
iTrace: Enabling Eye Tracking on Software Artifacts within
the IDE to Support Software Engineering Tasks

Timothy R. Shaffer†, Jenna L. Wise†, Braden M. Walters†,
Sebastian C. Müller*, Michael Falcone†, Bonita Sharif†

†Youngstown State University, USA *University of Zurich, Switzerland
Department of CS and IS Department of Informatics

{trshaffer,jlwise,bmwalters01}@student.ysu.edu smueller@ifi.uzh.ch
mrfalcone@student.ysu.edu,bsharif@ysu.edu

ABSTRACT
The paper presents iTrace, an Eclipse plugin that implic-
itly records developers’ eye movements while they work on
change tasks. iTrace is the first eye tracking environment
that makes it possible for researchers to conduct eye track-
ing studies on large software systems. An overview of the
design and architecture is presented along with features and
usage scenarios. iTrace is designed to support a variety of
eye trackers. The design is flexible enough to record eye
movements on various types of software artifacts (Java code,
text/html/xml documents, diagrams), as well as IDE user
interface elements. The plugin has been successfully used
for software traceability tasks and program comprehension
tasks. iTrace is also applicable to other tasks such as code
summarization and code recommendations based on devel-
oper eye movements. A short video demonstration is avail-
able at https://youtu.be/3OUnLCX4dXo.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Experimentation, Measurement, Human Factors

Keywords
eye-tracking, plugin, comprehension, traceability

1. INTRODUCTION
The use of eye trackers has become increasingly popular in

the software engineering (SE) community, as evidenced by
the increasing number of publications in mainstream confer-
ences and journals [2, 3, 5, 7]. Eye trackers have also become
cheaper and more affordable. An eye tracker allows an SE

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’15 , Bergamo, Italy
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

researcher to collect eye movements of software engineers
while they work on software tasks such as adding a new fea-
ture, fixing a bug, or on a general comprehension task. The
eye movement data is used to study the cognitive thought
processes [6] of developers as they perform a task using dif-
ferent software artifacts. Existing eye-tracking studies have
mainly studied developers comprehending software artifacts
such as source code, models such as UML diagrams, and
software visualizations.

An eye tracker consists of both hardware and software.
The hardware is a physical device that usually sits under
the monitor. The software provided by eye tracking vendors
is in the form of an experiment builder (e.g., Tobii Studio
from Tobii Inc.) that allows researchers to build the experi-
ment workflow using various stimuli such as a still image, a
website, a video recording, or free form desktop recording.

Most existing eye tracking studies (besides [11] and [4])
done in the SE community use small snippets of code shown
as an image to study participants. An ad hoc system to
support scrolling using slider bar events for a few small pro-
grams was done in [9] but the tool is unavailable. In all other
studies, the image needs to be displayed on the screen all at
once and participants are not allowed to scroll as scrolling
would interfere with data collected and make post process-
ing extremely difficult if not impossible. This is because the
eye tracker is not aware of the type of stimulus presented to
it. It reports the (x, y) coordinates where a person is look-
ing on the screen, but is not aware of what exists at that
position. When the image is kept static and not allowed
to move (which happens during scrolling) it is easy to map
(after the experiment) what the (x, y) coordinates represent
on the stimulus (which would be a snippet of source code
in case of program comprehension). This mapping process
is not automatic and needs to be done by the researcher
after the experiment is conducted by creating areas of inter-
est on the stimulus, which is an extremely tedious process.
Some of this difficulty is alleviated by using a tool such as
eyeCode (https://github.com/synesthesiam/eyecode/) that
automatically detects words in the stimuli, but even with
eyeCode, the post processing is still tedious and only works
on a single static image.

The above mentioned setup works well in studies con-
ducted in psychology (where studies mainly consist of read-
ing text paragraphs and looking at images), but does not
scale well to SE. In order to run realistic experiments with
eye trackers in SE, we need to be able to run eye track-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2803188

954

https://youtu.be/3OUnLCX4dXo

ing studies on realistic systems consisting of hundreds of
source files and not be limited to a single static view. iTrace
was designed exactly for this purpose. There is no need for
the researcher to manually map (x, y) coordinates to source
code elements as all of this time-consuming labor-intensive
process is now done automatically by iTrace. iTrace runs
uninterrupted in the background within Eclipse, recording
developers’ eye movements while they are working. The plu-
gin is open source under the GPL license at http://seresl.
csis.ysu.edu/iTrace.

2. ITRACE ARCHITECTURE
This section describes a high-level overview of the iTrace

plugin architecture and its integration into the Eclipse UI.
Additional details about architecture design and our initial
ideas for the tool are discussed in [10]. The current im-
plementation handles gazes on Java source code, text files
including HTML and XML files, and Eclipse UI elements.
iTrace is designed with a modular architecture, and it is
easy to write new handlers for different file types to collect
fine-grained data at the statement level.

2.1 Overview
Enabling eye tracking for the IDE requires implementing

three high-level tasks: 1) capturing a user’s gazes from the
tracking device, 2) determining which UI element the user is
looking at within the IDE, and 3) processing this informa-
tion toward some functional goal. Each of these tasks must
be done in parallel to achieve maximum responsiveness. To
overcome this challenge, we use a multithreaded design con-
sisting of a thread for each task that communicates with
other threads via shared blocking queues. Our architecture
makes use of a Gaze object class and three main Java in-
terfaces for working with gazes: IGazeHandler, IGazeRe-

sponse, and ISolver. Each is described below.

Gaze – Represents position, time, pupil size, validity, and
error information for each gaze detected by the eye tracker.
IGazeHandler – Describes a handler that accepts a gaze

on a widget and returns a IGazeResponse.
IGazeResponse – Describes information observed by a spe-

cific gaze on a specific widget.
ISolver – Describes what to do with a specific IGazeRe-

sponse object.

2.2 Integration with Eclipse
To implement our design as a plugin within the

Eclipse framework we make use of the Widget class
(org.eclipse.swt.widgets.Widget). This class represents
each user interface object that is part of the IDE, and as
such stores some content being viewed by the user. It also
exposes two methods – getData() and setData() – which
we use to bind and access gaze handler objects such that
each UI element with content of interest has its own gaze
handler instance. The plugin is initialized following the pro-
cess summarized in Figure 1.

The lifecycle event handlers manage tasks such as paus-
ing gaze processing when the IDE loses focus or is minimized
as well as initializing gaze handlers on new editor windows
(e.g. when the user opens a new source file). Eye tracking
devices are implemented in the plugin by implementing the
IEyeTracker interface and modifying the eye tracker factory
class. We use the Java Native Interface (JNI) to interface

Initialize lifecycle
event handlers

Bind gaze handlers
to widgets

Launch eye tracker
and response

handler threads

Begin capturing and
handling gazes

Figure 1: Plugin initialization process.

Locate widget
under gaze

Translate screen
coordinates

to widget coordinates

Execute gaze handler
on widget and get

gaze response

Process response with
each response solver,
perform gaze events,

write output files

Eye Tracking Thread

Get gaze from device

Solver Thread

UI Thread

Gaze Queue

Gaze Response Queue

Figure 2: Handling of gazes and gaze responses by
multiple threads.

with the eye tracker SDK in C or C++ (for e.g., the Tobi-

iTracker class). For convenience, we have also implemented
the system mouse tracker as a proxy for eye movements when
an eye tracker is unavailable for testing.

Capturing and processing gazes follows the process sum-
marized in Figure 2 and continues until stopped by the user
or paused by minimizing or taking focus from the IDE. If
capturing is paused, it will automatically resume when the
IDE window is restored or acquires focus. Resizing of the
window is also supported by iTrace.

Synchronization of thread communication is handled
through the Java generic class LinkedBlockingQueue used to
implement queues shared by threads. Gazes are consumed
by the UI thread in fixed-size chunks and gaze responses are
consumed entirely by the response handler thread in order
to reduce the amount of locking that must take place.

Source code tracking as described in Section 3 is imple-
mented using the ASTParser class built into Eclipse to parse
Java syntax and generate an abstract syntax tree (AST)
storing line and column numbers of each source code entity.
We implement a gaze handler for the editor window that
translates gaze coordinates to line and column numbers us-
ing methods exposed by the StyledText Eclipse class, which
stores source code content displayed by the IDE. Using the
line and column numbers under the gaze and the line and
column numbers of each source code entity we are able to
determine the entity that the user is currently viewing.

3. FEATURES
In this section, we describe the features that iTrace cur-

rently provides.

955

http://seresl.csis.ysu.edu/iTrace
http://seresl.csis.ysu.edu/iTrace

3.1 Session Creation
The session information consists of a generated session ID,

the session purpose (new feature, bug fix, refactoring, gen-
eral comprehension or other), and a longer session descrip-
tion. In addition to this, the developer ID with an optional
developer name is requested. Session information is required
before tracking starts.

3.2 Calibration
Every eye tracker needs to be calibrated before use. Dur-

ing calibration, the user is asked to look at several dots that
appear on the screen while the eye tracker uses the user’s
eye features along with its 3D eye model to calculate gaze
data. iTrace uses a 9-point calibration mechanism, interfac-
ing with the eye tracker’s native libraries to calibrate. When
calibration is complete, iTrace displays the results of the
calibration so that the user is able to verify the calibration
quality. The user can accept the calibration, or recalibrate.

3.3 Displacement Adjustment
In order to check for displacement or drift, iTrace sup-

ports a crosshair feature. When enabled, it displays a green
crosshair showing where the user is looking. For some users,
there is always some displacement of the eye gaze as shown
by the crosshair vs. the actual point looked at on the screen.
We test this by asking the user to look at certain words at
the top left, bottom left, top right and bottom right after
calibration. If the actual eye gaze is off from the intended
position, one is able to adjust the displacement on the x
and y axis as needed to bring the crosshair in line with the
user’s gaze. This displacement setting is used throughout
each session. It is not always necessary to adjust for drift
and should be used only when required.

3.4 Source Code Entity Level Tracking
iTrace supports fine-grained tracking of software artifacts

at the line and word level. In particular, emphasis is given
to source code as it is the most structured and semantically
rich artifact. The current iTrace model is able to map gazes
to source code entities (SCE) types such as classes, meth-
ods, variables, comments, method invocations, conditional
expressions, and enum, import, for, if, while, and switch
statements. For each of these types, it also states how the
SCE type is used in the code, i.e. a declaration vs. an in-
vocation. For example, if a user looked at a method call, it
would be considered a use of the method type.

3.5 Raw Data Exports
The number of gazes recorded by iTrace depends on the

number of samples per second output by the eye tracker.
Each gaze recorded by the eye tracker is used to generate
a gaze response object. iTrace currently supports gaze re-
sponse export into JSON and XML. An example gaze re-
sponse in XML format is shown in Figure 3. Properties of
the gaze itself, such as time, pupil diameter, validation, and
(x, y) coordinates, are stored as attributes of the response

element. Of these properties, all except system_time and
nano_time are read from the tracker. system_time is the
POSIX time on the host system expressed in milliseconds,
and nano_time is a high-precision time expressed in nanosec-
onds. The type attribute reports the region of the Eclipse
UI where the gaze fell. In the example, the gaze was in a
text editor, so the response element has some additional

Figure 3: An iTrace gaze response record.

attributes, including the filename, line, column, editor font
height in points, line height in pixels, and the (x, y) coor-
dinates of the upper left corner of the line. For Java files,
the Eclipse AST is queried to determine the source code el-
ements on which the gaze fell. This step is necessary, since
relying only on the line number would not be accurate if the
content of the file is changed during a tracking session.

In the example, the sce elements, sorted from most spe-
cific to least specific, report the types of the source code
elements, how they are being used, their positions within
the file, and the number of characters comprising the source
code elements. In this case the gaze fell on a call to the
method java.lang.String.length() in the declaration of
the trim variable, inside an if statement in the canonPath

method, within the tasks.MiscUtilities class.

3.6 Fixation Exports
In eye-tracking terminology, a fixation [6] is when the eye

stabilizes for a certain duration at a particular point of inter-
est. iTrace calculates fixations by running a basic fixation
filter on the raw data. In simple terms, a set of raw gazes
that fall around the same area are grouped and merged to-
gether to form a fixation record, along with the fixation start
time and the duration.

4. USAGE SCENARIOS
The usage scenarios of iTrace fall into two broad cate-

gories. First, it can be used as a method to assess and learn
about how developers navigate and look at different software
artifacts. Second, the data can be used to inform software
development tasks. An example of iTrace being used in each
of these two scenarios is described below.

4.1 Program Comprehension
iTrace has recently been used by Kevic et al. [4] to inves-

tigate detailed developer behavior while performing realistic
change tasks on a large open source system. The study
was conducted on 22 developers. To investigate the added
benefit of data generated from iTrace, the study compared
eye tracking data with Mylyn interaction history data, both
of which were gathered simultaneously. The authors found
that iTrace does capture more contextual data on source

956

code elements, and more importantly captures different as-
pects of developer activity compared to interaction data.

4.2 Software Traceability
The data generated from iTrace has also been used by

Walters et al. [11] as input to help recover software trace-
ability links. The links are automatically derived between
bug reports and source code entities from a set of developer
eye tracking sessions on bug fixes. The concept of collective
intelligence (ability to gather knowledge from other devel-
opers towards a common goal) [8] was used in the above
algorithm. The results were very promising, and eye gaze
does indeed seem to work well to uncover links between rel-
evant code entities and the bug report. They developed an
algorithm to find relevant entities looked at using a weight-
ing scheme based on time. This helps weed out source code
entities that are looked at initially but later abandoned. The
version of iTrace used in this study is available as a release1.
The link generation algorithm used on iTrace data along
with the replication package is also publicly available2.

4.3 Future Scenarios
Besides the above scenarios, there are many software tasks

that can directly benefit from the data that iTrace provides.
Both Rodeghero et al. [7] and Ali et al. [1] use eye tracking
data as a means to improve automatic code summarization
and weighting schemes in software traceability link recov-
ery respectively. Fritz et al. [3] also uses eye tracking data
to predict task difficulty. However, these studies use small
snippets of code that had to fit on one screen. With iTrace
these types of studies could be conducted on large systems or
even larger snippets of code, thereby providing fine grained
eye tracking data that is mapped to source code entities.

5. CURRENT LIMITATIONS
At the time of this writing, two eye trackers, the Tobii X60

and Tobii EyeX are supported. However, the modular ar-
chitecture of iTrace allows for easy addition of new devices.
Additionally, the tool is implemented as an Eclipse plugin
and therefore cannot capture gazes outside of Eclipse. It can
however determine that the Eclipse window is not in focus
due to the lack of gazes. Tracking of elements behind an
open dialog box such as the search window is not currently
supported. Finally, the current version of iTrace does not
support code folding yet. In an upcoming version of iTrace,
we plan to support search view tracking and code folding.

6. CONCLUSIONS AND FUTURE WORK
The paper describes iTrace: an Eclipse plugin that makes

collecting eye gaze on software artifacts possible on large
software systems. For source code documents, iTrace maps
the eye gazes to fine-grained source code entities looked at.
The main contributions of this paper are a) an eye-aware
Eclipse plugin b) easy to comprehend gaze export format
for source code entities and c) demonstrated usage of iTrace
for program comprehension and software traceability tasks.

Currently, fine-grained line and word level support is pro-
vided for Java files. Other files such as text, xml and html
files are tracked, but not at the line-level. iTrace can also

1https://github.com/YsuSERESL/iTrace/releases/tag/
icpc2014
2http://www.csis.ysu.edu/~bsharif/itrace-pilot/

record gazes on Eclipse UI elements, such as the project ex-
plorer. Additional handlers can be written for finer-grained
information from structured text files. These custom han-
dlers can be specifically tailored to each researcher’s needs.

The current research provides several directions for future
work. First, support for more eye trackers is needed. Next,
support for tracking Javadocs and UML diagrams will be
added. Other features, such as support for tracking dur-
ing search, code folding, replaying gazes over a particular
method and keeping track of method renaming are planned.

Acknowledgments
Special thanks to Huzefa Kagdi for inspiring conversations
leading to the development of iTrace.

References
[1] N. Ali, Z. Sharafi, Y.-G. Guéhéneuc, and G. Antoniol.

An empirical study on requirements traceability using
eye-tracking. In ICSM 2012, pages 191–200, 2012.

[2] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. Pa-
terson, C. Schulte, B. Sharif, and S. Tamm. Eye move-
ments in code reading: Relaxing the linear order. In
ICPC 2015, page 12 pages to appear, 2015.

[3] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and
M. Züger. Using psycho-physiological measures to as-
sess task difficulty in software development. In ICSE
2014, pages 402–413, 2014.

[4] K. Kevic, B. Walters, T. Shaffer, B. Sharif, T. Fritz,
and D. Shepherd. Tracing software developers’ eyes and
interactions for change tasks. In ESEC/FSE 2015, page
12 pages to appear, 2015.

[5] S. Müller and T. Fritz. Stuck and frustrated or in flow
and happy: Sensing developers’ emotions and progress.
In ICSE 2015, page 12 pages to appear, 2015.

[6] K. Rayner. Eye movements in reading and information
processing: 20 years of research. Psychological bulletin,
124(3):372, 1998.

[7] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch,
and S. D’Mello. Improving automated source code sum-
marization via an eye-tracking study of programmers.
In ICSE 2014, pages 390–401, 2014.

[8] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho,
and A. Zagalsky. The (r)evolution of social media in
software engineering. In Proceedings of the on Future
of Software Engineering, pages 100–116, 2014.

[9] H. Uwano, M. Nakamura, A. Monden, and K.-i. Mat-
sumoto. Analyzing individual performance of source
code review using reviewers’ eye movement. In Proceed-
ings of the 2006 symposium on Eye tracking research &
applications, ETRA ’06, pages 133–140. ACM, 2006.

[10] B. Walters, M. Falcone, A. Shibble, and B. Sharif. To-
wards an eye-tracking enabled ide for software trace-
ability tasks. In Workshop on Traceability in Emerging
Forms of Software Engineering, pages 51–54, 2013.

[11] B. Walters, T. Shaffer, B. Sharif, and H. Kagdi. Cap-
turing software traceability links from developers’ eye
gazes. In ICPC 2014, pages 201–204, 2014.

957

https://github.com/YsuSERESL/iTrace/releases/tag/icpc2014
https://github.com/YsuSERESL/iTrace/releases/tag/icpc2014
http://www.csis.ysu.edu/~bsharif/itrace-pilot/

	Introduction
	iTrace Architecture
	Overview
	Integration with Eclipse

	Features
	Session Creation
	Calibration
	Displacement Adjustment
	Source Code Entity Level Tracking
	Raw Data Exports
	Fixation Exports

	Usage Scenarios
	Program Comprehension
	Software Traceability
	Future Scenarios

	Current Limitations
	Conclusions and Future Work

