
Predicting Field Reliability

Pete Rotella
Cisco Systems, Inc.
7200 Kit Creek Road

Res. Triangle Pk., NC, USA 27709
+1-919-392-3854

protella@cisco.com

Sunita Chulani
Cisco Systems, Inc.

125 W. Tasman Drive
San Jose, CA, USA 95134

+1-408-424-6802
schulani@cisco.com

Devesh Goyal
Cisco Systems, Inc.

125 W. Tasman Drive
San Jose, CA, USA 95134

+1-408-853-7214
devgoyal@cisco.com

ABSTRACT

The objective of the work described is to accurately predict, as

early as possible in the software lifecycle, how reliably a new

software release will behave in the field. The initiative is based

on a set of innovative mathematical models that have consistently

shown a high correlation between key in-process metrics and our

primary customer experience metric, SWDPMH (Software

Defects per Million Hours [usage] per Month). We have focused

on the three primary dimensions of testing – incoming, fixed, and

backlog bugs. All of the key predictive metrics described here are

empirically-derived, and in specific quantitative terms have not

previously been documented in the software engineering/quality

literature. A key part of this work is the empirical determination

of the precision of the measurements of the primary predictive

variables, and the determination of the prediction (outcome) error.

These error values enable teams to accurately gauge bug finding

and fixing progress, week by week, during the primary test period.

Categories and Subject Descriptors

I.6.5 [Simulation and Modeling]: Model Development –

modeling methodologies.

General Terms

Algorithms, Measurement, Reliability, Experimentation, Theory.

Keywords

Software release reliability, prediction, modeling, testing, error

analysis, customer experience.

1. INTRODUCTION
For several years, Software Defects Per Million Hours

(SWDPMH) has been the primary customer experience metric

used at Cisco. This metric is goaled for product teams on a yearly

basis, and this includes 120 product families in 2015. SWDPMH

is considered to be a reasonable measure of "customer pain," since

we count each time a bug is found by the customers. The metric

A key reason SWDPMH is considered to be of critical importance

is that we see a high correlation between SWDPMH and Software

Customer Satisfaction (SW CSAT), as measured by our yearly

customer survey, over a wide range of products and feature

releases. Therefore, it is important to anticipate SWDPMH

before the software is released to customers, for several reasons:

 Early warning that a feature release is likely to experience

substantial field quality problems may allow for remediation

during, or prior to, function and system testing on the

"integration branch." (The integration branch is the software

branch that results from the collapse of the development

branches, in the case of a waterfall project, or the subsequent

function and system testing on an agile development branch.)

 Prediction of SWDPMH enables better planning for rollout

strategies and for maintenance releases. If we anticipate that

SWDPMH will be too high, distribution of the release can be

restricted until rebuilds can improve the reliability.

 Calculating the tradeoffs between SWDPMH and feature

volume can provide guidance concerning acceptable feature

content, test effort, release cycle timing, and other key

parameters affecting future feature releases.

Our recent efforts have focused on enhancing our ability to

predict SWDPMH in the field. Toward this end, we, and many

others [1][2], have developed several predictive models, have

tested the models with major feature releases for strategic

products, and have provided guidance to development, test, and

release teams on how to improve the chances of achieving best-in-

class levels of SWDPMH and SW CSAT.

2. MODELING RELEASE QUALITY
Predicting field SWDPMH future experience is of paramount

importance to the development, test, and technical support

organizations. If the predictions can be made early enough in the

development/test phases, steps can be taken to improve the release

– steps such as adding testers, pulling out non-essential features,

more time testing, push out the release date, etc.

2.1 Model General Characteristics

Our recent work has concentrated on models targeting the

function and system test phases as typically conducted in our

environment for waterfall and hybrid waterfall/agile development

programs. Results for waterfall and hybrid waterfall/agile are

consistently good. Results for pure agile projects are

encouraging, but more testing is needed to check the minor

adaptations needed for a pure agile environment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2804428

986

The initial experiments focusing on the effect of test practices and

processes on SWDPMH were done using three major software

trains that are resident on 9 product families, and include 23

major feature releases. The dependent variables used were

SWDPMH at 6, 9, and 12 months after release to the field.

SWDPMH’s numerator is the number of software ‘incidents’

encountered in the field, which is the number of times a field bug

is seen by any customer. (For example, one bug seen by 10

customers would contribute a value of 10 to the numerator of

SWDPMH. These bug ‘incidents’ are referred to here as

‘BugSRs.’)

A total of 340 independent variables were included in the initial

modeling exercise; these include ~50 basic un-normalized

variables, and about 100 normalized variables for each of the

primary testing "dimensions", namely incoming, disposal, and

backlog variables. Our aim was to find a highly predictive

variable in each of these primary dimensions, if possible, since

our organization normally measures many characteristics of these

dimensions, and therefore additional data collection would not be

needed. Also, incoming/disposal/backlog metrics are highly

interrelated, and likely to be more fully characteristic of the

testing and disposal functions. ("Disposal" means that the bug has

reached a terminal state, including resolution, but also closed (i.e.,

a bug that is left unresolved), junked, duplicate, and

unreproducible bugs.

Using JMP and Excel, we reduced the size of the independent

variable array, and identified predictive (and useable) models.

We found the most highly predictive variables are ‘incoming’

variables, followed by several disposal variables. All the backlog

variables produce high (i.e., >0.10) P values and low levels of

correlation (i.e., <40%) with the dependent variables. Table 1 is a

summary of the best modeling results:

Table 1: Linear Regression, Best Modeling Results

Var. Coeff. S(x) t P F

Adj.

R2 S(y) Inter.

x1 -47.0 4.5 -11 0.06

x2 -12.1 1.4 -7.0 0.07

y 0.09 0.92 0.26 42.4

Independent variable x1 we call Incoming Defect Level (IDL). It

is the percentage of total bug content, as estimated using the

asymptote of the Goel-Okumoto-Shaped (GOS) software

cumulative incoming growth curve [3]. In other words, IDL is the

actual percent of the total cumulative bug content of the release,

estimated as the asymptote of the GOS S-shaped curve.

Independent variable x2 we call Fix Rate Reduction (FRR). It is

the percentage decline in the weekly bug disposal rate from the

maximum level. Dependent variable y is the SWDPMH value for

the platform/release in question, taken at 9 months after release to

the field. Similar results are seen for SWDPMH observed at 12

months after release.

2.2 Model Results

To date, 423 analyses have been done for 43 platforms hosting

117 feature releases and 24 large maintenance releases. These

platforms include router, switching, and datacenter hardware

products, plus software-only applications and tools, such as

security, collaboration, and network management.

Correlations between the full model equation scalar value and

SWDPMH have been consistently high. For example, the

adjusted R2 for Product A, shown in the case study below, is at

the high end (88%) of the range seen with the 43 products

examined so far. The average correlation seen is 72% (range of

63%-88%).

3 ERROR ANALYSIS
A key requirement for any model used in a development/test

environment is that the measurement and prediction errors be

published and available to the users. Users need to know if the

‘target’ and ‘actual’ IDL and FRR curves are statistically distinct

at each point in time during testing and fixing. If the target IDL

curve is statistically higher than the actual curve, for example, the

team will be asked to take action, such as adding resources,

extending the testing timeline, reducing feature content, or taking

another remediation step. Therefore, the error determinations for

these curves constitutes an important practical step.

The IDL measurement error determination method is

straightforward: The IDL measurement error is the standard error

of the predictive variable, IDL, for the fleet of releases. In this

analysis, we use the group of 31 releases, and the method used is:

 We calculate an empirically-determined measurement error

(referred to here as ‘residuals’) for decile clusters of IDL

from 10% to 80%. These residuals are calculated using the

delta between the observed intermediate IDL values and the

IDL value, for each release, derived using the end-point IDL

asymptote value and its weekly cumulative values.

 Only releases that achieved an IDL level of 65% or higher

were used in this analysis, since the standard error of the IDL

variable in the model equation is added to the residuals-

determined error, and the standard error of the IDL variable

has only been determined above 65%.

 In other words, we use the final week’s IDL to determine the

most accurate asymptote, then derive ‘actuals’ for all

previous weeks from that asymptote value. The residuals are

rank ordered, and the forward-looking IDL calculations,

week by week, are then compared to the ‘actuals,’ and the

delta between the two is calculated. On each side of the

‘actuals’ curve, we find the point at which 32% of the

residuals are found, and this point is the one standard

deviation error bar point. In excess of 32% of the residual

volume from the S-curve is beyond one standard deviation,

therefore this ‘distance’ constitutes the one standard

deviation error bar for the measurement precision.

 The error bars, upper and lower, are depicted in Figure 1

below for the 822 residual and ‘actual’ values for the 31

releases studied. Therefore, the blue lines correspond to the

confidence intervals for the releases studied. The x axis

shows one unit/tick for each of the 822 readings.

 In addition to the error determination derived from using the

end-points of the each of the 31 Goel-Okumoto-Shaped

cumulative growth curves, we need to add in the standard

error (± 1.4%) of the IDL variable derived from the general

model equation, since all the residual comparisons assume no

987

Figure 1: Residuals v. Actuals for 31 Releases

error in the final testing week measurement.

 (The average size of these releases is about 350 thousand

lines of new plus modified source code.)

Specific findings of this exercise:

 Using the approach described, we find that the residual-

based IDL measurement error is ± 3.0% within the primary

region of interest, 60% < IDL < 85%, for the 31 releases

studied – to this we need to add ± 1.4% for the model’s

standard IDL error, for a total of ± 4.4%.

 The residual-based IDL measurement error is ±5.5% within

the IDL region from 40% < IDL < 60%, for the 31 releases

studied, so the total error is ± 6.9% in this region.

 The IDL measurement error is ±7.4% in the IDL region from

10% < IDL < 40% for the 31 releases studied, so the total

error is ±8.8% in this region.

Below are several examples of the product-specific variants of the

error bar calculations described above. By ‘product-specific,’ we

mean that an individual regression graph is constructed for the

sequence of historical releases applicable to the specific product

family, and product-specific error bars are constructed using the

independent and dependent variable standard errors applicable to

the releases used.

3.1 Case Study

Heat maps and regression graphs have been generated for the

recent historical releases that are resident on the Product B

platform. The heat map in Table 2 shows IDL, FRR, SWDPMH,

and ancillary metrics for releases that have been available to

customers for about the past three years. The ‘IDL+FRR’ column

shows the scalar quantity derived from the combination of the two

predictive independent variables, weighted according to the

coefficients of the variables in the general model equation

developed with the Product A and Product D data. The goal for

this linear combination of IDL and FRR is >72%, the minimum

value needed to enable the successor release sequence to achieve

best-in-class SWDPMH levels within three years, whichever type

feature or large maintenance release we examine.

Table 2: IDL&FRR/SWDPMH Heat Map, Product A

Figure 2 shows the relationship between the SWDPMH for the

Product A historical releases and the percent IDL achieved at

‘throttle pull’ (i.e., the time most testing is complete):

Figure 2: SWDPMH/IDL Regression Graph for Product A

Historical Releases

The y-axis error bar for this specific population is ±6.2% (relative

%), and the x-axis error bar is ±3.0% (absolute %).

3.2 Summary for All Releases Studied

All case studies have yielded similar IDL error analysis results,

results similar to those shown in the case study of Product. Here

is a summary:

 A total of 31 releases were studied, with a total of n=822 data

points observed.

 The y-axis error bar is ±4.5% (relative%); mean y-axis value

is 4.4% and x-axis value is 38%.

Product

A

IDL+FRR

(need >72%)

IDL

(need

>80%)

FRR

(need

>45%)

SWDPMH

(FCS+150

BugSRs)

Rel. 7 72% 78% 43% 14.1

Rel. 6 74% 73% 80% 9.3

Rel. 5 63% 71% 36% 13.1

Rel. 4 65% 69% 53% 14.4

Rel. 3 61% 66% 35% 16.5

Rel. 2 73% 76% 58% 9.9

Rel. 1 86% 89% 71% 8.7

R² = 0.79
6

8

10

12

14

16

18

50 60 70 80 90 100

S
W

D
P

M
H

IDL Percentage

988

 Figure 3 shows the absolute percent error in IDL for various

deciles of IDL value:

Figure 3: Absolute ±% Error in IDL Measurement for

Decile IDL Clusters

The IDL measurement error calculation should include the full

error – this error is a function of the average variance of

individual incoming rates vis a vis the ‘actual’ growth curve

values – specifically, the variance of the regression residuals that

are centered around the actuals, plus the error of the actual

readings.

4. CONCLUSIONS
Following are the conclusions from error analysis addressing 31

releases (also see Table 3). The IDL measurement error is:

 ±4.4% within the primary region of interest, 60%<IDL<85%

for 31 releases studied; this includes ±3.0% residual-based

measurement error and ± 1.4% standard error of the IDL

variable.

 ±6.9% in IDL region of 40%<IDL<60%; includes ±5.5%

residual error plus ± 1.4% standard error.

 ± 8.8% within the IDL region of 10%<IDL<40% for 31

releases studied; includes ± 7.4% residual-based error plus ±

1.4% standard error.

 IDL SWDPMH prediction error is 8.4%, from the region of

60%<IDL< 85% for the 31 releases.

Table 3: Summary, IDL & SWDPMH Prediction Errors

% IDL

Residual-

based

measurement

error

(± %)

Model

standard

error

(± %)

Total

measurement

error

(± %)

10-40 7.4 1.4 8.8

40-60 5.5 1.4 6.9

60-85 3.0 1.4 4.4

5. SUMMARY
The findings of this study are, so far:

 The combination of an incoming bug metric (Incoming

Defect Level) and a bug disposal metric (Fix Rate

Reduction) have been shown to be highly predictive of

SWDPMH for 43 release sequences – the average Spearman

correlation is 72% and the standard error of SWDPMH, the

response variable, is only 7.6%.

 The model is applicable over a wide range of releases, and

has the potential to be a broadly generalizable model. High

correlations are seen for all systems studied so far, including

router, switch, and datacenter releases, and releases for

software-only applications

 Error analysis for one (i.e., IDL) of the two primary customer

experience (i.e., SWDPMH) predictors has been completed.

The measurement error for IDL varies between ±4% and

±9%, from 10% IDL to 85% IDL. This completes the key

step in ascertaining whether or not teams are on track to

achieving weekly bug incoming and fix rates, which, in turn,

enables reaching best-in-class SWDPMH goals.

6. REFERENCES
[1] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F.

Shull, B. Turhan, and T. Zimmermann, “Local vs. Global

Lessons for Defect Prediction and Effort Estimation,” in

IEEE Transactions on Software Engineering: (2013), 2013.

[2] J. Musa, A. Iannino, and K. Okumoto, Software Reliability.

McGraw-Hill, New York, NY, 1990.

[3] A. Wood, Software Reliability Growth Models: Report 96.1.

Tandem Computers, Cupertino, CA, 1996.

3.0%

3.5%

4.0%

4.5%

5.0%

5.5%

6.0%

70-8060-7050-6040-5030-4020-3010-20

Absolute %
IDL error

Decile IDL clusters

989

