
Nyx: A Display Energy Optimizer for Mobile Web Apps

Ding Li, Angelica Huyen Tran, and William G. J. Halfond
University of Southern California

Los Angeles, California, USA
{dingli, tranac, halfond}@usc.edu

ABSTRACT
Energy is a critical resource for current mobile devices. In
a smartphone, display is one of the most energy consuming
components. Modern smartphones often use OLED screens,
which consume much more energy when displaying light
colors than displaying dark colors. In our previous study,
we proposed a technique to reduce display energy of mo-
bile web apps by changing the color scheme automatically.
With this approach, we achieved a 40% reduction in display
power consumption and 97% user acceptance of the new
color scheme. In this tool paper, we describe Nyx, which
implements our approach. Nyx is implemented as a self-
contained executable file with which users can optimize en-
ergy consumption of their web apps with a simple command.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Diagnostics

General Terms
Performance

Keywords
Energy, display, OLED, mobile

1. INTRODUCTION
Many modern smartphones use OLED screens [11], such

as the Samsung Galaxy, Sony Xperia, and LG Optimus se-
ries. Compared to other types of screens, OLED screens
have the unique characteristic that they consume more en-
ergy displaying light colors, such as white, than dark colors,
such as black. However, many modern mobile web apps are
designed with light-colored backgrounds. This means that
many web apps are not energy efficient for mobile devices.

To address this problem and improve the energy efficiency
of mobile web apps, we proposed a new technique [9] to
automatically transform the color scheme of a mobile web

application. In our approach, we rewrote the server side
code, static pages, and images of a web application so that
the resulting web application could generate pages that were
more energy efficient when displayed on a smartphone. The
rewritten web application can then be made available to
OLED smartphone users via automatic redirection or a user-
clickable link.

Our approach employs program analysis to model the
output of a web app and the potential visual relationships
among the colors in the pages and images. Then our ap-
proach generates a new color scheme that reduces the energy
consumption but still keeps the relative relationship between
colors. In our evaluation, we found that the transformed
web app can reduce energy consumption by 40% with 97%
of users indicating they would find the new color scheme
acceptable if the battery power was low.

In this tool track paper, we describe the implementation of
Nyx. To use Nyx, developers only need to run the executable
file from the Nyx package and it will automatically generate
the energy efficient version of the target web app. Then, the
developers only need to deploy the energy efficient version
of their web app.

2. OUR TECHNIQUE
Nyx takes the target web app as the input and outputs the

web app with a transformed color scheme. Our technique
has three major phases to transform the color scheme of web
apps: HTML Output Analysis, Color Transformation, and
Output Modification. The working process of Nyx is shown
in Figure 1. We only summarize these three phases briefly
in this tool paper.

2.1 HTML Output Analysis
The first phase it to model the structure of the HTML files

generated by the input web app. This model is called the
HTML Adjacency Relationship Graph (HARG) and it shows
the visual relationships of HTML tags. The HARG presents
similar information to the Document Object Model (DOM).
However, the HARG also contains relationships that could
be derived from loop generated HTML elements. The HARG
can be generated from both the source code and the static
HTML file pages.

To generate the HARG from the source code, Nyx first
builds another model, the HTML Output Graph (HOG),
which describes the HTML pages that can be generated by
the web application. Intuitively, the HOG is a projection
of the web application’s control flow graph (CFG) where all
of the nodes are instructions that generate HTML output.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2803190

958

Figure 1: the process of Nyx

To build the HARG, Nyx parses the HOG to find all of the
HTML tags in the HOG. Then, Nyx creates nodes in the
HARG with each opening HTML tags or self-closing tags.
Finally, Nyx connects any two nodes in the HARG if there
is a path between them in the CFG.

To generate the HARG for static HTML pages. Nyx
parses the static HTML files and builds their DOM, which
will be used as the HARG.

2.2 Color Transformation
In the second phase, Nyx generates the new color scheme,

which is represented as the Color Transformation Scheme
(CTS). The generated CTS will use energy efficient colors
and, at the same time, maintain the color relationships be-
tween neighboring HTML elements. With the CTS, the
newly generated color scheme can reduce display energy con-
sumption and maintain, to some extent, the aesthetics of the
web app.

To generate the CTS, our approach first builds a Color
Conflict Graph (CCG), which describes the color relation-
ships between pairs of HTML elements that have a visual
relationship in the HARG. The CCG is a weighted complete
undirected graph defined as 〈V, v0,W 〉. The set V represents
the graph’s nodes, where each node represents a color in the
HTML page. v0 ∈ V is the root-node of the graph, which is
the color that will be transformed to black, this color is spec-
ified by users. W is a weighting function W : V × V → I.
Since the CCG is a complete graph, there is an integer edge
weight defined for every pair of tuples in V . The weighting
function is used to give priority to certain types of visual re-
lationships. Our approach operates on three different types
of CCG, the Background Color Conflict Graph (BCCG),
which models the relationship between the background col-
ors of neighboring HTML elements; the Text Color Conflict
Graph (TCCG), which models the relationship between text
colors and their corresponding background HTML element
colors; and the Image Color Conflict Graph (ICCG), which
models the relationship between an image and its enclos-
ing HTML tag. The BCCG, TCCG, and ICCG vary in the
weights attached to certain color relationships.

To transform the colors, our approach first changes the
background color of the root node of the CCG to black.
Then the approach calculates new colors of other nodes in
the CCG so that the color distances between adjacent nodes
in the recolored graph are as similar as possible to color dis-
tances in the original graph. Because the recoloring problem
is NP, we designed a Simulated Annealing Algorithm based
technique to approximate an optimal solution.

2.3 Output Modification
In the third phase, the approach rewrites the web appli-

cation so that it generates web pages based on the CTS. For
our approach we have two different mechanisms to do this.
For CSS files and HTML templates, our approach simply
uses regular expressions to replace all color strings with their
new energy efficient colors. In practice we have found that

more sophisticated approaches, such as using CSS parsers
to identify style properties is unnecessary. For colors that
are defined by dynamically generated HTML, the approach
inserts instrumentation to perform the rewrite at runtime.
The instrumentation replaces the APIs that print HTML to
clients (e.g., JspWriter.println) with calls to customized
printing functions. These printing functions scan the out-
put as it is generated and replace printed colors with their
corresponding colors in the CTS.

3. USAGE SCENARIO
There are two typical scenarios in which Nyx could be

used to help web app developers build energy efficient web
apps. In this section, we discuss how Nyx could be used in
these two scenarios.

3.1 Optimizing Existing Web Apps
Owners of a web application may want to make their ex-

isting web app energy efficient for mobile devices. These
applications may have been developed a long time ago or
outsourced to external development teams. It may be ex-
pensive or very difficult for the current owner of the web app
to rebuild or modify the existing web app.

In this case, Nyx is an effective solution for these web app
owners. Nyx can automatically generate an energy efficient
alternative web app from the existing version so that owners
of the web app do not need to find a technical team to modify
the existing version or rebuild it by themselves. The only
effort on the side of the web app owners is to deploy the
transformed web app and provide an access point for users
to visit the transformed web app.

3.2 Providing Guidance to Developers
During the development of a web app, developers may also

want to create an energy efficient version of their web app.
However, developers do not have enough information about
how to design the color scheme of their web apps to make
it energy efficient. Providing some preliminary information
could reduce the effort required to redesign the color scheme
of web apps.

In this case, developers could use Nyx to provide the first,
preliminary design of the energy efficient version of their web
app. After that, the developers would only need to check
the color scheme generated by Nyx and do some refining to
improve the aesthetics of the web app.

4. TOOL DESCRIPTION
We implemented Nyx as a Java application. It is a stan-

dalone, self-contained jar package that users can use on dif-
ferent platforms, such as Windows, Linux, and Mac OS, that
have a Java Virtual Machine (JVM). At this time, Nyx is
implemented only for Java or JSP based web applications.
In the future, we will extend it to other types of web apps,
such as PHP based web apps.

959

Nyx accepts two inputs: the target web app and its Meta
Information File (MIF). The MIF is an XML file that in-
cludes five types of information about the web app: the path
to class files, the path to design templates, the path to CSS
files, the path to all images, the entrance method or asso-
ciated template file of each web page, and the background
color of each web page. The output of Nyx is the optimized
version of the web app. Figure 2 shows a comparison of the
output of Nyx to the original web app, where the left hand
side is the original version and the right hand side is the
transformed version produced by Nyx.

Figure 2: An Example of the output of Nyx

In the HTML Output Analysis phase, we use string anal-
ysis and HTML analysis techniques to model the potential
output of a web app. The algorithm we used to model string
values is based on the method of Yu and colleagues [14]. The
input of the String Analyzer is the executable classes of the
web app and its output is the HOG, the String Analyzer
models the output of the web app and generates the models
of potential HTML output. The String Analyzer leverages
Soot [4] to build the underlying call graphs, control flow
graphs and the Jimple representation of Java classes. Dur-
ing this process, it detects the instructions that print output
in Java web apps, such as JspWriter.println, and creates a
projection of the control flow graph of the web app. After
that, the String Analyzer models the output of each print
instruction as a Finite State Automaton (FSA). The library
we used to manipulate FSAs is the BRICS automaton li-
brary [2].

After the String Analyzer is the HTML Analyzer, which
analyzes the HOG generated by the String Analyzer and
generates the description about the HTML structure, which
is the HARG. During this process, the HTML Analyzer also
needs to identify the colors of each HTML tag. For col-
ors defined directly in the HTML file, the HTML Analyzer
parses the HOG directly. For colors defined in the CSS files,
the HTML Analyzer uses the SAC CSS parser [1] to identify
colors from CSS files.

In the Color Transformation phase, the CCG Builder builds
the CCG to model the color relationships in HTML files.
The input of the CCG builder is the HARG generated by the
HTML Analyzer and the color palette used by the images,
which can be identified by a third party image analyzer, such
as CSS drive [3].

After the CCG Builder is the Color Transformer which

accepts the CCG as the input and generates the CTS to
describe how to change colors. In the Color Transformer,
we mapped the color transformation problem to the Energy
Minimization Problem1 (EMP), which is a well-known pixel
recoloring problem in the computer vision field [12]. We
use a Simulated Annealing Algorithm (SAA) to solve this
problem.

In the Output Modification phase, the App Generator
takes the CTS as input and generates the optimized version
of the web app. For the App Generator, we used the BCEL
library to modify Java classes and Perl script to modify col-
ors in the CSS files. Our implementation handles HTML 4
and CSS 2, but it is straightforward to extend our tool to
support HTML 5 and CSS 3.

5. TOOL USAGE
Nyx is packaged as a self-contained executable jar. To run

Nyx, users only need to run the executable jar package and
provide the input, which is the path to the app and its MIF.
During its execution, Nyx generates intermediate artifacts
after each step.

During the phase of HTML Output Analysis, Nyx first
generates the HOG as a dotty file, which contains the infor-
mation about the generated HTML. The HOG of the web
app shown in Figure 2 is visualized in Figure 3. Its con-
tents, which are rendered here, are basically a skeleton of
the HTML of the web app that does not contain the images
and contents, only the tags.

Figure 3: The HOG of the web app

Based on the HOG, Nyx generates the HARG, which de-
scribes the relationship of HTML tags in the web app. Then
Nyx generates the CCG to describe the color relationships.
One example of the CCG of the web app in Figure 2 is shown
in Figure 4. This is a BCCG, which describes the relation-
ship of background colors in the web app. Each node in the
CCG has the node ID and the RGB value of its color. In this
example, there are three background colors: white (RGB:
255,255,255), royal blue (RGB: 51,102,153), and light tan
(RGB: 255,234,197). The numbers on the CCG edges show
the relationship between each pair of colors. The value 3.0
indicates that there is a parent-children relationship between
the tags and 0.5 indicates that the two colors are not related
to each other. In our example, white is the color of the body

1Here, the term “energy” refers to general cost

960

tag of the HTML file, which contains the tags with royal blue
and tags with light tan, so the edges between white and the
other two colors have a relatively high weight. The tags of
royal blue do not have any sibling or parent-children rela-
tionships, so the edges between them have a much smaller
weight. These weights will be used to prioritize which color
relationships should be given higher precedence to maintain.

Figure 4: The CCG of the web app

The CTS is calculated based on the CCG, it is imple-
mented as a set of generated scripts. For Java executable
files, the CTS is Java code that can instrument the Java
classes and replace colors defined in the classes. For CSS
files, the CTS is a Perl script that can replace color strings.
For images, the CTS is an imagemagic script that can re-
place colors in images.

6. EVALUATION
We performed an empirical evaluation of Nyx. To evalu-

ate Nyx, We used seven open source Java-based web applica-
tions to evaluate our approach, including applications that
have been used in related work, to ensure a broad represen-
tation of implementation styles. These applications are im-
plemented using different web application frameworks, have
colors defined by HTML and CSS, and employ a varying
amount of JavaScript in their user interfaces.

In our evaluation, on average, it took less than 2 minutes
for Nyx to optimize a web app. The transformation itself
does not introduce any significant overhead to the runtime
of each web app

In our experiments, there was a 25% decrease in energy
consumption during the Loading and Rendering phase and
40% less power consumed during the Display phase for the
transformed web applications. We conducted an empirical
study on user acceptance of Nyx and found that more than
97% of users would choose to switch to the transformed ver-
sion before the battery became critically low.

7. RELATED WORK
The closest work to Nyx is Mian and colleagues’ work

Chameleon[6]. However, this approach is a manual approach
instead of the automated approach in Nyx. Kamijoh and
colleagues’ work [8] is one of the first to optimize energy
for OLED screens. However, this work only considers two
colors, the black background color and the white foreground
color.

Choi and colleagues’ method [5] and Lyer and colleagues’
[7] method save display energy by dimming the screen. Com-
pared with this approach, Nyx can better maintain the read-
ability of the entire page.

Other techniques are also proposed to optimize the en-
ergy of mobile devices, for example Pathak and colleagues’

work [10]. However, these techniques are not related to
display energy.

Another piece of our previous work, dLens [13], detects
display energy hot spots in Android apps. However, it is
not for energy optimization and cannot generate an energy
optimized version of an app.

8. CONCLUSION
We introduce a tool, Nyx, which can automatically trans-

form colors to save display energy of mobile web apps on
OLED based devices. The idea of Nyx is to change light
colors to dark colors. Nyx itself is implemented as a com-
mand line tool that users can simply type the command and
generate the energy efficient version of their web apps. In our
evaluation, Nyx can achieve 40% savings of display power.
At the same time, 97% of users accept the transformed color
schemes if the battery goes to critically low.

Acknowledgments
This work was supported by NSF grant CCF-1321141.

9. REFERENCES
[1] http://cssparser.sourceforge.net/.

[2] http://www.brics.dk/automaton.

[3] http://www.cssdrive.com/imagepalette/.

[4] http://www.sable.mcgill.ca/soot/.

[5] I. Choi, H. Shim, and N. Chang. Low-power Color
TFT LCD Display for Hand-held Embedded Systems.
In ISLPED, 2002.

[6] M. Dong and L. Zhong. Chameleon: A Color-adaptive
Web Browser for Mobile OLED Displays. In MobiSys,
2011.

[7] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan.
Energy-Adaptive Display System Designs for Future
Mobile Environments. In MobiSys, 2003.

[8] N. Kamijoh, T. Inoue, C. M. Olsen, M. T. Raghunath,
and C. Narayanaswami. Energy Trade-offs in the IBM
Wristwatch Computer. In ISWC, 2001.

[9] D. Li, A. H. Tran, and W. G. J. Halfond. Making web
applications more energy efficient for oled
smartphones. In ICSE, 2014.

[10] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff.
What is Keeping My Phone Awake?: Characterizing
and Detecting No-sleep Energy Bugs in Smartphone
Apps. In MobiSys, 2012.

[11] J. Shinar and V. Savvateev. Introduction to Organic
Light-Emitting Devices. In J. Shinar, editor, Organic
Light-Emitting Devices, pages 1–41. Springer New
York, 2004.

[12] O. Veksler. Efficient Graph-based Energy Minimization
Methods in Computer Vision. PhD thesis, Ithaca, NY,
USA, 1999. AAI9939932.

[13] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond.
Detecting display energy hotspots in android apps. In
Proceedings of the 8th IEEE International Conference
on Software Testing, Verification and Validation
(ICST), April 2015.

[14] F. Yu, T. Bultan, M. Cova, and O. Ibarra. Symbolic
String Verification: An Automata-Based Approach. In
Model Checking Software. Springer Berlin Heidelberg,
2008.

961

