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ABSTRACT 

The objective of the work described is to accurately predict, as 

early as possible in the software lifecycle, how reliably a new 

software release will behave in the field.  The initiative is based 

on a set of innovative mathematical models that have consistently 

shown a high correlation between key in-process metrics and our 

primary customer experience metric, SWDPMH (Software 

Defects per Million Hours [usage] per Month).  We have focused 

on the three primary dimensions of testing – incoming, fixed, and 

backlog bugs.  All of the key predictive metrics described here are 

empirically-derived, and in specific quantitative terms have not 

previously been documented in the software engineering/quality 

literature.  A key part of this work is the empirical determination 

of the precision of the measurements of the primary predictive 

variables, and the determination of the prediction (outcome) error.  

These error values enable teams to accurately gauge bug finding 

and fixing progress, week by week, during the primary test period. 

Categories and Subject Descriptors 

I.6.5 [Simulation and Modeling]: Model Development – 

modeling methodologies.  

General Terms 

Algorithms, Measurement, Reliability, Experimentation,  Theory. 

Keywords 

Software release reliability, prediction, modeling, testing, error 

analysis, customer experience. 

1. INTRODUCTION 
For several years, Software Defects Per Million Hours 

(SWDPMH) has been the primary customer experience metric 

used at Cisco.  This metric is goaled for product teams on a yearly 

basis, and this includes 120 product families in 2015.  SWDPMH 

is considered to be a reasonable measure of "customer pain," since 

we count each time a bug is found by the customers.  The metric 

A key reason SWDPMH is considered to be of critical importance  

 

 

 

 

is that we see a high correlation between SWDPMH and Software 

Customer Satisfaction (SW CSAT), as measured by our yearly 

customer survey, over a wide range of products and feature 

releases.   Therefore, it is important to anticipate SWDPMH  

before the software is released to customers, for several reasons: 

 Early warning that a feature release is likely to experience 

substantial field quality problems may allow for remediation 

during, or prior to, function and system testing on the 

"integration branch."  (The integration branch is the software 

branch that results from the collapse of the development 

branches, in the case of a waterfall project, or the subsequent 

function and system testing on an agile development branch.) 

 Prediction of SWDPMH enables better planning for rollout 

strategies and for maintenance releases.  If we anticipate that 

SWDPMH will be too high, distribution of the release can be 

restricted until rebuilds can improve the reliability. 

 Calculating the tradeoffs between SWDPMH and feature 

volume can provide guidance concerning acceptable feature 

content, test effort, release cycle timing, and other key 

parameters affecting future feature releases. 

Our recent efforts have focused on enhancing our ability to 

predict SWDPMH in the field.  Toward this end, we, and many 

others [1][2], have developed several predictive models, have 

tested the models with major feature releases for strategic 

products, and have provided guidance to development, test, and 

release teams on how to improve the chances of achieving best-in-

class levels of SWDPMH and SW CSAT.   

2. MODELING RELEASE QUALITY 
Predicting field SWDPMH  future experience is of paramount 

importance to the development, test, and technical support 

organizations.  If the predictions can be made early enough in the 

development/test phases, steps can be taken to improve the release 

– steps such as adding testers, pulling out non-essential features, 

more time testing, push out the release date, etc.   

2.1 Model General Characteristics 

Our recent work has concentrated on models targeting the 

function and system test phases as typically conducted in our 

environment for waterfall and hybrid waterfall/agile development 

programs.  Results for waterfall and hybrid waterfall/agile are 

consistently good.  Results for pure agile projects are 

encouraging, but more testing is needed to check the minor 

adaptations needed for a pure agile environment. 
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The initial experiments focusing on the effect of test practices and 

processes on SWDPMH were done using three major software 

trains that are resident on  9 product families, and include 23 

major feature releases.  The dependent variables used were 

SWDPMH at 6, 9, and 12 months after release to the field.  

SWDPMH’s numerator is the number of software ‘incidents’ 

encountered in the field, which is the number of times a field bug 

is seen by any customer.  (For example, one bug seen by 10 

customers would contribute a value of 10 to the numerator of 

SWDPMH.  These bug ‘incidents’ are referred to here as 

‘BugSRs.’)     

A total of 340 independent variables were included in the initial 

modeling exercise; these include ~50 basic un-normalized 

variables, and about 100 normalized variables for each of the 

primary testing "dimensions", namely incoming, disposal, and 

backlog variables.  Our aim was to find a highly predictive 

variable in each of these primary dimensions, if possible, since 

our organization normally measures many characteristics of these 

dimensions, and therefore additional data collection would not be 

needed.  Also, incoming/disposal/backlog metrics are highly 

interrelated, and likely to be more fully characteristic of the 

testing and disposal functions.  ("Disposal" means that the bug has 

reached a terminal state, including resolution, but also closed (i.e., 

a bug that is left unresolved), junked, duplicate, and 

unreproducible bugs. 

Using JMP and Excel, we reduced the size of the independent 

variable array, and identified predictive (and useable) models.  

We found  the most highly predictive variables are ‘incoming’ 

variables, followed by several disposal variables.  All the backlog 

variables produce high (i.e., >0.10) P values and low levels of 

correlation (i.e., <40%) with the dependent variables.  Table 1 is a 

summary of the best modeling results: 

Table 1:  Linear Regression, Best Modeling Results 

Var. Coeff. S(x) t P F

Adj. 

R2 S(y) Inter.

x1 -47.0 4.5 -11 0.06

x2 -12.1 1.4 -7.0 0.07

y 0.09 0.92 0.26 42.4  

Independent variable x1 we call Incoming Defect Level (IDL).  It 

is the percentage of total bug content, as estimated using the 

asymptote of the Goel-Okumoto-Shaped (GOS) software 

cumulative incoming growth curve [3].  In other words, IDL is the 

actual percent of the total cumulative bug content of the release, 

estimated as the asymptote of the GOS S-shaped curve.  

Independent variable x2 we call Fix Rate Reduction (FRR).  It is 

the percentage decline in the weekly bug disposal rate from the 

maximum level.  Dependent variable y is the SWDPMH value for 

the platform/release in question, taken at 9 months after release to 

the field.  Similar results are seen for SWDPMH observed at 12 

months after release. 

2.2 Model Results 

To date, 423 analyses have been done for 43 platforms hosting 

117 feature releases and 24 large maintenance releases.  These 

platforms include router, switching, and datacenter hardware 

products, plus software-only applications and tools, such as 

security, collaboration, and network management. 

Correlations between the full model equation scalar value and 

SWDPMH have been consistently high.  For example, the 

adjusted R2 for Product A, shown in the case study below, is at 

the high end (88%) of the range seen with the 43 products 

examined so far.  The  average correlation seen is 72% (range of 

63%-88%).   

3 ERROR ANALYSIS 
A key requirement for any model used in a development/test 

environment is that the measurement and prediction errors be 

published and available to the users.  Users need to know if the 

‘target’ and ‘actual’ IDL and FRR curves are statistically distinct 

at each point in time during testing and fixing.  If the target IDL 

curve is statistically higher than the actual curve, for example, the 

team will be asked to take action, such as adding resources, 

extending the testing timeline, reducing feature content, or taking 

another  remediation step.  Therefore, the error determinations for 

these curves constitutes an important practical step. 

The  IDL measurement error determination method is 

straightforward:  The IDL measurement error is the standard error 

of the predictive variable, IDL, for the fleet of releases.  In this 

analysis, we use the group of 31 releases, and the method used is: 

 We calculate an empirically-determined  measurement error 

(referred to here as ‘residuals’) for decile clusters of IDL 

from 10% to 80%.  These residuals are calculated using the 

delta between the observed intermediate IDL values and the 

IDL value, for each release, derived using the end-point IDL 

asymptote value and its weekly cumulative values.  

 Only releases that achieved an IDL level of 65% or higher 

were used in this analysis, since the standard error of the IDL 

variable in the model equation is added to the residuals-

determined error, and the standard error of the IDL variable 

has only been determined above 65%.   

 In other words, we use the final week’s IDL  to determine the 

most accurate asymptote, then derive ‘actuals’ for all 

previous weeks from that asymptote value.  The residuals are 

rank ordered, and the forward-looking IDL calculations, 

week by week, are then compared to the ‘actuals,’ and the 

delta between the two is calculated.  On each side of the 

‘actuals’ curve, we find the point at which 32% of the 

residuals are found, and this point is the one standard 

deviation error bar point.  In excess of 32% of the residual 

volume from the S-curve is beyond one standard deviation, 

therefore this ‘distance’ constitutes the one standard 

deviation error bar for the measurement precision.   

 The error bars, upper and lower, are depicted in Figure 1 

below for the 822 residual and ‘actual’ values for the 31 

releases studied.  Therefore, the blue lines correspond to the 

confidence intervals for the  releases studied.  The x axis 

shows one unit/tick for each of the 822 readings. 

 In addition to the error determination derived from using the 

end-points of the each of the 31 Goel-Okumoto-Shaped 

cumulative growth curves, we need to add in the standard 

error (± 1.4%) of the IDL variable derived from the general 

model equation, since all the residual comparisons assume no  
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Figure 1:  Residuals v. Actuals for 31 Releases 

 

error in the final testing week measurement. 

 (The average size of these releases is about 350 thousand 

lines of new plus modified source code.) 

Specific findings of this exercise: 

 Using the approach described, we find that the residual-

based IDL measurement error is ± 3.0% within the primary 

region of interest, 60% < IDL < 85%, for the 31 releases 

studied – to this we need to add ± 1.4% for the model’s 

standard IDL error, for a total of ± 4.4%. 

 The residual-based IDL measurement error is ±5.5% within 

the IDL region from 40% < IDL < 60%, for the 31 releases 

studied, so the total error is ± 6.9% in this region. 

 The IDL measurement error is ±7.4% in the IDL region from 

10% < IDL < 40% for the 31 releases studied, so the total 

error is ±8.8% in this region.  

Below are several examples of the product-specific variants of the 

error bar calculations described above.  By ‘product-specific,’ we 

mean that an individual regression graph is constructed for the 

sequence of historical releases applicable to the specific product 

family, and product-specific error bars are constructed using the 

independent and dependent variable standard errors applicable to 

the releases used.  

3.1 Case Study 

Heat maps and regression graphs have been generated for the 

recent historical releases that are resident on the Product B 

platform.  The heat map in Table 2 shows IDL, FRR, SWDPMH, 

and ancillary metrics for releases that have been available to 

customers for about the past three years.  The ‘IDL+FRR’ column 

shows the scalar quantity derived from the combination of the two 

predictive independent variables, weighted according to the 

coefficients of the variables in the general model equation 

developed with the Product A and Product D data.  The goal for 

this linear combination of IDL and FRR is >72%, the minimum 

value needed to enable the successor release sequence to achieve 

best-in-class SWDPMH levels within three years, whichever type 

feature or large maintenance release we examine. 

 

Table 2:  IDL&FRR/SWDPMH Heat Map, Product A 

 

Figure 2 shows the relationship between the SWDPMH for the 

Product A historical releases and the percent IDL achieved at 

‘throttle pull’ (i.e., the time most testing is complete): 

 

 

 

 

 

 

 

 

 

 

   

 

 

Figure 2: SWDPMH/IDL Regression Graph for  Product A 

Historical Releases 

 

The y-axis error bar for this specific population is ±6.2% (relative 

%), and the x-axis error bar is ±3.0% (absolute %). 

3.2 Summary for All Releases Studied 

All case studies have yielded similar IDL  error analysis results, 

results similar to those shown in the case study of Product.  Here 

is a summary:  

 A total of 31 releases were studied, with a total of n=822 data 

points observed. 

 The y-axis error bar is ±4.5% (relative%); mean y-axis value 

is 4.4% and x-axis value is 38%. 

Product   

A 

IDL+FRR 

(need >72%) 

IDL                                  

(need 

>80%) 

FRR                                

(need 

>45%) 

SWDPMH 

(FCS+150 

BugSRs) 

Rel. 7 72% 78% 43% 14.1 

Rel. 6 74% 73% 80% 9.3 

Rel. 5 63% 71% 36% 13.1 

Rel. 4 65% 69% 53% 14.4 

Rel. 3 61% 66% 35% 16.5 

Rel. 2 73% 76% 58% 9.9 

Rel. 1 86% 89% 71% 8.7 

R² = 0.79
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 Figure 3 shows the absolute percent error in IDL for various 

deciles of IDL value: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Absolute ±% Error in IDL Measurement  for 

Decile IDL Clusters 

 

The IDL measurement error calculation should include the full 

error – this error is a function of the average variance of 

individual incoming rates vis a vis the ‘actual’ growth curve 

values – specifically, the variance of the regression residuals that 

are centered around the actuals, plus the error of the actual 

readings. 

4. CONCLUSIONS 
Following are the conclusions from error analysis addressing 31 

releases (also see Table 3).  The IDL measurement error is: 

 ±4.4% within the primary region of interest, 60%<IDL<85% 

for 31 releases studied; this includes ±3.0% residual-based 

measurement error and ± 1.4% standard error of the IDL 

variable. 

 ±6.9% in IDL region of  40%<IDL<60%; includes ±5.5% 

residual error plus ± 1.4% standard error. 

 ± 8.8% within the IDL region of 10%<IDL<40% for 31 

releases studied; includes ± 7.4% residual-based error plus ± 

1.4% standard error. 

 IDL SWDPMH prediction error is  8.4%, from the region of 

60%<IDL< 85% for the 31 releases. 

 

 

 

 

 

 

 

 

 

Table 3:  Summary, IDL & SWDPMH Prediction Errors 

% IDL 

Residual-         

based   

measurement    

error                        

(± %) 

Model          

standard          

error                       

(± %) 

Total  

measurement 

error                        

(± %) 

10-40 7.4 1.4 8.8 

40-60 5.5 1.4 6.9 

60-85 3.0 1.4 4.4 

5. SUMMARY 
The findings of this study are, so far:  

 The combination of an incoming bug metric (Incoming 

Defect Level) and a bug disposal metric (Fix Rate 

Reduction) have been shown to be highly predictive of 

SWDPMH for 43 release sequences – the average Spearman 

correlation is 72% and the standard error of SWDPMH, the 

response variable, is only 7.6%. 

 The model is applicable over a wide range of releases, and 

has the potential to be a broadly generalizable model.  High 

correlations are seen for all systems studied so far, including 

router, switch, and datacenter releases, and releases for 

software-only applications  

 Error analysis for one (i.e., IDL) of the two primary customer 

experience (i.e., SWDPMH) predictors has been completed.  

The measurement error for IDL varies between ±4% and 

±9%, from 10% IDL to 85% IDL.  This completes the key 

step in ascertaining whether or not teams are on track to 

achieving weekly bug incoming and fix rates, which, in turn, 

enables reaching best-in-class SWDPMH goals. 
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