
NARCIA: An Automated Tool for Change Impact Analysis
in Natural Language Requirements

Chetan Arora, Mehrdad Sabetzadeh,
Arda Goknil, Lionel C. Briand

SnT Centre for Security, Reliability and Trust
University of Luxembourg, Luxembourg

{firstname.lastname}@uni.lu

Frank Zimmer
SES TechCom

9 rue Pierre Werner
Betzdorf, Luxembourg

{firstname.lastname}@ses.com

ABSTRACT
We present NARCIA, a tool for analyzing the impact of
change in natural language requirements. For a given change
in a requirements document, NARCIA calculates quantita-
tive scores suggesting how likely each requirements state-
ment in the document is to be impacted. These scores, com-
puted using Natural Language Processing (NLP), are used
for sorting the requirements statements, enabling the user
to focus on statements that are most likely to be impacted.
To increase the accuracy of change impact analysis, NAR-
CIA provides a mechanism for making explicit the rationale
behind changes. NARCIA has been empirically evaluated
on two industrial case studies. The results of this evaluation
are briefly highlighted.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Changes

Keywords
Natural Language Requirements, Natural Language Pro-
cessing (NLP), Change Impact Analysis.

1. INTRODUCTION
Requirements changes, if left unmanaged, are a major

source of software project failures [7]. A key prerequisite for
managing change in requirements is the ability to identify
which requirements are impacted as the result of a specific
change. A manual identification of impacted requirements is
laborious and presents a challenge when analysts are faced
with large, rapidly-changing requirements documents.

We present a tool, named NARCIA (NAtural language
Requirements Change Impact Analyzer), to support auto-
mated change impact analysis in Natural Language (NL)
requirements. Our focus on NL requirements is motivated
by the prevalent use of these requirements in industry.

An important characteristic of NARCIA is that it does
not need the relationships between requirements to be spec-

R1: The nuclear power plant shall have six five successive degrees of
protection for safety functions in the event of a nuclear accident alarm.
R2: The sixth degree of defence shall ensure the leak-prevention of
the ducts and raise a nuclear accident alarm hazard warning if an
anomaly is detected.
R3: The remaining degrees of protection shall be designated to signal
the nuclear power plant operators about a nuclear accident.
R4: The monitoring system for leak-prevention of the ducts shall
periodically monitor the amount of radioactive materials in the
exhaust air.

Figure 1: Example requirements and changes.

ified a priori. For NL requirements, a precise specification of
the relationships often entails a significant level of manual ef-
fort [6]. NARCIA instead uses Natural Language Processing
(NLP) to automatically detect potential relationships be-
tween requirements. The main observation that makes such
automation possible is that a majority of requirements rela-
tionships manifest themselves within the phrases that con-
stitute the requirements statements. NARCIA exploits the
phrasal structure of the requirements statements for identi-
fying the relationships between different requirements.

To illustrate the role of phrases, consider R1 in the ex-
ample requirements of Figure 1. The syntactic change in
R1, namely replacing six with five, does not convey any in-
formation about the semantic context in which the change
occurred. To analyze the impact of this change in a mean-
ingful manner, one has to consider the phrase(s) that have
been affected. At the phrase level, the change in R1 is inter-
preted as six successive degrees of protection being replaced
by five successive degrees of protection, rather than six being
replaced by five. The ability to delineate this semantic con-
text is key to identifying related requirements that are likely
to be impacted by the change.

A second important characteristic of NARCIA is that it
provides explicit means for expressing change rationale. To
illustrate why capturing the change rationale is important,
consider R2 in the example requirements of Figure 1. Here,
the phrase a nuclear accident alarm has changed to a nuclear
hazard warning. Depending on what the rationale for the
change is, the change may propagate differently to other
requirements. For example, if the rationale is to rename nu-
clear accident alarm to nuclear hazard warning, then R1 and
R3 will be affected. However, if nuclear hazard warning is
a new concept that is specifically related to leak-prevention
of the ducts (for raising an early warning as opposed to an
after-the-fact accident alarm), the change will not impact
R1 and R3 but will most likely impact R4 because the mon-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08...$15.00
http://dx.doi.org/10.1145/2786805.2803185

962

Phrase Detection

Similarity
Calculation

NL Requirements

Detected
Phrases & Tokens

Requirement
Change

Requirements
Analyst

Impact Likelihood
Calculation

2
6666664

s11 · · · s1n...
sn1 · · · snn

3
7777775

Similarity
Scores

Requirements
sorted based on

likelihood of impact

Phrase-level
changes

Propagation
Condition Definition

Propagation
Condition

nuclear accident
AND

(protection OR defence)

Phrasal
Differencing

Figure 2: NARCIA components and user interactions

itoring policy in R4 may need to be further strengthened
to support hazard warnings. NARCIA provides an intuitive
mechanism so that analysts can specify the rationale as to
why a change has occurred, and uses the specified rationale
for more accurate identification of related requirements.

In the remainder of this tool demonstration paper, we out-
line NARCIA’s method of use and the tool’s main compo-
nents. We further highlight key findings from our evaluation
of NARCIA over two industrial case studies.

2. RELATED WORK
Limited work exists on change impact analysis for require-

ments [9]. Goknil et al. [6] propose a change impact anal-
ysis approach based on a requirements dependency model,
covering, among other relationships, “requires”and“refines”.
Cleland-Huang et al. [4] develop a semi-automated approach
for identifying requirements relationships in the context of
change impact analysis. NARCIA takes inspiration from
these earlier strands of work. Nevertheless, it does not re-
quire analysts to make the relationships between require-
ments explicit. Instead, NARCIA uses NLP for inferring
these relationships based on the semantic context and the
rationale for changes.

Some of the NLP techniques used by NARCIA have also
been utilized in our previous work on checking conformance
to requirements templates [2] and on the identification of
requirements glossary terms [1]. NARCIA employs NLP to
address a different problem than the ones in our earlier work.

3. TOOL OVERVIEW
NARCIA is a realization of our technical approach for

change impact analysis, described in a recent conference pa-
per [3]. Figure 2 presents an overview of NARCIA. First,
the NL requirements provided by the user are processed in
the Phrase Detection step. This step identifies the phrases
in the requirements statements and the constituent tokens
(words) of these phrases. Next, in the Similarity Calculation
step, a similarity score is calculated for each pair of phrases
and for each pair of constituent tokens.

To enable the analysis of requirements changes at a se-
mantic level, the changes are lifted from words to phrases.
This lifting is performed in the Phrasal Differencing step. A
change, once cast into phrases, assists the user in expressing
the change rationale. We take an operational view towards
change rationale, defining it as a condition that specifies
how a change should propagate in a requirements document.
This condition is elicited from the user in the Propagation
Condition Specification step. Finally, the results from the
above steps are used in the Impact Likelihood Calculation
step. In this step, for every requirement in the requirements

The sixth degree of defence shall ensure the leak prevention of the ducts, and

raise a nuclear accident alarm hazard warning if an anomaly is detected.

NP VP NP

�

Deleted〖〗Equal��� Inserted !"Text differencing annotations:

〖 〗�
NP (Deleted)

NP (Added)
! "� �

VPNPVP

Figure 3: Phrase detection and phrasal differencing

document, a score, designed to predict the likelihood of the
requirement being impacted, is computed. For simplicity,
we refer to this score as impact likelihood. The output of
this step is a list of requirements sorted in descending order
of impact likelihood. The list helps the user focus on the re-
quirements that are most likely to be impacted. In the rest
of this section, we describe each of the steps in NARCIA.

3.1 Phrase Detection
NARCIA uses an NLP technique known as text chunk-

ing for detecting phrases in requirements. Text chunking
decomposes sentences into non-overlapping segments [8]. In
our context, the most important segments are Noun Phrases
(NPs) and Verb Phrases (VPs). Figure 3 shows the NPs and
VPs in requirement R2 of Figure 1 (pre- and post-change).
We augment text chunking results through the application
of heuristics that merge adjacent NPs in certain situations.
These heuristics were developed in our previous work [1]
with the aim of avoiding closely-associated NPs from be-
ing separated by text chunking. For example, one of the
heuristics is to merge atomic NPs related by of, i.e., the
NP of NP pattern. R2 has an occurrence of this pattern:
the sixth degree of defence. The two atomic NPs in this
segment do not provide much contextual information indi-
vidually. It is therefore advantageous to merge them as a
way to make change impact analysis more precise. The out-
put of the Phrase Detection step is a list of phrases and
their constituent tokens after removing stopwords such as
determiners, pronouns, and prepositions. For instance, the
phrase the sixth degree of defence, after stopwords removal,
would yield the tokens sixth, degree, and defence.

3.2 Similarity Calculation
NARCIA quantifies the relatedness between phrases and

between their constituent tokens using syntactic and seman-
tic similarity measures. Syntactic measures compute a simi-
larity score based on the overlap between the string content
of phrases and tokens. Levenstein similarity [8] is an exam-
ple of a syntactic measure, computing a score based on the
minimum number of character edits required to change one
string into another. For example, Levenstein similarity be-
tween phrases first degree of defence and first defence degree
is 0.57. Semantic measures capture relatedness based on
the (semantic) relationships defined in a dictionary. These
measures are most suitable for relating synonyms as well as
terms that are associated with one another through concep-
tual relationships such as is-a and is-part-of. Path similar-
ity [8] is an example semantic measure where the related-
ness of two words is calculated based on the shortest path
from the words to a common word in an is-a hierarchy (e.g.,
defence is-a kind of protection). For instance, Path sim-
ilarity between defence and protection is 0.5. Due to the
complementarity of syntactic and semantic measures, com-
bining these two classes of measures often leads to more ac-
curate and robust results [10]. For a given pair of words (or
phrases), NARCIA takes the maximum of syntactic and se-
mantic similarities when computing the impact likelihoods.

963

Figure 4: Screenshot of (a) propagation condition page and (b) output page (req.’s sorted by impact likelihoods)

3.3 Phrasal Differencing
Rather than treating changes at a syntactic level, which is

the case in existing text differencing tools (e.g., Google’s diff-
match-patch1), NARCIA superimposes the phrasal informa-
tion of a changed requirement over the syntactic changes.
In this way, NARCIA can determine which phrases are af-
fected. For example, when accident alarm is replaced by
hazard warning in requirement R2 of Figure 3, the change
is identified as the deletion of the NP nuclear accident alarm
and the addition of the NP nuclear hazard warning. The su-
perimposition of the phrasal information over the syntactic
changes identified by a standard text differencing tool1 is
shown in Figure 3. In general, NARCIA treats a require-
ments update as a combination of additions and deletions of
phrases. Adding (resp. deleting) a requirement is treated as
the addition (resp. deletion) of the all the NPs and VPs in
the requirement.

3.4 Propagation Condition Specification
As we argued earlier, the rationale behind a change can af-

fect the way in which the change propagates. NARCIA pro-
vides a mechanism for expressing change rationale. To cir-
cumvent the cognitive limitations associated with answering
“why” questions [5], NARCIA does not directly ask the user
why a change has been made. Instead, the tool attempts to
elicit a condition for characterizing how the change should
propagate. We call this condition the propagation condition.
The propagation condition is provided as a Boolean expres-
sion over phrases. For example, if the change rationale for
R2 in Figure 1 is to rename nuclear accident alarm to nuclear
hazard warning, then we expect that any impacted require-
ment should contain nuclear accident alarm, or a syntactic
or semantic variation thereof. The condition should thus
be: (nuclear accident alarm). Alternatively, if the rationale
is to increase oversight over leak prevention of the ducts, the
condition would be: (leak prevention of the ducts).

For more complex cases, examples of which can be found
in our detailed technical approach [3], the propagation con-
dition may involve multiple phrases related by the AND and
OR Boolean operators. To shield the user from writing
logical expressions, NARCIA provides a user interface for
defining the propagation condition in Conjunctive Normal
Form (CNF). A screenshot of this interface is shown in Fig-
ure 4(a). The interface displays the original and changed
requirements, highlighting their phrases. The changes (de-
tected by Phrasal Differencing as discussed earlier) are also
shown. From this interface, the user can select the desired
phrases by dragging and dropping them into the clause boxes
(marked with a ?). Each clause box represents a disjunction
of phrases. The user can create as many clause boxes as

1Google’s diff-match-patch - https://goo.gl/JfMU75

nuclear alarm

nuclear accident

accident

1 remainingdegreesprotection designated

nuclear power plant operatorssignal

1 0.49

Matched Phrases from Unmatched Phrases from

Propagation
Condition
Phrase (p)

R3 R3

p

p1 p2

p3

p4 p5

Figure 5: Example for impact likelihood calculation

needed. As an alternative to drag and drop, the tool pro-
vides in each clause box a drop-down list (populated with
the phrases of all requirements). The user can directly type
into these lists for specifying the propagation condition.

3.5 Impact Likelihood Calculation
Given a propagation condition C, NARCIA calculates for

every requirements statement R a normalized score. The
score for every R is a measure of how likely R is to be im-
pacted by the change associated with C. A higher score indi-
cates a higher likelihood of impact. The requirements state-
ments, sorted in descending order of the calculated scores,
are then presented to the user. An example output from the
tool is shown in Figure 4(b).

Briefly, the score for every R is derived from matching
the set of phrases in R against the individual phrases of
C. Figure 5 shows an example where the phrases of R3
(Figure 1) are matched against the phrase nuclear accident
alarm. Stopwords have been removed from all the phrases.
The edges in the matching are the optimal token matches.
The weights on the edges are the pairwise token similarities,
computed as described in Section 3.2.

To improve the quality of the matching, NARCIA applies
certain heuristics aimed at minimizing the number of phrases
used from a requirements statement for covering a given
phrase from the propagation condition. To illustrate, we
note that the token nuclear of p in Figure 5 is paired with
nuclear in nuclear accident (p1) rather than with nuclear in
nuclear power plant operators (p3). The latter match would
have increased (from 2 to 3) the number of phrases used from
R3. The impact likelihood for R3 is calculated based on
the number of phrases used from R3 in the optimal match,
the number of tokens matched, and the degree of similarity
(weights) between the matched tokens. For R3 against the
phrase nuclear accident alarm, the score is ≈ 0.77.

When the propagation condition has multiple phrases, an
impact likelihood is calculated for each of these phrases, with
the resulting scores combined according to the Boolean op-
erators in the condition. See [3] for full details.

4. EVALUATION
NARCIA has been evaluated on two industrial case stud-

ies [3]. The first study is over the requirements document of

964

https://goo.gl/JfMU75

a satellite simulation component that is being developed by
our industry collaborator, SES TechCom. This document
has 160 requirements and 9 changes. The second study con-
cerns the requirements document of a mobile service plat-
form, containing 72 requirements and 5 changes.

To identify the most accurate similarity measures, we ex-
perimented with combinations of 10 syntactic and 9 seman-
tic similarity measures. We observed that the combination
of Levenstein (syntactic) and Path (semantic) yielded the
most reliable results across the two case studies.

We have further developed guidelines for assisting analysts
in deciding how much of a sorted list generated by NARCIA
is worth inspecting, i.e., likely to contain impacted require-
ments. Our guidelines are based on the internal character-
istics of the generated sorted lists, and more specifically, on
the pattern of decline in the calculated impact likelihoods [3].
This pattern is automatically analyzable, meaning that rec-
ommendations can readily be made to the user as to how
much of a list to inspect, without requiring them to do any
further analysis on their own.

Using our proposed guidelines and the optimal combina-
tion of similarity measures mentioned above, we evaluated
NARCIA in terms of: (1) the number of impacted require-
ments the tool misses and (2) the amount of futile inspec-
tion effort, assumed to be a linear function of the number
of non-impacted requirements that our guidelines would rec-
ommend the analysts to inspect. For the 14 changes con-
sidered, the sum of the cardinality of the impact sets from
the gold standards is 106. Of these, our tool missed only one
impacted requirement. This miss was due to a tacit relation-
ship between two phrases, namely tourist attraction and point
of interest. The former phrase is a conceptual specialization
of the latter; however, since the two phrases have no syn-
tactic or semantic resemblance, NARCIA cannot detect the
relationship between them. This case hints at a limitation in
our approach which needs to be remedied through additional
user-provided information, e.g., a conceptual model.

As for the second measure (futile effort), for 13 out of the
14 changes, the measure ranged between 1% – 8% of the total
number of requirements. For one change, the rate was 45%
due to the propagation condition not being precise enough.
We anticipate that such cases can be improved by having a
human feedback loop, whereby the propagation condition is
refined by the user if the first few requirements in the sorted
list turn out to be irrelevant to the change.

Lastly, we observed that NARCIA produced results within
reasonable time (worst case of 11 sec. for interactive user re-
quests in our larger case study), suggesting that the tool will
scale to larger requirements documents. For details, see [3].

In summary, our evaluation suggests that NARCIA is ac-
curate and shows promise for use in practical settings.

5. IMPLEMENTATION & AVAILABILITY
NARCIA has been implemented as a Java web application

in the Vaadin UI framework2. For phrase detection, we use
GATE3 and OpenNLP4. Syntactic and semantic similarities
are calculated by the SimPack5 and SEMILAR6 libraries, re-
spectively. Our phrasal differencing algorithm uses Google’s

2Vaadin UI Framework - http://vaadin.com/
3GATE NLP Framework - http://gate.ac.uk/
4OpenNLP - http://opennlp.apache.org
5SimPack - http://www.ifi.uzh.ch/ddis/simpack.html
6SEMILAR - http://www.semanticsimilarity.org

diff-match-patch1. NARCIA is approximately 8K lines of
code, excluding comments and third-party libraries.

Additional details about NARCIA including executable
files, and a screencast covering motivations, tool architec-
ture, and usage are available on the tool’s website at:

https://sites.google.com/site/svvnarcia/

6. CONCLUSION
We presented our tool, NARCIA, for analyzing the impact

of changes in natural language requirements. The main nov-
elties of the tool are in: (1) the use of phrases as the basic
semantic units for identifying the relationships between re-
quirements, and (2) explicit handling of change rationale for
increasing the accuracy of change impact analysis. NAR-
CIA has been evaluated on two industrial case studies with
promising results. In the future, we plan to enhance NAR-
CIA with means for handling complex requirements relation-
ships that cannot be detected using NLP alone. We further
intend to extend the tool so as to support multiple simulta-
neous changes. Finally, we plan to conduct user studies to
better evaluate the practical utility of the tool. The most
important question that we need to answer through user
studies is whether users are able to conveniently specify the
propagation conditions required by our approach.

7. ACKNOWLEDGMENT
We gratefully acknowledge funding from Luxembourg’s

National Research Fund (FNR/P10/03 - Verification and
Validation Laboratory and FNR-6911386).

8. REFERENCES
[1] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer.

Improving requirements glossary construction via
clustering: Approach and industrial case studies. In
ESEM’14, 2014.

[2] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer.
Automated checking of conformance to requirements
templates using natural language processing. IEEE
TSE, 2015. (to appear).

[3] C. Arora, M. Sabetzadeh, A. Goknil, L. Briand, and
F. Zimmer. Change impact analysis for natural
language requirements: An NLP approach. In RE’15,
2015. (to appear).

[4] J. Cleland-Huang, C. K. Chang, and M. J.
Christensen. Event-based traceability for managing
evolutionary change. IEEE TSE, 29(9), 2003.

[5] A. Dutoit, R. McCall, I. Mistrik, and B. Paech.
Rationale Management in Software Engineering.
Springer, 2006.

[6] A. Goknil, I. Kurtev, K. van den Berg, and
W. Spijkerman. Change impact analysis for
requirements: A metamodeling approach. IST, 56(8),
2014.

[7] P. Jönsson and M. Lindvall. Impact analysis. In
A. Aurum and C. Wohlin, editors, Engineering and
Managing Software Requirements. Springer, 2005.

[8] D. Jurafsky and J. Martin. Speech and Language
Processing: An Introduction to Natural Language
Processing. Prentice Hall, 2000.

[9] S. Lehnert. A review of software change impact
analysis. In Technical Report - Technische Universitat
Ilmenau, 2011.

[10] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook,
and P. Zave. Matching and merging of variant feature
specifications. IEEE TSE, 38(6), 2012.

965

http://vaadin.com/
http://gate.ac.uk/
http://opennlp.apache.org
http://www.ifi.uzh.ch/ddis/simpack.html
http://www.semanticsimilarity.org
https://sites.google.com/site/svvnarcia/

	Introduction
	Related Work
	Tool Overview
	Phrase Detection
	Similarity Calculation
	Phrasal Differencing
	Propagation Condition Specification
	Impact Likelihood Calculation

	Evaluation
	Implementation & Availability
	Conclusion
	Acknowledgment
	References

