
OnSpot System: Test Impact Visibility during Code

Edits in Real Software

Muhammad Umar Janjua

 Operating System Group R&D, Microsoft Corporation, Redmond, US

mujanjua@microsoft.com

Abstract— For maintaining the quality of software updates

to complex software products (e.g. Windows 7 OS), an extensive,

broad level regression testing is conducted whenever releasing

new code fixes or updates. Despite the huge cost and investment

in the test infrastructure to execute these massive tests, the

developer of the code fix has to wait for the regression test

failures to be reported after checkin. These regression tests

typically run way later from the code editing stage and

consequently the developer has no test impact visibility while

introducing the code changes at compile time or before checkin.

We argue that it is valuable and practically feasible to tailor the

entire development/testing process to provide valuable and

actionable test feedback at the development/compilation stage

as well. With this goal, this paper explores a system model that

provides a near real-time test feedback based on regression tests

while the code change is under development or as soon as it

becomes compilable. OnSpot system dynamically overlays the

results of tests on relevant source code lines in the development

environment; thereby highlighting test failures akin to syntax

failures enabling quicker correction and re-run at compile time

rather than late when the damage is already done.

We evaluate OnSpot system with the security fixes in Windows

7 while considering various factors like test feedback time,

coverage ratio. We found out that on average nearly 40% of the

automated Windows 7 regression test collateral could run under

30 seconds providing same level of coverage; thereby making

OnSpot approach practically feasible and manageable during

compile time.

Categories and Subject Descriptors—D.2.5[Software

Engineering]: Testing and Debugging

General Terms—Reliability, Design, Experimentation

Keywords—software; testing; analysis; code writing; development;

early regression; real product testing

I. INTRODUCTION

The fact is that the bugs are mostly added to the source code at the
moment it is fixed or changed. The introduction of a change in the
source code is crucial and risky. We believe that the right time to fix
these bugs should ideally be closed to the time code change is added.

Large enterprise organizations like Microsoft employ extensive,
broad level of testing [7] to maintain the quality of the updates to
existing products like Windows 7. Such organizations invest lot of
time and resources in the test infrastructure, execution and test pass
completion so that all the change related and component wide
scenarios as well as dependent systems and diverse third party
applications could be covered and confirmed to be regression free.
While there is a lot of useful information available about
successful/failing tests, coverage percentage for the changed lines
etc, it is reported only after the developer has completed coding and
made the checkin. Instead, we see a potential value and use of test
related feedback at compile time as well and argue to tailor the entire
testing process to provide test related feedback at the
development/compilation stage as well. The advantage of providing
such an on-spot feedback to the developer is to detect and prevent
runtime failures and regressions nearly at the same time as the code
edit happens. Otherwise, such failures are normally discovered at the
code check-in time or by full test passes that incur higher costs. By
that time, the damage is already done.

With OnSpot system, we provide a unified, seamless and lightweight
interface to developer that pulls relevant tests from diverse
components and dependent software and provides precise test
feedback about the current change being introduced at the
compile/development time. This approach makes distant regression
testing an integral part of the change introduction process, or a first
class citizen for developer, where testing would not be taken as a
post-checkin activity, but as a mechanism to seek insight about the
code change right on the spot, and before it is checked in or shared.

If we compare with local unit testing available to developers,
although these can complete faster yet these are limited to the
component scope only and the included tests lack system wide
breadth and diversity. So it also becomes critical to conduct relevant
regression testing early for scenarios that are not covered with simple
unit tests. Many a times local unit testing succeeds but the buddy
software tests fail way later. With OnSpot system, we bring the test
diversity and greater coverage from large scale system wide
regression tests and make it available to the developer at code editing
stage in a lightweight and actionable manner.

The contributions of this paper are:

1. First to propose and investigate the need for a lightweight model
to run regression tests at compile time while introducing code
changes in the light of test failures.

2. Implements the proposed model as a working prototype system
“OnSpot” based on the real world Windows 7 test system that
establishes a near real-time link between the source changes and
the state of regression test execution in one unified interface.

3. Evaluates the practical feasibility of the approach by running
several real world security fixes shipped in Windows 7.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2804430

994

OnSpot system is compatible with any existing test
selection/prioritization/minimization techniques and can integrate
well with traditional software development processes with a little
effort.

Table 1: Comparing characteristics of OnSpot with other

II. RELATED TOOLS AND TECHNIQUES

Currently, the type of static tools available to developers that can be

used to assess the effect of a code change are quite limited in their

feedback. They only address limited classes of bugs and properties

about the programs during development. For example, compiler

techniques, like syntax, semantic/type checking can only determine

error typos, missing variable, undefined functions, incorrect casts

etc. Static source code analyzer like Prefast [6] take a step higher

and can provide approximate feedback for example about buffer

overflows and pointer allocation errors. But, what remains elusive

from the prior techniques are more interesting use cases and richer

class of program properties and behaviors, captured as test cases.

Currently at static time, the developer has no clue how its current

code change affects the relevant test cases.

On the other end, there are series of profile driven tools relying on

code coverage information[5] that can link up source code change

with the related tests. However, these tools operate at post-build

time, are applicable after the fix has been checked in, and currently

do not help the developer directly during code changes. Further, there

has been extensive work and techniques [2,3,4] on selecting,

minimizing and prioritizing tests based on code coverage. OnSpot

system does not modify or build new techniques in this category.

However, it is compatible with any of these techniques, which can

be incorporated in the OnSpot system.

III. MODEL FOR CODE CHANGE INTRODUCTION PROCESS

We define a number of important characteristics for OnSpot system

and the model for change introduction. Refer to Table 1, and Figure

1, respectively.

Figure 1: Model for change introduction

Consider the introduction of fix as a series of code changes with

interleaved compilations. Let ⋃𝑐𝑖 be the set of changes where 𝑐𝑖 =
𝑐𝑜𝑑𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑎𝑡 𝑖𝑡ℎ𝑐𝑜𝑚𝑝𝑖𝑙𝑒 𝑡𝑖𝑚𝑒 and 𝑐𝑖𝑅 𝑐𝑖+1 such that 𝑅 𝜖 { ⊆
, ! ⊆ }. The relation R could be taken as a syntactic subset. Let 𝑐𝑓 be

the final fix which is supposed be checked in to the source depot.

A. Change granularity (Testable change)

A change becomes a candidate for test when it is compilable. The

developer however can control the point when he wants invoke the

test during his fix. This might vary with his thought process, and

current understanding of his partial fix so far.

B. Automatic Build and deploy

We propose an incremental build process incrBuild(𝑐𝑖),that

produces a modified binary 𝑏𝑖𝑛𝑎𝑟𝑦𝑐𝑖
 , containing the code change

𝑐𝑖.

C. Test Selection and Coverage ratio

Assume we have a original code coverage data for the binary

before any change 𝑐𝑖 is introduced . Let T be the set of all tests

available for this binary. We define a procedure

selectTests(CCov(binary), 𝑏𝑖𝑛𝑎𝑟𝑦𝑐𝑖
), which takes the modified

binary and the code coverage data, and determines the tests 𝑇𝑐𝑖
 ⊏

𝑻 that are relevant to the change 𝑐𝑖 . We define code coverage ratio

to be the number of binary blocks covered by tests divided by the

total number of blocks added or modified as a result of introducing

change. In practice, OnSpot uses Echelon’s [13] test selection

method that analyzes the difference between the old and new binary

in the light of previously stored baseline of code coverage data. In

the first step, Echelon identifies impacted binary blocks(new plus

old modified) using binary level differencing [14] between the two

versions. Then prior code coverage information is used to select

tests that cover the old modified block directly or cover the old

immediate predecessor/successors of the newly added block in the

new binary.

D. Test Setup and Execution

Once the related tests are identified, the tests 𝑇𝑐𝑖
 are automatically

setup and run and the results/logs are collected. Let 𝑅𝑒𝑠𝑐𝑖
 be the test

result set for executing tests.

E. Feed Back

The developer has a pipeline of 𝑅𝑒𝑠𝑐𝑖
 at his end for the series of

changes 𝑐𝑖 introduced so far. At any i-th stage, the developer is

aware how the current change impacts the selected test results.

Table 2: Result pipeline for developer

F. Test Response Time

For change 𝑐𝑖 , let the response time RT(𝑐𝑖) be the total time it takes

run tests and show test feedback to the developer. The goal is to

show relevant tests with low RT (𝑐𝑖) and better coverage for

developer for execution.

For complex
products(million
s of line of code)

OnSpot Syntax/
Type

Checker

Prefast/
Static Code

Analyzer

Local Unit
testing

Traditional
Testing

Lightweight Y Y Y Y N

Bug Prevention
Stage

Code
editing

Code
editing

Code editing At
checkin

After
Check-in

Feedback time Immediate
(somewhat)

Immediate Immediate Delayed

Change
sensitive

Y Y Y Y N

Precision Y Y Approximate Y Y

Corrective
Action at dev

box

Y Y Y Y N

Test Diversity Across
entire

system

n/a Limited static
checks

Only
component

Across
entire

system

Code change

Relevant Tests Pass % Results

𝑐𝑖 𝑇𝑐𝑖
 90% 𝑅𝑒𝑠𝑐𝑖

𝑐𝑖+1 𝑇𝑐𝑖+1
 80% 𝑅𝑒𝑠𝑐𝑖+1

 …. …. …. ….

𝑐𝑓 𝑇𝑐𝑓
 100% 𝑅𝑒𝑠𝑐𝑓

 𝑓𝑜𝑟 𝑖 = 1 … 𝑓
𝑏𝑖𝑛𝑎𝑟𝑦𝑐𝑖

= 𝑖𝑛𝑐𝑟𝐵𝑢𝑖𝑙𝑑(𝑐𝑖)

𝑇𝑐𝑖
= 𝑠𝑒𝑙𝑒𝑐𝑡𝑇𝑒𝑠𝑡𝑠(𝐶𝑐𝑜𝑣(𝑏𝑖𝑛𝑎𝑟𝑦), 𝑏𝑖𝑛𝑎𝑟𝑦𝑐𝑖

)

𝑅𝑒𝑠𝑐𝑖
= 𝑅𝑢𝑛𝑇𝑒𝑠𝑡𝑠(𝑇𝑐𝑖

);

𝑆ℎ𝑜𝑤𝑇𝑒𝑠𝑡𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘(𝑅𝑒𝑠𝑐𝑖
);

995

IV. ARCHITECTURE AND IMPLEMENTATION

In this section, we layout the system components which implement

the above model. First, a workflow is established on the developer’s

box that monitors code changes and compiles these automatically.

The changed binaries are passed to the backend where it is analyzed

for changed binary blocks and determination of related tests that

cover that change. These tests with the associated coverage ratio,

execution time, setup complexity, component scope are shown to

the developer. The developer has two main views.

A. Test Centric View

In this view, the developer has a complete view of all the regression

tests that cover the code change being introduced. These tests are

selected and prioritized according to the level of automation,

expected execution time, coverage ratio and environment readiness.

The developer has a filter to select and search from the tests.

B. Source Centric View

The source centric view in Figure 3 provides an overlaying of the

relevant tests and their results over each changed source line. This

enables developer not only to see how its current code changes

introduced are affecting the selection of tests, but also how results

of test runs change (from fail to pass or vice versa) as he progresses

towards the completion his fix. This brings a near instant link

between test results and code editing. The regression test result

become a kind of first class citizen in the developer’s IDE. The

source lines marked green have associated tests that cover these

lines. The lines marked yellow indicate no existing regression tests

cover them. This helps developer figure out how to better write

future tests that can cover yellow lines to improve test coverage.

V. CASE STUDY: ANALYSIS AND DISCUSSION

We have evaluated several Window 7 code fixes and successfully

run these through the OnSpot system to figure out its practical

usefulness and applicability. For illustration purpose and

demonstrate the developer’s experience, we shall take one

representative Windows 7 security fix [1]. This security fix modifies

the string decoding function for ASN.1 standard implementation in

the windows (msasn1.dll). The fix detects for the null in the string

encoding and handles it appropriately during parsing in lower level

ASN decode string functions. This is a typical security fix and on

average the numbers calculated should be valid for other fixes in the

same security category with very little variation. We used Amd dual

core 8GB RAM machine as a developer box that was connected to

coverage/build/test systems.

To evaluate the various characteristics of the OnSpot model

proposed earlier, we set four main evaluation criteria..

A. What was the average time to identify relevant tests during

code edits and how it varies with increasing component scope

in OnSpot?

As the developer compiles the fix, OnSpot starts building up the test

selection for the given change. From the entire window 7 OS

regression tests, OnSpot selected 11,484 test jobs that covered the

modified binary blocks of the fix in the new msasn1.dll. Each of

these jobs could typically contain hundreds of test cases itself.

Table 3: Time for identifying relevant tests in OnSpot

Scope of Tests Avg. Time(s) for
SelectTest()

#of 𝑻𝒄𝒊
 (relevant

tests)

WinCore <30 11484

--Security <10 871

-----Crypto <9 172

-------- MSASN1 <8 13

As shown in Table 3, the time taken for SelectTest increased

expectedly as the test scope increased from smaller component

msasn1.dll to the entire windows core, but the interesting aspect to

note was that the number of 𝑇𝑐𝑖
 increased in multiples of tens in

Figure 3: Source Centric view with overlayed test results
Figure 2: Test centric view

996

comparison to just a second increase in allowed time for SelectTests.

It was critical to show developer how his compilable code changes

impact the test selection. Our experience with OnSpot demonstrated

that large number of relevant regression tests that were not visible

before at compile time were selected and shown in a light weight

and quicker fashion with lower idle time for developer (from 8 sec).

B. How diverse the test selection became across the system?

The relevant tests selected belonged to diverse set of components

across windows core like kernel, networking, storage, file systems

etc. This provided an opportunity for substantially broader coverage

across diverse components at development time than possible with

unit/regression tests of one component (MSASN1) alone. In this fix,

test selection came from a scope of around 800 window

components.

C. How the test covergage increased with OnSpot?

Table 4: Tests and scope contributing to coverage

The developer can then look at the coverage provided by the test

jobs, and also at the number of tests that can run. He can view the

tests relative to the source line and then runs and selects these tests

for running and retrieving test results.

Nearly 95% of the relevant tests had at least 5% of the coverage for

the fix. Further, at most 30% of the code changes in this fix had

some sort of regression tests covering for it which was better than

18% coverage alone with msasn1 tests only. Interestingly, as the

component scope for the tests increases, we see that the coverage

ratio increases as well. This clearly demonstrated the advantage with

OnSpot system that through these additional regression tests it

provided 12% more coverage at compile time that would not have

been possible with component specific tests only.

D. What percentage of the tests could run in reasonable time

during code editing ?

One of the critical requirements for the OnSpot system to be

practically useful was to have large proportion of selected tests that

could complete the execution run in reasonable time as the code

changes became compilable. As per Figure 4, it turned out to be an

encouraging percentage and clearly demonstrated that nearly half

of the regression tests could provide quicker feedback during code

edits intervals of 30 seconds or more and nearly a quarter of the tests

for code edits intervals of 15 seconds. Furthermore, we learnt that

by running these tests, which complete execution within 30 seconds

it was still possible to achieve fix coverage of 25 percent that was

closer to the maximum coverage of 30 percent if all the regression

tests would have run. The choice of the right size of code editing

interval depends on how the developer writes the code and if there

are regression tests that can complete within that time. Since we

have evaluated thousands of Windows 7 core OS regression tests,

we are confident that for regression test suites of such scale, there

will always be substantial number of tests that can complete within

the preferred code editing intervals.

Figure 4: Percentage of tests completing under varying code

editing intervals with achieved coverage ratio

VI. CONCLUSION

We have provided a simple lightweight model to bring distant
regression testing at compile time to help developer detect and
prevent bugs at the moment the change is introduced in a real
software. By overlaying test results, coverage ratio over the changed
source lines, the developer has better comprehension of the effect of
the code changes on the test results and wider selection of tests to run
to achieve higher coverage than possible with local unit or
component only tests We believe that organizations with complex
and huge test collateral should employ OnSpot system to detect
possible test failures early to avoid later costs. Our experience with
OnSpot shows that it’s practically manageable and helpful for
developers to provide regression test feedback during reasonable
code editing intervals.

REFERENCES

[1] http://blogs.technet.com/b/srd/archive/2009/10/12/ms09-056-
addressing-the-x-509-cryptoapi-asn-1-security-
vulnerabilities.aspx

[2] S. Yoo and M. Harman, “Regression testing
minimization,selection and prioritization: A survey,” Software
Testing, Ver-ification and Reliability, vol. 22, no. 2, pp. 67–
120, 2012.

[3] G. Rothermel and M. J. Harrold, “Empirical studies of a safe
regression test selection technique,” IEEE Transactions on
Software Engineering, vol. 24, no. 6, pp. 401–419, Jun. 1998.

[4] J.-M. Kim, A. Porter, and G. Rothermel, “An empirical study
of regression test application frequency,” in Proceedings of the
22nd c conference on Software engineering,2000, pp. 126–135.

[5] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A
study of effective regression testing in practice,” in
Proceedings of the Ei1ghth International Symposium on
Software Reliability Engineering, 1997, pp. 264–274.

[6] http://research.microsoft.com/enus/news/features/prefast.aspx

[7] Jacek Czerwonka , Rajiv Das , Nachiappan Nagappan , Alex
Tarvo , Alex Teterev, CRANE: Failure Prediction, Change
Analysis and Test Prioritization in Practice -- Experiences from
Windows, Proceedings of the 2011 Fourth IEEE International
Conference on Software Testing, Verification and Validation,
p.357-366, March 21-25, 2011

[8] A. Srivastava and J. Thiagarajan, "Effectively Prioritizing
Tests in Development Environment," Proc. ACM SIGSOFT
Int',l Symp. Software Testing and Analysis (ISSTA ',02), pp. 97-
106, 2002

0%

5%

10%

15%

20%

25%

30%

0
.0

0
-0

.0
5

0
.1

0
-0

.1
5

0
.2

0
-0

.2
5

0
.0

5
-0

.1
0

0
.1

5
-0

.2
0

0
.0

0
-0

.0
5

0
.1

0
-0

.1
5

0
.2

0
-0

.2
5

0
.0

5
-0

.1
0

0
.1

5
-0

.2
0

0
.0

0
-0

.0
5

0
.1

0
-0

.1
5

0
.2

0
-0

.2
5

0-30s 30s-60s 60s-90s 90s-120s 120s-150s

Covg_ratio %o𝒇 𝑻𝒄𝒊

 0.00-0.05 0.83%

 0.05-0.10 54.96%

0.10-0.15 13.29%

0.15-0.20 25.91%

0.20-0.25 5.01%

0.25-0.30 0.01%

Scope Max Cvg

WinCore 0.30

--Security 0.29

-----Crypto 0.29

--------MSASN1 0.18

997

http://blogs.technet.com/b/srd/archive/2009/10/12/ms09-056-addressing-the-x-509-cryptoapi-asn-1-security-vulnerabilities.aspx
http://blogs.technet.com/b/srd/archive/2009/10/12/ms09-056-addressing-the-x-509-cryptoapi-asn-1-security-vulnerabilities.aspx
http://blogs.technet.com/b/srd/archive/2009/10/12/ms09-056-addressing-the-x-509-cryptoapi-asn-1-security-vulnerabilities.aspx
http://research.microsoft.com/enus/news/features/prefast.aspx
http://dl.acm.org/citation.cfm?id=1990102&CFID=468893513&CFTOKEN=57409578
http://dl.acm.org/citation.cfm?id=1990102&CFID=468893513&CFTOKEN=57409578
http://dl.acm.org/citation.cfm?id=1990102&CFID=468893513&CFTOKEN=57409578
http://dl.acm.org/citation.cfm?id=1990102&CFID=468893513&CFTOKEN=57409578
http://dl.acm.org/citation.cfm?id=1990102&CFID=468893513&CFTOKEN=57409578
http://dl.acm.org/citation.cfm?id=1990102&CFID=468893513&CFTOKEN=57409578

