382–
403, 2006.

[58] Y. Lei and R. H. Carver. Reachability testing of con-
current programs. IEEE Trans. Softw. Eng., 32(6):382–
403, June 2006.

[59] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads:
Efficient deterministic multithreading. In SOSP ’11,
pages 327–336, New York, NY, USA, 2011.

[60] B. Long, D. Hoffman, and P. Strooper. Tool support
for testing concurrent java components. Software En-
gineering, IEEE Transactions on, 29(6):555–566, June
2003.

[61] J. Lourenço, J. C. Cunha, H. Krawczyk, P. Kuzora,
M. Neyman, and B. Wiszniewski. An integrated testing
and debugging environment for parallel and distributed
programs. In EUROMICRO 97, page 291, Budapest,
Hungary, 1997.

[62] K. Lu, X. Zhou, T. Bergan, and X. Wang. Efficient
deterministic multithreading without global barriers.
In PPoPP ’14, pages 287–300, New York, NY, USA,
2014.

[63] L. Lu, W. Ji, and M. L. Scott. Dynamic enforcement of
determinism in a parallel scripting language. In PLDI
’14, pages 519–529, New York, NY, USA, 2014.

[64] Q. Luo, S. Zhang, J. Zhao, and M. Hu. A lightweight
and portable approach to making concurrent failures
reproducible. In FASE’10, pages 323–337, Berlin, Hei-
delberg, 2010.

[65] G. Maheswara, J. S. Bradbury, and C. Collins. Tie:
An interactive visualization of thread interleavings. In
SOFTVIS ’10, pages 215–216, New York, NY, USA,
2010.

[66] P. Maiya, A. Kanade, and R. Majumdar. Race de-
tection for android applications. SIGPLAN Not.,
49(6):316–325, June 2014.

[67] E. R. B. Marques, F. Martins, and M. Simões. Coop-
erari: A tool for cooperative testing of multithreaded
java programs. In PPPJ ’14, pages 200–206, New York,
NY, USA, 2014. ACM.

[68] J. Mellor-Crummey. Compile-time support for effi-
cient data race detection in shared-memory parallel
programs. In PADD ’93, pages 129–139, New York,
NY, USA, 1993.

[69] H. Mushtaq, Z. Al-Ars, and K. Bertels. Efficent and
highly portable deterministic multithreading (detlock).
Computing, 96(12):1131–1147, 2014.

[70] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In OSDI’08, pages
267–280, Berkeley, CA, USA, 2008.

[71] G. J. Myers. The Art of Software Testing. John Wiley
& Sons, New York, 2 edition, 2004.

[72] A. Nistor, D. Marinov, and J. Torrellas. Light64:
lightweight hardware support for data race detection
during systematic testing of parallel programs. In
42st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-42 2009), December 12-16,
2009, New York, New York, USA, pages 541–552, 2009.

38

[73] A. Nistor, D. Marinov, and J. Torrellas. Instantcheck:
Checking the determinism of parallel programs using
on-the-fly incremental hashing. In MICRO-43 2010,
pages 251–262, Dec 2010.

[74] B. Norris and B. Demsky. Cdschecker: Checking con-
current data structures written with c/c++ atomics.
SIGPLAN Not., 48(10):131–150, Oct. 2013.

[75] M. Oberhuber, S. Rathmayer, and A. Bode. Tuning
parallel programs with computational steering and con-
trolled execution. In HICSS 1998, volume 7, pages
157–166 vol.7, Jan 1998.

[76] A. Offenwanger and Y. Lucet. Conee: An exhaustive
testing tool to support learning concurrent program-
ming synchronization challenges. In WCCCE ’14, pages
11:1–11:6, New York, NY, USA, 2014.

[77] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo:
Efficient deterministic multithreading in software. SIG-
PLAN Not., 44(3):97–108, Mar. 2009.

[78] M.-Y. Park, S. J. Shim, Y.-K. Jun, and H.-R. Park.
Mpirace-check: Detection of message races in mpi pro-
grams. In GPC’07, pages 322–333, 2007.

[79] S. Park, S. Lu, and Y. Zhou. Ctrigger: Exposing
atomicity violation bugs from their hiding places. In
ASPLOS XIV, pages 25–36, New York, NY, USA, 2009.

[80] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson.
Systematic mapping studies in software engineering.
In EASE’08, pages 68–77, 2008.

[81] E. Pozniansky and A. Schuster. Multirace: Efficient on-
the-fly data race detection in multithreaded c++ pro-
grams: Research articles. Concurr. Comput. : Pract.
Exper., 19(3):327–340, Mar. 2007.

[82] C. S. Păsăreanu and N. Rungta. Symbolic pathfinder:
Symbolic execution of java bytecode. In ASE ’10, pages
179–180, New York, NY, USA, 2010.

[83] Z. Rakamaric. Storm: static unit checking of con-
current programs. In 32nd International Conference
on Software Engineering, 2010 ACM/IEEE, volume 2,
pages 519–520, May 2010.

[84] K. Ravichandran, A. Gavrilovska, and S. Pande. Destm:
Harnessing determinism in stms for application devel-
opment. In PACT ’14, pages 213–224, New York, NY,
USA, 2014.

[85] M. Ricken and R. Cartwright. Concjunit: unit testing
for concurrent programs. In B. Stephenson and C. W.
Probst, editors, PPPJ, pages 129–132. ACM, 2009.

[86] C. Sadowski and J. Yi. Tiddle: A trace description
language for generating concurrent benchmarks to test
dynamic analyses. In WODA 2009, 2009.

[87] M. Samak and M. K. Ramanathan. Multithreaded
test synthesis for deadlock detection. SIGPLAN Not.,
49(10):473–489, Oct. 2014.

[88] F. S. Sarmanho. Teste de programas concorrentes com
memória compartilhada. Master’s thesis, ICMC/USP,
São Carlos, SP, 2009.

[89] F. S. Sarmanho, P. S. L. Souza, S. R. S. Souza, and
A. S. S. ao. Structural testing for semaphore-based
multithread programs. In ICCS (1), pages 337–346,
2008.

[90] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller.
Automated type-based analysis of data races and atom-
icity. In PPoPP ’05, pages 83–94, New York, NY, USA,
2005. ACM.

[91] D. Schuler and A. Zeller. Javalanche: Efficient muta-
tion testing for java. In ESEC/FSE ’09, pages 297–298,
New York, NY, USA, 2009. ACM.

[92] K. Sen. Effective random testing of concurrent pro-
grams. In ASE ’07, pages 323–332, New York, NY,
USA, 2007.

[93] K. Sen. Race directed random testing of concurrent
programs. In Proceedings of the 2008 ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 08, pages 11–21, New York, NY,
USA, 2008. ACM.

[94] K. Sen and G. Agha. Cute and jcute: Concolic unit
testing and explicit path model-checking tools. In In
CAV, pages 419–423. Springer, 2006.

[95] K. Sen and G. Agha. A race-detection and flipping
algorithm for automated testing of multi-threaded pro-
grams. In E. Bin, A. Ziv, and S. Ur, editors, Haifa
Verification Conference, pages 166–182, 2006.

[96] K. Serebryany and T. Iskhodzhanov. Threadsanitizer:
Data race detection in practice. In WBIA ’09, pages
62–71, New York, NY, USA, 2009. ACM.

[97] M. Shafique and Y. Labiche. A systematic review
of state-based test tools. International Journal on
Software Tools for Technology Transfer, 17(1):59–76,
2015.

[98] T. Sheng, N. Vachharajani, S. Eranian, and R. Hundt.
Racez: A lightweight and non-invasive race detection
tool for production applications. In Proceedings of the
33rd International Conference on Software Engineering,
ICSE ’11, pages 401–410. ACM, 2011.

[99] S. F. Siegel. Verifying parallel programs with mpi-spin.
In F. Cappello, T. Hérault, and J. Dongarra, editors,
PVM/MPI, volume 4757 of Lecture Notes in Computer
Science, pages 13–14. Springer, 2007.

[100] R. A. Silva, S. d. R. S. de Souza, and P. S. L. de Souza.
Mutation operators for concurrent programs in mpi. In
Test Workshop (LATW), 2012 13th Latin American,
pages 1–6, April 2012.

[101] V. Smiljkovic, S. Stipic, C. Fetzer, O. Unsal, A. Cristal,
and M. Valero. Detrans: Deterministic and paral-
lel execution of transactions. In 26th International
Symposium on Computer Architecture and High Per-
formance Computing (SBAC-PAD), 2014, SBAC-PAD
2014, pages 152–159, Oct 2014.

39

[102] F. Sorrentino, A. Farzan, and P. Madhusudan. Pene-
lope: Weaving threads to expose atomicity violations.
In Proceedings of the Eighteenth ACM SIGSOFT In-
ternational Symposium on Foundations of Software
Engineering, FSE ’10, pages 37–46, New York, NY,
USA, 2010. ACM.

[103] P. S. L. Souza, E. Sawabe, A. S. Simao, S. R. Vergilio,
and S. R. S. Souza. ValiPVM - a graphical tool for
structural testing of PVM programs. In A. Lastovetsky,
T. Kechadi, and J. Dongarra, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Inter-
face, volume 5205 of Lecture Notes in Computer Science
(LNCS), pages 257–264. Springer Berlin, Heidelberg,
2008.

[104] P. S. L. Souza, S. R. S. Souza, M. G. Rocha, R. R.
Prado, and R. N. Batista. Data flow testing in con-
current programs with message-passing and shared-
memory paradigms. In ICCS, pages 149–158, 2013.

[105] S. R. S. Souza, S. R. Vergilio, P. S. L. Souza, A. S.
Simão, T. B. Goncalves, A. M. Lima, and A. C. Hausen.
Valipar: A testing tool for message-passing parallel
programs. In SEKE, pages 386–391, 2005.

[106] J. Staunton and J. A. Clark. Applications of model
reuse when using estimation of distribution algorithms
to test concurrent software. In SSBSE’11, pages 97–111,
Berlin, Heidelberg, 2011.

[107] S. D. Stoller. Testing concurrent Java programs us-
ing randomized scheduling. In Second Workshop on
Runtime Verification (RV), volume 70(4), July 2002.

[108] R. Tan, P. Nagpal, and S. Miller. Automated black
box testing tool for a parallel programming library. In
Proceedings of the 2009 International Conference on
Software Testing Verification and Validation, ICST ’09,
pages 307–316, April 2009.

[109] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay,
D. Marinov, and G. Agha. Transdpor: A novel dynamic
partial-order reduction technique for testing actor pro-
grams. In FMOODS/FORTE, volume 7273 of Lecture
Notes in Computer Science, pages 219–234, 2012.

[110] P. Thomson, A. F. Donaldson, and A. Betts. Concur-
rency testing using schedule bounding: An empirical
study. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’14, pages 15–28, New York, NY,
USA, 2014. ACM.

[111] J. Turpie, E. Reisner, J. S. Foster, and M. Hicks. Mul-
tiotter: Multiprocess symbolic execution. Technical
report, 2011.

[112] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test
input generation with java pathfinder. SIGSOFT Softw.
Eng. Notes, 29(4):97–107, July 2004.

[113] C. Wang, M. Said, and A. Gupta. Coverage guided
systematic concurrency testing. In Proceedings of the
33rd International Conference on Software Engineering,
ICSE ’11, pages 221–230, New York, NY, USA, 2011.
ACM.

[114] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and
S. Mahlke. Gadara: Dynamic deadlock avoidance for
multithreaded programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’08, pages 281–294, Berkeley,
CA, USA, 2008. USENIX Association.

[115] S. West, S. Nanz, and B. Meyer. Demonic testing of con-
current programs. In T. Aoki and K. T. 0001, editors,
ICFEM, volume 7635 of Lecture Notes in Computer
Science, pages 478–493. Springer, 2012.

[116] B. P. Wood, A. Sampson, L. Ceze, and D. Gross-
man. Composable specifications for structured shared-
memory communication. In OOPSLA, pages 140–159.
ACM, 2010.

[117] Z. Wu, K. Lu, X. Wang, and X. Zhou. Collaborative
technique for concurrency bug detection. International
Journal of Parallel Programming, 43(2):260–285, 2015.

[118] C. S. D. Yang, A. L. Souter, and L. L. Pollock. All-du-
path coverage for parallel programs. ACM SIGSOFT
Software Engineering Notes, 23:153–162, March 1998.

[119] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A
runtime model checker for multithreaded c programs.
Technical report, 2008.

[120] M. Young, R. N. Taylor, D. L. Levine, K. A. Nies, and
D. Brodbeck. A concurrency analysis tool suite for ada
programs: Rationale, design, and preliminary experi-
ence. ACM Trans. Softw. Eng. Methodol., 4(1):65–106,
Jan. 1995.

[121] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam.
Maple: A coverage-driven testing tool for mul-
tithreaded programs. ACM SIGPLAN Notices,
47(10):485–502, Oct. 2012.

[122] X. Yuan, Z. Wang, C. Wu, P.-C. Yew, W. Wang, J. Li,
and D. Xu. Synchronization identification through on-
the-fly test. In Proceedings of the 19th International
Conference on Parallel Processing, Euro-Par’13, pages
4–15, Berlin, Heidelberg, 2013. Springer-Verlag.

[123] K. Zhai, B. Xu, W. K. Chan, and T. H. Tse. Carisma:
A context-sensitive approach to race-condition sample-
instance selection for multithreaded applications. In
ISSTA 2012, pages 221–231, New York, NY, USA,
2012.

[124] X. Zhou, K. Lu, X. Wang, and X. Li. Exploiting
parallelism in deterministic shared memory multipro-
cessing. Journal of Parallel and Distributed Computing,
72(5):716–727, May 2012.

40

Bayesian Concepts in Software Testing:
An Initial Review

Daniel Rodriguez
Dept. of Comp. Science

University of Alcalá
Alcalá de Henares, 28871,

Madrid, Spain
daniel.rodriguezg@uah.es

Javier Dolado
Univ. Basque Country

UPV/EHU
Donostia-San Sebastián,

20080, Spain
javier.dolado@ehu.eus

Javier Tuya
Dept. of Comp. Science

University of Oviedo
Campus of Gijón, 33204,

Gijón, Spain
tuya@uniovi.es

ABSTRACT
This work summarizes the main topics that have been re-
searched in the area of software testing under the umbrella of
“Bayesian approaches” since 2010. There is a growing trend
on the use of the so-called Bayesian statistics and Bayesian
concepts in general and software testing in particular. Fol-
lowing a Systematic Literature Review protocol using the
main digital libraries and repositories, we selected around
40 references applying Bayesian approaches in the field of
software testing since 2010. Those references summarise the
current state of the art and foster better focused research.

So far, the main observed use of the Bayesian concepts
in the software testing field is through the application of
Bayesian networks for software reliability and defect pre-
diction (the latter is mainly based on static software metrics
and Bayesian classifiers). Other areas of application are soft-
ware estimation and test data generation. There are areas
not fully explored beyond the basic Bayesian approaches,
such as influence diagrams and dynamic networks.

Categories and Subject Descriptors
A.1 [Introductory and Survey]; D.2.5 [Software Engi-
neering]: Testing and Debugging

General Terms
Theory

Keywords
Bayesian statistics, probabilistic graphical models, Bayesian
networks, software testing

1. BAYESIAN CONCEPTS FOR SOFTWARE
TESTING: AN INITIAL REVIEW

There have been several articles in the past advocating
the use of Bayesian methods in software testing. The posi-

tion paper by Namin and Sridharan [27] stated that Bayesian
reasoning methods have the capability of improving the field
of software testing by providing solutions based on proba-
bilistic methods. However, Namin and Sridharan discuss
three obstacles faced when applying Bayesian networks: (i)
the generalization of the conclusions, (ii) the sensitivity to
the prior probabilities and (iii) the difficulties for software
engineers to grasp the statistical concepts underlying the
Bayesian approach. The first two obstacles will be further
discussed in Section 4 (Discussion) after reviewing the liter-
ature. With respect to the last obstacle, the hurdles of un-
derstanding the Bayesian concepts, the Bayesian approach
takes a different viewpoint in the concept of probability from
the frequentist approach [37], which could make it hard to
understand:

• Frequentists: the definition of probability is related to
the frequency of an event. The parameters of interest
are fixed but the data are a repeatable random sample,
hence there is a frequency. No prior information is
used. In a strict frequentist view, it does not make
sense to talk about the true value of the parameter θ
under study. The true value of θ is fixed, by definition.

• Bayesians: the definition of probability is related to
the level of knowledge about an event. The value of
knowledge about an event is based on prior informa-
tion and the available data. The parameters of interest
are unknown and the data are fixed. From a Bayesian
viewpoint we can talk about the probability that the
true value of the parameter θ lies in an interval.

The fact that Bayesians use prior information about θ
makes the statistical reasoning different. Given a set of data
observations represented by D, we can compute P (D|θ) (θ
is fixed) in the frequentist approach, but we can compute
P (θ|D) in the Bayesian approach. P (θ|D) is computed using
“Bayes’ theorem”:

Pr(θ|D) =
Pr(D|θ) Pr(θ)

Pr(D)
. (1)

Equation (1) contains the elements of the Bayesian infer-
ence process: Pr(θ|D) is the posterior probability, Pr(D|θ)
is the likelihood, Pr(θ) is the prior probability and Pr(D) =
Pr(D|θ) Pr(θ)+Pr(D|¬θ) Pr(¬θ) is a normalizer factor. Thus,
equation 1 allows us in this case to compute the probability
of θ given D.

Bayes’ theorem enables the computation of the posterior
probabilities for a variable. A Bayesian Network (BN) is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

A-TEST’15, August 30-31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3813-4/15/08...$15.00

http://dx.doi.org/10.1145/2804322.2804329

41

a probabilistic graphical model with variables linked by di-
rected arcs. A BN provides a way of modelling a domain
problem using graph and probability theory, where the net-
work representation of the problem can be used to generate
information about some variable, provided that the infor-
mation of its parents is available. The joint probability dis-
tribution for variables X1, X2, . . . , Xn can be calculated as
follows:

P (X1, X2, . . . , xn) =
∏

i=1..n

P (Xi|Parents(Xi)) (2)

where Parents(Xi) denote the specific values of the nodes
in the graph that are linked towards the node Xi in the
BN. BNs are the main use of the Bayes approach. BNs are
also known as Bayesian Belief Networks or Belief Networks,
which are Probabilistic Graphical Models. There are other
formalisms related to the basic Bayesian approach such as
Dynamic Belief Networks, Influence Diagrams and Hidden
Markov Models.

2. SYSTEMATIC LITERATURE REVIEW OF
BAYESIAN NETWORKS IN SOFTWARE
TESTING SINCE 2010

Next, we review relevant literature related to software
testing (including quality) and Bayesian concepts accord-
ing to the Systematic Literature Review (SLR) protocol and
guidelines suggested by Kitchenham et al. [19] and the EBSE
website1 [12].

2.1 Background and Research Aim
Recent works reviewing Bayesian networks (BN) include

a position paper by Namin [27] and a review by Misirli and
Basar [26] which covers several issues of decision making
including defect prediction. Misirli and Basar list seven
articles in “software testing” using the Bayesian approach
and further 54 works under the topic of “software quality”.
The authors included under “software quality” the concepts
of fault, failures, defect prediction and software reliability.
However, there is an increasing number of papers applying
Bayesian concepts in general and in testing in particular.
Therefore, in this initial review our research aim is to iden-
tify, classify and analyse the available literature since 2010
related to different aspects of software testing and quality
that apply Bayesian concepts.

2.2 Data Sources
We have used the following digital libraries and reposito-

ries as data sources:

1. ISI Web of Science
(http://apps.webofknowledge.com/)

2. Scopus (http://www.scopus.com/)

3. Elsevier Science Direct
(http://www.sciencedirect.com/)

4. IEEE Xplore (http://ieeexplore.ieee.org/)

5. SpringerLink (http://www.springerlink.com/)

1Evidence-Based Software Engineering
http://www.dur.ac.uk/ebse/

6. ACM Digital Library (http://www.acm.org/)

7. Wiley Interscience
(http://onlinelibrary.wiley.com/)

8. Google Scholar (http://scholar.google.com/)

9. The Collection of Computer Science Bibliographies
(http://liinwww.ira.uka.de/bibliography/)
Later discarted due to a large and irrelevant number
of papers returned.

These generic digital libraries and repositories, together,
reference all relevant publications in the software engineer-
ing field. Some of them are digital libraries, but some others
are meta-repositories, including most relevant journals, con-
ference and workshop proceedings.

2.3 Search Strategy
The search strategy was conducted with the following key-

words in the query: “Bayesian” & “networks” & “software
testing”. We considered that those keywords were enough
to cover all articles of interest. We tested other combina-
tions of potential keywords but the results did not conform
to the research aim. For example, we did not find relevant
literature using the terms probabilistic graphical models but
not containing Bayes or networks at the same time. Simi-
larly, all papers about testing are almost certain to contain
the substring “software testing”. Finally, we followed some
references from selected papers confirming that all relevant
literature was found.

Table 1 shows the digital libraries used, the search domain
within the repository (when possible) and the number of
papers found. We merged all the references found and decide
whether the paper was eligible for this survey mainly based
on the title and abstract with the exception of Google scholar
due to the large number of references found. Google Scholar
was mainly used for checking that no important and relevant
paper was missing. If a paper had an apparently relevant
title or abstract, its full content was also checked to decided
whether the study was to be included in the final selection.

2.4 Selection Criteria
The selection criteria consists of inclusion and exclusion

criteria for the papers found. We include papers published
since 2010, related to software testing, written in English
and accessible on the Web. We decided to cover in this re-
view the literature after the position paper of Namin and
Sridharan [27]. There is a growing number of articles in-
cluding the topics of software testing and Bayesian meth-
ods. Also, this criterion limits the number of papers to the
most recent research and limits the length of this conference
paper. A more comprehensive SLR is part of our current
work.

The exclusion criteria include papers published before 2010.
We also exclude papers related to the application of Bayesian
concepts as part of some kind of optimisation in relation to
other methods (e.g. forming part of neural networks). Also,
some documents and articles that we have excluded, men-
tioned BNs without dealing with the technique. There were
some articles that developed different tests based on BNs,
but not strictly related to software testing, e.g., they devel-
oped “software safety tests”. We leave out of review the use
of neural networks that use some kind of Bayesian optimisa-
tion and other articles that are not fully focused on Bayesian

42

Table 1: Repositories and papers found and selected
Digital Library Domain Returned Relevant

ISI Web of Science Computer Science, Engineering 10 6
Scopus Computer Science 45 16
Elsevier ScienceDirect Computer Science 40 6
SpringerLink - 133 10
IEEExplore - 24 3
ACM DL - 12 -
Wiley Interscience - 62 -
Google Scholar - 2,390 -
Total 41

procedures. For example, and interesting work by Wiper et
al. [40] use Bayesian concepts for providing the prior distri-
bution probabilities to an artificial neural network. Strictly
speaking, this work uses Bayesian concepts but does not use
Bayesian networks.

In the next Section we analyse the selected literature group-
ing the different subareas and discussing possible research
paths.

3. RESEARCH TOPICS ADDRESSED
We have organised the research topics into categories clas-

sified by common subdisciplines in software testing: effort
testing prediction, software reliability and fault prediction,
quality models, test data generation, GUI testing and a less
known but interesting subarea named philosophy of technol-
ogy.

3.1 Software Testing Effort Prediction and Pro-
ductivity Estimates

This topic is concerned with the estimation of the test
costs in terms of person-hours or person-days. Few works
have recently applied Bayesian models for testing effort es-
timation, exceptions include the works by Torkar et al. [36],
Schulz et al. [33] and Dalmazo et al. [8] which describe a de-
fect correction effort model. A generic survey about BNs in
effort estimation, including the test phase, was carried out
by Radlinski [30].

3.2 Fault and Defect Prediction. Software Re-
liability

The topic of reliability is another area where Bayesian
approaches have been explored by multiple researchers, spe-
cially for real-time systems. “Software Reliability” is the
probability that software will work without failing in a spec-
ified environment for a given amount of time. Software re-
liability testing tries to discover as many defects as possible
as early as possible.

Defect prediction from static measures from private or
open repositories such as Tera-Promise2 (formerly known
as the Promise repository) have been reported on multiple
studies. Bayesian classifiers have been widely used. Recent
examples include the work by Dejaeger et al. [9] who com-
pared 15 BN classifiers for the task of identifying software
faulty modules. Weyuker et al. [39] also performed a com-
parison of tools for fault prediction that included Bayesian
additive regression trees. Another comparison of classifiers
including BNs and Näıve Bayes is described in Dhankhar et

2http://openscience.us/repo/

al. [10]. The Näıve Bayes classifier, the simplest Bayesian
approach, is extensively used before and after 2010. For
example, we can cite the papers by Catal et al. [5], Ma et
al. [25] and by Hewett [15] for comparing the approaches to
software defect prediction.

Okutan and Yildiz [28] used Bayesian networks to explore
the relationship between sets of metrics and defect proneness
using datasets from the Promise repository. Other works
that build Bayesian networks with predictive reliability are
those of Cheng-Gang et al. [6], Kumar and Yadab [20],
Abreu et al. [1], Jongsawat and Premchaiswadi [16], Li and
Wang [22], Rekab et al. [31], Lv et al. [24], Blackburn and
Huddell [4], Qiuying et al. [29], Jun-min et al. [17], Khan et
al. [18], Li and Leung [21], Cotroneo et al. [7], Ba and Wu [3]
and Zheng et al. [43]. An application of software reliability
with BNs in the domain of fire control radar can be found
in the work by Li et al. [23].

3.3 Quality Models
A quality model describes in a structured way the con-

cept of quality in a software system. In this category, we
found the work by Wagner [38] who considers software qual-
ity based on constructing a BN from an activity-based qual-
ity model. Schumann et al. [34] also describe a Bayesian
Software Health Management system in which the reliability
of a system, including software and hardware, is monitored
with BNs.

3.4 Test Data Generation, Test Case Selection
and Test Plan Generation

Test data generation and test case priorization are im-
portant areas within software testing. A recent work by
Sagarna et al. [32] explore this path as part of search based
software test data generation. The improvement of random
testing has been tackled by Zhou et al. [44, 45]. Sridharan
and Namin reported [35] on the priorization of mutation
operators. Several experiments were carried out by Do et
al. [11] concerning the priorization of test cases. The au-
thors used BNs as one of the methods for ordering the test
suites. Fang and Sun [13] proposed a strategy to optimize
the re-execution of test cases (regression testing) based on
BNs. Finally, Han [14] built a BN by converting a Fault
Tree structure of events in order to perform forward and
backward reasoning.

3.5 Graphical User Interface (GUI) Testing
Another area of recent application of BNs is GUI testing.

Yang et al. [41, 42] built a BN that uses the prior knowledge
of testers and the BN updates the values depending on the

43

results of the test cases.

3.6 Philosophy of Technology
As an outlier paper, we were positively surprised by the

recent work by Angius [2] where the Bayes concepts and
the software testing field have been used as the substrate
for defining the software engineering area as a “scientifically
attested technology”. This paves the way for more studies
relating the disciplines of software testing and the philosophy
of technologies.

4. DISCUSSION
The main use of the Bayesian concepts in software testing

lie on the “software reliability” area, with 60% of the publi-
cations falling in this category. Other topics of applications
are “test data generation” and “test effort estimation”, with
11% and 10% of the references, respectively. Topics where
BNs are not so extensively used were “quality models”, “GUI
testing” and “philosophy of technology”.

Although there is an increasing number of works applying
BN approaches, there are issues that hinder their applica-
tion as previously mentioned such as their steep learning
curve and problems related to the statistical analyses. With
respect to these two problems (also previously mentioned
in the introduction) and discussed by Namin and Sridha-
ran [27], we may highlight the following issues, after review-
ing the literature:

• Generalization of the conclusions: every work builds
its BN starting from scratch and the BN is adapted to
its specific problem. A “meta study” or meta-analysis
of the results obtained by different researchers would
uncover potential similarities in the results and in the
graphical structure of the BN.

• Sensitivity to priors: an essential characteristic of BNs
is the need to provide prior probabilities to variables.
One way to avoid discrepancies is to set standard pri-
ors in the field, which could be agreed upon in case
of parameters such as productivity, etc. However, it
is not always possible to agree on priors nor the non-
informative priors are adequate to the BN model. Other
alternatives could include the use of hyperprior distri-
butions. The fact that BNs allow us to update the vari-
able probabilities can moderate the results obtained
with different priors, provided a robust BN.

Probabilistic graphical models can help in testing activi-
ties (and decision making in general) as supervised (predic-
tion) and unsupervised (clustering) techniques from the data
mining point of view as well as optimisation approaches. In
prediction, we can consider classifiers such as Näıve Bayes
and more complex structures such as TAN (Tree Augmented
Näıve Bayes) to generic networks such as Bayesian Networks
or Markov Models and their extensions (e.g. Dynamic BNs,
Influence Diagrams). These latter Bayesian approches have
not yet been fully exploited (in comparison with the former
simpler Bayesian classifiers).

In the case of graphical models for optimisation, Evolu-
tionary Distribution Algorithms have been applied success-
fully in software testing (although mainly prior to 2010).
These approaches have also been applied to data generation
which is considered to be a preprocessing step in data mining
and, in our opinion, they can be further explored.

5. CONCLUSIONS
In this work, we reviewed the recent literature on prob-

abilistic graphical models in software testing. We found
around 40 references dealing with the topics of interest since
2010. The spread of topics found within the software testing
area applying BNs is fairly limited. We classified the refer-
ences into six categories. The fact that the main category
is related to “software reliability” may distort the potential
applications of BNs to other areas in software testing. Inter-
estingly, there was a reference that positioned the concept
of “software testing” in the center of study of software engi-
neering as a science.

As our current work, we are extending this systematic
literature survey.

6. ACKNOWLEDGMENTS
The authors are grateful to the reviewers and chairs for

their helpful comments. Partial support has been received
by Project Iceberg FP7-People-2012-IAPP-324356 (D. Ro-
driguez) and Project TIN2013-46928-C3.

7. REFERENCES
[1] R. Abreu, A. Gonzalez-Sanchez, and A. J.

Van Gemund. A diagnostic reasoning approach to
defect prediction. In Modern Approaches in Applied
Intelligence, pages 416–425. Springer, 2011.

[2] N. Angius. The problem of justification of empirical
hypotheses in software testing. Philosophy &
Technology, 27(3):423–439, 2014.

[3] J. Ba and S. Wu. Propred: A probabilistic model for
the prediction of residual defects. In Mechatronics and
Embedded Systems and Applications (MESA), 2012
IEEE/ASME International Conference on, pages
247–251. IEEE, 2012.

[4] M. Blackburn and B. Huddell. Hybrid bayesian
network models for predicting software reliability. In
2012 IEEE Sixth International Conference on
Software Security and Reliability Companion, 2012.

[5] C. Catal, U. Sevim, and B. Diri. Practical
development of an eclipse-based software fault
prediction tool using naive bayes algorithm. Expert
Systems with Applications, 38(3):2347 – 2353, 2011.

[6] B. Cheng-Gang, J. Chang-Hai, and C. Kai-Yuan. A
reliability improvement predictive approach to
software testing with bayesian method. In Control
Conference (CCC), 2010 29th Chinese, pages
6031–6036, July 2010.

[7] D. Cotroneo, R. Natella, and R. Pietrantuono.
Predicting aging-related bugs using software
complexity metrics. Performance Evaluation,
70(3):163 – 178, 2013. Special Issue on Software Aging
and Rejuvenation.

[8] B. L. Dalmazo, A. L. R. de Sousa, W. L. Cordeiro,
J. Wickboldt, R. C. Lunardi, R. L. dos Santos, L. P.
Gaspary, L. Z. Granville, C. Bartolini, M. Hickey,
et al. It project variables in the balance: a bayesian
approach to prediction of support costs. In Software
Engineering (SBES), 2011 25th Brazilian Symposium
on, pages 224–232. IEEE, 2011.

[9] K. Dejaeger, T. Verbraken, and B. b. Baesens. Toward
comprehensible software fault prediction models using

44

bayesian network classifiers. IEEE Transactions on
Software Engineering, 39(2):237–257, 2013.

[10] S. Dhankhar, H. Rastogi, and M. Kakkar. Software
fault prediction performance in software engineering.
In Computing for Sustainable Global Development
(INDIACom), 2015 2nd International Conference on,
pages 228–232, March 2015.

[11] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel.
The effects of time constraints on test case
prioritization: A series of controlled experiments.
IEEE Transactions on Software Engineering,
36(5):593–617, 2010.

[12] EBSE. Template for a systematic literature review
protocol. http://www.dur.ac.uk/ebse/resources/
templates/SLRTemplate.pdf, 2010.

[13] Z. Fang and H. Sun. A software regression testing
strategy based on bayesian network. In Computational
Intelligence and Software Engineering (CiSE), 2010
International Conference on, pages 1–4. IEEE, 2010.

[14] L. Han. Evaluation of software testing process based
on bayesian networks. In Computer Engineering and
Technology (ICCET), 2010 2nd International
Conference on, volume 7, pages V7–361. IEEE, 2010.

[15] R. Hewett. Mining software defect data to support
software testing management. Applied Intelligence,
34(2):245–257, 2011.

[16] N. Jongsawat and W. Premchaiswadi. Developing a
bayesian network model based on a state and
transition model for software defect detection. pages
295–300, 2012.

[17] Y. Jun-min, C. Ying-xiang, C. Jing-ru, and F. Jia-jie.
Optimization model of software fault detection. In
Proceedings of the 2012 International Conference on
Information Technology and Software Engineering,
pages 129–136. Springer, 2013.

[18] G. Khan, S. Sengupta, and K. Das. A probabilistic
model for analysis and fault detection in the software
system: An empirical approach. Lecture Notes in
Electrical Engineering, 298 LNEE:253–265, 2014.

[19] B. A. Kitchenham, T. Dyba, and M. Jørgensen.
Evidence-based software engineering. In Proceedings of
the 26th International Conference on Software
Engineering (ICSE’04), pages 273–281, Washington,
DC, USA, 2004. IEEE Computer Society.

[20] C. Kumar and D. Yadav. Software defects estimation
using metrics of early phases of software development
life cycle. International Journal of System Assurance
Engineering and Management, pages 1–9, 2014.

[21] L. b. Li and H. Leung. Bayesian prediction of
fault-proneness of agile-developed object-oriented
system. Lecture Notes in Business Information
Processing, 190:209–225, 2014.

[22] Q. Li and J. Wang. Determination of software
reliability demonstration testing effort based on
importance sampling and prior information. Advances
in Intelligent and Soft Computing, 126 AISC:247–255,
2012.

[23] Z. Li, Q. Zhao, C. Li, and X. Yang. Design and
reliability evaluation of simulation system for fire
control radar network. In International Conference on
Quality, Reliability, Risk, Maintenance, and Safety
Engineering (ICQR2MSE), pages 1314–1317, June

2012.

[24] J. Lv, B.-B. Yin, and K.-Y. Cai. Estimating
confidence interval of software reliability with adaptive
testing strategy. Journal of Systems and Software,
97(0):192 – 206, 2014.

[25] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer
learning for cross-company software defect prediction.
Information and Software Technology, 54(3):248 – 256,
2012.

[26] A. T. Misirli and A. B. Bener. Bayesian networks for
evidence-based decision-making in software
engineering. IEEE Transactions on Software
Engineering, 40(6):1–1, 2014.

[27] A. S. Namin and M. Sridharan. Position paper:
Bayesian reasoning for software testing. Proc. of the
FSE/SDP workshop on Future of software engineering
research (FoSER ’10), 2010.

[28] A. Okutan and O. T. Yıldız. Software defect
prediction using bayesian networks. Empirical
Software Engineering, 19(1):154–181, 2014.

[29] L. Qiuying, L. Haifeng, and W. Guodong. Sensitivity
analysis on the influence factors of software reliability
based on diagnosis reasoning. In Intelligence
Computation and Evolutionary Computation, pages
557–566. Springer, 2013.

[30] L. Radlinski. A survey of bayesian net models for
software development effort prediction. International
Journal of Software Engineering and Computing,
2(2):95–109, 2010.

[31] K. Rekab, H. Thompson, and W. Wu. A multistage
sequential test allocation for software reliability
estimation. IEEE Transactions on Reliability,
62(2):424–433, 2013.

[32] R. Sagarna, A. Mendiburu, I. Inza, and J. A. Lozano.
Assisting in search heuristics selection through
multidimensional supervised classification: A case
study on software testing. Information Sciences,
258(0):122 – 139, 2014.

[33] T. Schulz, L. Radlinski, T. Gorges, and W. Rosenstiel.
Defect cost flow model. In Proceedings of the 6th
International Conference on Predictive Models in
Software Engineering - PROMISE ’10, page 1, New
York, New York, USA, Sept. 2010. ACM Press.

[34] J. Schumann, T. Mbaya, O. Mengshoel,
K. Pipatsrisawat, A. Srivastava, A. Choi, and
A. Darwiche. Software health management with
Bayesian networks. Innovations in Systems and
Software Engineering, 9(4):271–292, June 2013.

[35] M. Sridharan and A. S. Namin. Prioritizing mutation
operators based on importance sampling. In Software
Reliability Engineering (ISSRE), 2010 IEEE 21st
International Symposium on, pages 378–387. IEEE,
2010.

[36] R. Torkar, N. M. Awan, A. K. Alvi, and W. Afzal.
Predicting software test effort in iterative development
using a dynamic bayesian network. In 21st IEEE
International Symposium on Software Reliability
Engineering. IEEE, 2010.

[37] J. VanderPlas. Frequentism and bayesianism: A
python-driven primer. arXiv preprint arXiv:1411.5018,
2014.

[38] S. Wagner. A Bayesian network approach to assess

45

and predict software quality using activity-based
quality models. Information and Software Technology,
52(11):1230–1241, Nov. 2010.

[39] E. J. Weyuker, T. J. Ostrand, and R. M. Bell.
Comparing the effectiveness of several modeling
methods for fault prediction. Empirical Software
Engineering, 15(3):277–295, 2010.

[40] M. Wiper, A. Palacios, and J. Marın. Bayesian
software reliability prediction using software metrics
information. Quality Technology & Quantitative
Management, 9(1):35–44, 2012.

[41] Z. Yang, Z. Yu, and C. Bai. The approach of graphical
user interface testing guided by bayesian model.
Lecture Notes in Electrical Engineering, 277
LNEE:385–393, 2014.

[42] Z.-F. Yang, Z.-X. Yu, B.-B. Yin, and C.-G. Bai. Gui
reliability assessment based on bayesian network and

structural profile. International Journal of Signal
Processing, Image Processing and Pattern Recognition,
8(1):225–240, 2015.

[43] C. Zheng, F. Peng, J. Wu, and Z. Wu. Software life
cycle-based defects prediction and diagnosis technique
research. In Computer Application and System
Modeling (ICCASM), 2010 International Conference
on, volume 8, pages V8–192. IEEE, 2010.

[44] B. Zhou, H. Okamura, and T. Dohi. Markov chain
monte carlo random testing. In Advances in Computer
Science and Information Technology, pages 447–456.
Springer, 2010.

[45] B. Zhou, H. Okamura, and T. Dohi. Enhancing
performance of random testing through markov chain
monte carlo methods. IEEE Transactions on
Computers, 62(1):186–192, 2013.

46

Author Index
Baluda, Mauro 16
Blanco, Raquel 8
Boydens, Jeroen 26

Cordemans, Piet 26

Dolado, Javier41

Gerking, Christopher 1

Ladleif, Jan . 1

Melo, Silvana M. 31
Morán, Jesús 20

Riva, Claudio de la 20
Rodriguez, Daniel 41

Schäfer, Wilhelm 1

Silva, Rodolfo A. 31
Souza, Paulo S. L. 31
Souza, Simone R. S. 31
Steegmans, Eric 26

Tuya, Javier8, 20, 41

