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ABSTRACT
T3i is an automated unit-testing tool to test Java classes. To
expose interactions T3i generates test-cases in the form of
sequences of calls to the methods of the target class. What
separates it from other testing tools is that it treats test
suites as first class objects and allows users to e.g. combine,
query, and filter them. With these operations, the user can
construct a test suite with specific properties. Queries can
be used to check correctness properties. Hoare triples, LTL
formulas, and algebraic equations can be queried. T3i can be
used interactively, thus facilitating more exploratory testing,
as well as through a script. The familiar Java syntax can
be used to control it, or alternatively one can use the much
lighter Groovy syntax.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Verification

Keywords
automated unit testing, automated testing Java, automated
testing Object Oriented programs

1. INTRODUCTION
T3i a tool to automatically test Java classes. When given

a class C to test, it generates test suites consisting of random
sequences of calls to the methods of C —sequences are used
in order to trigger inter-method interactions within the class
(which are prevalent in OO programs).

In general, consistently delivering enough coverage is prob-
lematical for automated testing tools. A recent tool contest
[9] shows that even the best scoring tool can only deliver
50% branch coverage over all target classes (63) in the bench-
mark. The contest was setup such that the target classes are

not known upfront. Participating tools were thus not tuned
to these classes; they were all generically configured. Indeed,
there are classes where a tool would give even 100% branch
coverage. But on average, without tuning, 50% was as far
as we could get. From experience, we notice that tuning
can often greatly improve the delivery. So, the idea behind
T3i is to provide an automated testing tool that facilitates
powerful control by the user.

What sets T3i apart from other automated testing tools
is that it treats test suites as first class objects. It provides
operations such as combine, query, and filter to manipulate
test suites, and it can be used interactively. With these
operations the user can get useful information about the
test suites that he generated, and stepwisely combine and
filter them to get a set that fits certain desired properties.
At the back-end, it relies on a random algorithm to generate
the test sequences. This algorithm is fast. It can generate
thousands of sequences in a second, so that the user can
conveniently experiment with different configurations and
generate various kinds of test suites, without having to wait
long to get a response.

In addition to simple queries, such as counting the num-
ber of times a method or a state are exercised by a test
suite, more powerful queries can be posed in the form of
Hoare triples (pre- and post-conditions of a method), LTL
formulas, and algebraic equations. Such queries can be used
to check the validity of the queried formulas on the given
suite, or to filter the suite to select only those sequences
that satisfy e.g. the antecedent of a formula (thus dropping
sequences that are irrelevant towards the validity of the for-
mula).

This paper is organized as follows. Section 2 explains
the general architecture of T3i. Section 3 shows the basic
operations on test suites. Section 4 shows more advanced
queries on test suites. To improve the coverage, T3i provides
a convenient way to specify custom value generators. This
will be shown in Section 5. Section 6 shows the result of
a preliminary measurement on the cost and benefit of user
tuning in T3i. Section 7 concludes.

T3i is open source; it can be obtained from this site: http:

//code.google.com/p/t2framework.

2. ARCHITECTURE
Figure 1 shows the top level architecture of the tool. The

generation of the test sequences is actually done at the back-
end, by the tool T3 [6, 7]; the latter is the successor of T2 [8].
T3i provides the layer to query and manipulate test suites,
and to configure T3. T3i is written in Groovy, so that it can
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Figure 1: T3i architecture.

1 > config = new Config(CUT:C, maxPrefixLength:10, ...)
2 > t3 = new T3groovyAPI(config)
3 > suite = t3.ADT()
4 ** Suite generated.
5 ** Suite size : 100
6 ** Avrg. seq. length : 7
7 > query(suite).with(visit("foo")).count()
8 10
9 > query(suite).with(visit({ o → o.x > 0 })).count()

10 1

Figure 2: An example of a T3i session.

be used interactively through Groovy-shell. Alternatively, it
can be used through a script, which can either be a Groovy
script, or a Java or JUnit class. The familiar Java syntax can
be used to command T3i; alternatively, we can use Groovy’s
much lighther syntax. Generated test suites can be saved in
trace (.tr) files, which can be reloaded and replayed later.

The algorithm of the back-end tool T3 is a variation of
Randoop [5]. It additionally introduces a concept of ’goal’:
each test sequence is aimed at testing a goal, which is either
a method or a pair of methods. The sequence has the form
of σgτ , where g is the goal [6]. The prefix σ is intended to
setup a random initial state for g, and the suffix τ is intended
to observe the side effect of g.

Figure 2 shows an example of an interactive session with
T3i, through Groovy-shell. Less important parts of the in-
terpreter’s responses are omitted. The first line creates a
configuration, e.g. it specifies which class is to be the Class
Under Test (CUT). Line 2 creates an instance of the back-
end T3 with the specified configuration. Line 3 invokes T3
to generate a test suite; two methods are availble to do this
ADT() and nonADT(). The first is used to test non-static
members of the CUT, the latter to test static members. An
ADT-sequence always starts with the creation of an instance
of CUT, called object Under Test (oUT). Subsequent steps
all operate on this this oUT.

Lines 7 and 9 show examples of two simple queries on the
suite. The first counts how many test sequences in suite call
the method foo. The second counts how many test sequences
manage to cover certain states of the oUT, characterized by
the predicate {o→ o.x > 0}. The notation x→ e denotes a
λ-expression in Groovy.

3. BASIC OPERATIONS ON TEST SUITES
Two test suites S1 and S2 can be combined by the expes-

sion S1 + S2, which results in a new suite consisting of the
sequences of S1 and those of S2.

To facilitate query and filter on test suites, we first intro-
duce a class called Queriable. An instance q of Queriable rep-
resents a collection of sequences that can be queried. Let’s

refer to this collection by q.data. We have these operations:
q.collect() simply returns q.data, q.count() returns the size
of q.data, and q.sat() returns true if q.count()>0. If φ is a
predicate over sequences, q.with(φ) results a new Queriable,
whose data consists only of sequences that satisfy φ. In other
words, the expression filters q with φ, allowing us to pick
out only those sequences that are relevant for the purpose
at hand.

If S is a test suite, query(S) turns it to an instance of
Queriable. For example, the first expression below checks if
φ is satisfiable on S. The second collects all those sequences
of S on which φ is true, and put it in a new suite S′.

query(S) . with(φ) . sat()
S′ = query(S) . with(φ) . collect()

Checking if φ is valid on the suite can be done as follows:

! query(S) . with({σ →!φ(σ)}) . sat()

But this is rather verbose. To express this more succintly,
we make with to also calculate the complement of data (so,
those sequences that do not satisfy the queried predicate).
The method valid() can be used to check if this complement
is empty. So, the query above can now be written as:

query(S) . with(φ) . valid()

The function visit we saw before (Figure 2) constructs thus a
sequence predicate. E.g. visit(name) constructs a sequence
predicate, which is true on sequences that contain a call to
a method or constructor with the specified name. We will
see more predicate constructors later.

We can also transform a test suite. If f is a function
from sequence to sequence, q.transform(f) produces a new
Queriable, whose data consists of f(σ), for every sequence
σ in the original q.data. Only non-null (successful) f(σ)’s
will be included. For example, the expression below con-
structs a new test suite by transforming the first occurence
of f(..); g(..) in every σ in S to g(..); f(..), provided the latter
is a valid sequence.

S′ = query(S) . transform(swap(”f”, ”g”)) . collect()

4. ADVANCED QUERIES
We can express Hoare triple specifications (pre- and post-

conditions of a method). For example, below are two speci-
fications of a method f(x). The first, H1, states that if x is
non-null, f will not throw any exception; whereas H2 says
that if x is null, then the method should throw an exception.

H1 = hoare({s→ s.args[0] != null} , ”f”, {t→ t.exc==null})

H2 = hoare({s→ s.args[0]==null} , ”f”, {t→ t.exc != null})

Hoare triples are also sequence predicates. So, to check if
e.g. H2 is valid on a test suite S we can simply do:

query(S) . with(H2) . valid()

A more powerful way to express sequence predicates is
by using Linear Temporal Logic (LTL) formulas [1]. Let φ
and ψ be LTL formulas. We have the following operators to
construct more complicated LTL formulas in T3i:

not(φ) , φ.and(ψ) , next(φ)
φ.until(ψ) , always(φ) , eventually(φ)
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For example, eventually(always(φ)) is a predicate that is true
on any sequence σ where eventually φ holds, and remains to
hold until the end of the sequence.

We still need a way to construct an elementary LTL for-
mula. Traditionally, the now(p) operator is used to lift a
state predicate p to a sequence predicate: it holds on a se-
quence σ if its first state satisfies p. However, for steps in
a test sequence, it is also convenient to be able to refer to
the pre-state and post-state of a step. To do this, ’selectors’
pre and post are introduced. For example, the first predicate
below is true on any sequence σ that contains a call o.f(..)
such that o.x = 0 before the call. The second predicate is
true on any σ where every call o.f(..) in σ causes o.y>0 after
the call.

eventually (pre ({s→ s.ofMethod(”f”) && s.tobj.x==0}))
always (post ({s→ s.ofMethod(”f”) && s.tobj.y > 0}))

Because any LTL formula φ is a sequence predicate, we
can use it to filter a test suite: query(S).with(φ).collect().
We can check its validity on the suite using valid() as we did
before.

The predicate constructors visit and hoare that we saw
before are actually defined in terms of LTL operators. If H
is a Hoare triple of a method f , H.antecedent() returns H’s
pre-condition. So we can now do this to collect only those
test sequences that are relevant for H (those that ever call
f on a state satisfying its pre-condition):

S′ = query(S).with(eventually(H.antecedent())).collect()

Algebraic Query
The methods of a class often interact. For example, imagine
a class Stack with methods push, pop, and top. We expect
that if we do s.pop() immediately after s.push(x) the stack
s will be restored to its value as before the push. Such a
property cannot be expressed by individual Hoare triples of
the methods, nor with with LTL. Inspired by Abstract Data
Type (ADT) [2], we can specify methods interactions using
’algebraic equations’. Below are two examples:

(lhs(”push(x); pop()”)�tobj) . equiv Epsilon

(lhs(”push(x); pop()”)�retval) . equiv (rhs(”push(x); top()”))

The first equation states that the effect of the sequence
push(x); pop() on their target object, which is the stack on
which they operate on, is equivalent to the effect of ε (skip).

The second equation states that the value returned by the
sequence push(x); pop() is the same as that of push(x); top().
In other words, pop returns the last value pushed into the
stack.

If Π is an algebraic equation, we can check if it is valid on
a test suite S, or use it to filter S, as follows —the syntax is
similar to that of LTL query.

algquery(S) . with(Π) . valid()
algquery(S) . with(Π) . collect()

An algebraic equation is a predicate, but it is not a se-
quence predicate. It quantifies over all pairs of segments
of the test sequences in a test suite, that match respec-
tively the left-hand and right-hand sides of the equation,
and starting in the same state. The function collect() first
collects all pair of sequences, each containing at least one
matching segment-pair, then deconstruct the pairs into a
new test suite. Because the concept is quite different, a sep-
arate query algorithm is also needed. Whereas the cost of

LTL queries is O(|φ||S|), algebraic queries are more expen-
sive, namely O(|Π|k3|S|2), where k is the average length of
the sequences in S.

Sometimes it is useful to query conditional equations of
the form φ → Π, where Π is an equation; for example to
check that push(x) behaves as ε when the stack is full. This
cannot be expressed in a single query expression. However,
if φ is expressible in LTL, we can express the query as a
composition of the corresponding LTL and algebraic queries:

algquery(query(S).with(φ).collect()).with(Π).valid()

5. GENERATING TEST SUITES
When used out of the box, automated testing tools may

fail to deliver enough coverage, which is not surprising due
to the undecidability of the problem. Their delivery can
however be greatly improved by tuning them to the tar-
get program at hand. What we essentially do in ’tuning’ is
helping the tools with some bits of our human insight. E.g.
imagine a CUT has a method add(String email) that expects
a string s containing a syntactically correct email. This is
too hard for a mere random generator to construct. T3i al-
lows a user defined value-generator to be passed to its back-
end sequence-generator (T3). Whenever a step in a test
sequence, e.g. a call to a method m(x), requires a value of a
parameter to be supplied, the back-end sequence-generator
normally uses T3’s built-in value-generator to produce this
value. A custom value-generator can be conveniently speci-
fied as shown in the example below:

G = SumGens(
Param(”email” ,String(OneOf( ”ann@abc.com”,

”ann−ben@abc.com”,
”clay@[123.0.1.2]”))),

Param(”region”,String(OneOf(”EU”, ”SA”, ””))),
Param(”age” , Integer(gauss(16, 17, 18, 40, 66)))

)

The style is similar to QuickCheck [3]. However, since the
sequence of test steps is randomly generated, it is not possi-
ble to statically link a value-generator to a specific method in
the target class. This leads to notable difference. Whereas a
QuickCheck generator takes no input, a T3i value-generator
first receives a request before it generates a value; it then
inspects the request to decide whether it can indeed pro-
duce a compatible value. Since information can be encoded
inside such a request, e.g. the name of the parameter to be
generated, T3i generators are in principle more powerful.

An instance of T3 that uses the above G can be created
as follows:

t3′ = new T3groovyAPI(G, config)

Then, as in the example in Figure 2, we can generate suites
by calling t3′.ADT().

When the back-end generator needs a value for a param-
eter named email, G will randomly choose one of speci-
fied email addresses above. Similarly, the second entry in
G specifies which values to choose when parameters named
region have to be instantiated. The choice is made by the
expression OneOf(..), that uses uniform distribution. The
expression constructs an instance of the class Supplier〈T 〉,
which is a standard class in Java-8 representing functions or
closures that take no argument, and returns an instance of
T . We can easily define a custom variant of OneOf, e.g. one
that uses the Gaussian distribution. For example, here is
the definition of the function gauss used in the definition of
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G above:

Supplier〈Integer〉 gauss(int...s){
return {→ s[rnd.nextGaussInt(s.length)]} ;

}

6. COST AND BENEFIT
To get insight on the potential cost and benefit of T3i, we

used it to test some classes. Table 1 shows some statistics
of these classes: lines of code, number of methods, num-
ber of branches, and the highest McCabe complexity of the
methods.

Table 1: Some experiment classes
locs method branch mCabe

Triangle 29 4 22 4
Sequenic.T2.XPool 43 6 8 2
org.scribe.model.Token 64 10 16 4
BinarySearchTree 89 14 42 6
Sequenic.T2.Obj.XShow 201 11 74 15

For each class, T3i is tuned by configuring its parameters
and by supplying a custom value-generator. Information
on configurable parameters can be found in the tool’s User
Manual. Then, queries were written to express the class’
expected behavior. To provide comparison, we also wrote
manual tests. Table 2 shows the size, in lines of code, of
the custom value-generator (cgen), the queries (qr), and the
manual test-cases (manual). If we use these numbers as
indicators of the amount of effort or cost to construct the
respective artifacts, the table suggests that the effort of using
T3i is of about the same order as writing the tests manually.

Table 2: The size of various artifacts.
|cgen| |qr| |cgen+qr| |manual|

Triangle 1 6 26 23
XPool 6 23 48 74
Token 8 33 60 120
BinarySearchTree 1 15 35 87
XShow 43 34 113 65

Table 3 shows the delivered branch coverage. The col-
umn plain shows the coverage of T3i without tuning. As
comparison, the column evo shows the coverage delivered
by the tool Evosuite [4], without tuning. Evosuite is based
on an evolutionary algorithm. It performs better than plain
T3i, but it needs longer time to generate tests (few min-
utes, whereas T3i responded in 2 - 25 seconds). The column
manual shows the coverage of manual tests. Finally, the
column tuned shows the coverage delivered by tuned T3i.

Table 3: Delivered branch coverage.

plain evo manual tuned
Triangle 59 100 86 100
XPool 50 83 100 100
Token 50 94 88 100
BinarySearchTree 90 90 83 99
XShow 38 22 69 91

Table 4 shows the hypothetical strength of the queries
we wrote with T3i (only Hoare triple queries are used in
this experiment), measured in terms of their ability to de-
tect mutations (bugs), artificially injected using the SBST
benchmarking tool [9]. The column qkill shows the per-
centage of the mutations found (killed) by the queries. As
comparison, mkill shows the kill-percentage of manual tests.

Table 4: Query strength, versus manual testing.

|mutations| qkill mkill
Triangle 17 100 100
XPool 10 100 90
Token 22 95 82
BinarySearchTree 43 93 93
XShow 67 73 73

7. CONCLUSION
The tool T3i provides enhanced control for the user. Test

suites can be automatically generated, but they are also first
class objects which can be queried and manipulated. Pow-
erful expressions such as Hoare triples, LTL formulas, and
algebraic equations are available for queries. Using Groovy
allows us to express queries in a cleaner syntax. Test suites
can be filtered, transformed, and merged. T3i can be used
interactively, so the user can experiment with various con-
figurations to generate various test suites, and use the above
operations to stepwisely construct a test suite with specific
properties. Tuning T3i to target a specific class takes some
effort. A preliminary experiment suggests that this effort is
about the same as what was spent to write manual tests,
but a tuned T3i gives us better coverage and queries that
are stronger than manual tests.

Currently T3i uses a random engine at the back-end. This
has the benefit of being fast. A possible future work is to
provide an option to use a powerful algorithm, e.g. as used
by Evosuite [4], while maintaining the response time accept-
able, which is crucial for the usability of an interactive tool.
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