
UMTG: A Toolset to Automatically Generate System Test
Cases from Use Case Specifications

Chunhui Wang†, Fabrizio Pastore†, Arda Goknil†, Lionel C. Briand†, Zohaib Iqbal†‡
† Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg

‡ Quest Lab, National University of Computer & Emerging Sciences (FAST NU), Islamabad, Pakistan
{chunhui.wang,fabrizio.pastore,arda.goknil,lionel.briand}@uni.lu zohaib.iqbal@nu.edu.pk

ABSTRACT
We present UMTG, a toolset for automatically generating
executable and traceable system test cases from use case
specifications. UMTG employs Natural Language Process-
ing (NLP), a restricted form of use case specifications, and
constraint solving. Use cases are expected to follow a tem-
plate with restriction rules that reduce imprecision and en-
able NLP. NLP is used to capture the control flow implic-
itly described in use case specifications. Finally, to generate
test input, constraint solving is applied to OCL constraints
referring to the domain model of the system. UMTG is in-
tegrated with two tools that are widely adopted in industry,
IBM Doors and Rhapsody. UMTG has been successfully
evaluated on an industrial case study.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability, Verification

Keywords
NLP, Use Case Specifications, Test Cases Generation

1. INTRODUCTION
To ensure traceability between requirements and system

test cases in safety critical domains, e.g. automotive, sys-
tem test cases are often manually derived from functional
requirements written in natural language. As a result, the
definition of system test cases is time-consuming and chal-
lenging under time constraints.

Considerable research has been devoted to automatically
deriving test cases from requirements in natural language [12].
Most of the existing approaches require either additional be-
havioral modeling (e.g., activity diagrams [13]) or manual
intervention by the testers, for example, to manually derive

test inputs [10]. Commercial model-based testing (MBT)
tools such as BPM-X [1], SpecExplorer [8], or Conformiq
Designer [2] automatically generate system test cases by us-
ing behavioral models, e.g., BPMN [14] and finite state ma-
chines. In modern industrial systems, behavioral models
tend to be complex and expensive. Our experience with our
industry partner IEE [7] shows that the adoption of behav-
ioral modeling, at the required level of detail for automated
testing, is not practical for system test automation [16].

In this paper, we present UMTG, a toolset that generates
executable system test cases by exploiting the behavioural
information implicitly described in use case specifications.
UMTG automates the approach detailed in [16]. UMTG
requires a domain model of the system, which enables the
definition of constraints that are used to generate test data.

UMTG applies Natural Language Processing (NLP) on
use case specifications to identify domain entities and con-
straints, i.e. the pre-, post- and guard- conditions listed in
the use cases. This information is used to build Use Case
Test Models (UCTMs) that capture the control flow implic-
itly described in the use case specification.

To generate test data, UMTG expects constraints, refer-
ring to the domain model, to be defined with the Object
Constraint Language (OCL) [15] since OCL is the natu-
ral choice when defining high-level constraints on class dia-
grams. In order to generate test inputs, UMTG relies upon
a constraint solver [9] which processes the domain model and
associated OCL constraints given by the software engineer.

We applied UMTG on the use case specifications of Body-
Sense, an automotive sensor system provided by IEE [7].
The results show the effectiveness and scalability of UMTG
that generates test cases that cover more execution scenarios
than those covered by manual test suites [16].

This paper proceeds as follow: Section 2 presents the
workflow of our toolset while Section 3 gives an overview
of the toolset architecture. Section 4 presents example test
cases generated by UMTG, Section 5 summarizes the re-
sults achieved with an industrial case study, while Section 6
concludes the paper.

2. UMTG WORKFLOW
Figure 1 shows the activities performed by software en-

gineers to automatically generate system test cases with
UMTG.

In Step 1, the software engineer writes use case specifica-
tions according to Restricted Use Case Modeling (RUCM).
RUCM [17] is a restricted use case format with a set of
keywords and restriction rules that enable natural language

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2803187

942

List of Conditional
Statements

OCL Constraints
Use Case
Test
Model

5. Evaluate the
Model Completeness

10. Generate Executable
Test Cases

4. Model the Domain

7. Specify Constraints

List of
Missing
Entities

2. Check RUCM Syntax

6. Refine Model

3. Extract Behavioral
Information

INCLUDE Use Case Quali
NCLUDE Use Case Qualif
INCLUDE Use Case Quali
THE SYS VALIDATES TH
THE SYS SENDS THE ST
THE SYS SENDS THE CL

INCLUDE Use Case Quali
NCLUDE Use Case Qualif
INCLUDE Use Case Quali
THE SYS VALIDATES TH
THE SYS SENDS THE ST
THE SYS SENDS THE CL

INCLUDE Use Case Quali
NCLUDE Use Case Qualif
INCLUDE Use Case Quali
THE SYS VALIDATES TH
THE SYS SENDS THE ST
THE SYS SENDS THE CL

Use Cases

Domain
Model

Test Cases with
traceability
links saved in Doors

1. Elicit Use Cases

 NO ERROR
TEMPARATURE IS VALID
MEASUREMENTS IN LIMITS
. . .

 NO ERROR: errNo = 0
TEMPARATURE IS VALID: t >= 0
MEASUREMENTS IN LIMIT ...

activity automated by
UMTG

1. Step

activity performed by
the software engineer

Legend:

data flow

Mapping Table

8. Generate
Abstract Test Cases9. Specify Mapping Table

4

3

2

1

5

6

1. Step

List of
Domain
Entities

Test Cases with inputs
expressed in terms of
instances of the domain
entities

Figure 1: The UMTG workflow

processing of use cases. Figure 2 shows an excerpt of a use
case specification of BodySense with basic and alternative
flows. In Figure 2, capital letters are used for RUCM key-
words. For example, the use case step in line 8241 includes
the keyword VALIDATES THAT. According to RUCM, this
keyword must be followed by a conditional statement. In line
8241 of Figure 2, the conditional statement is “the occupant
class for airbag control is valid and the occupant class for
seat belt reminder is valid”. The next use case step, i.e., line
8242 in Figure 2, is taken only if the condition holds, other-
wise, the alternative flow starting from line 8257 is selected
(see [16] for a detailed description of RUCM).

We assume use cases are managed with IBM Doors [5]
which does not put any restriction on the structure of use
cases, thus allowing engineers to adopt the RUCM template.

In Step 2, UMTG checks if the use case specifications
conform to the RUCM template. If not, software engineers
are expected to correct the use case specifications.

In Step 3, UMTG extracts behavioural information from
the use case specifications by means of NLP. During this
step, UMTG generates three different outputs: a list of do-
main entities appearing in the use case specifications, a list
of conditional statements in the use case specifications, and
the Use Case Test Model. The Use Case Test Model makes
the implicit control flow in a use case specification explicit.
It is an intermediate model that is not meant to be inspected
by end-users but is used to drive test generation.

Figure 2: RUCM Use Case Specification in IBM DOORS

In Step 4, the software engineer designs the domain model
of the system using IBM Rational Rhapsody. In Step 5,
UMTG checks the model completeness by verifying if all
the domain entities identified in the use case specifications
are present in the domain model. If there are missing do-
main entities, the software engineer is expected to refine the
domain model accordingly (Step 6).

In Step 7, the software engineer reformulates the condi-
tional statements as OCL constraints referring to the do-
main model. Figure 3 shows the OCL constraint for the
conditional statement that specifies that the occupant class
for airbag control is valid when the value of attribute occu-
pantClassForSeatBeltReminder is different from Error.

inv TheOccupantClassForAirbagControlIsV alid :
BodySenseSystem.allInstances()

→ forAll(b|b.occupancyStatus.
occupantClassForSeatBeltReminder<>OccupantClass :: Error)

Figure 3: OCL constraint for the conditional statement the
occupant class for airbag control is valid.

In Step 8, UMTG generates abstract test cases. In this
step UMTG identifies the test inputs required to cover each
scenario of the use case by solving the path conditions of the
Use Case Test Model. We use the term use case scenario for
a sequence of use case steps that start with a use case pre-
condition and ends with a postcondition of either a basic or
alternative flow. UMTG generates test inputs that cover all
paths in the Use Case Test Model and therefore all possible
use case scenarios. Since the test inputs generated in this
step are expressed in terms of instances of the entities in the
domain model and cannot directly be executed on the target
platform, we refer to such inputs as abstract test cases.

To generate executable test cases, abstract test inputs
must be translated into concrete test inputs, e.g. byte vec-
tors. To this end the software engineer provides a mapping
table with regular expressions that map abstract inputs to
invocations of test driver functions including concrete inputs
(Step 9).

In Step 10, UMTG generates executable test cases by ap-
plying the mapping table on the abstract test cases. The
generated test cases are automatically loaded into IBM Doors
and traceability links are created.

943

Consistency
Checker

Rhapsody
XMI Toolkit

OCL
Editor

Rhapsody Plugin

Document
Exporter

NLP
Processor

DOORS
plug-in

DXL Script
Generator

Executable
Tests

Generator

Test Scenario
Builder

OCL
Solver

Abstract Tests Generator

Table Editor
(Excel)

DOORS

Legend

Data
Flow

3

5

8

2

107 9

Figure 4: UMTG architecture (gray boxes show third party
components, black boxes UMTG components with nested com-
ponents)

IBM Doors plug-in IBM Rhapsody plug-in

3
2

5
8
10

Figure 5: Menus provided by the UMTG plug-ins

3. UMTG ARCHITECTURE
Figure 4 shows the UMTG architecture. To ease its in-

dustrial adoption, we integrated UMTG with two widely
used tools that are adopted by our industry partner: IBM
Doors [5] and IBM Rhapsody [6] (UMTG works with the ver-
sion of Rhapsody integrated with the Eclipse development
environment [3]).

The main components of UMTG are two plug-ins that ex-
tend Doors and Rhapsody. These plug-ins provide the user
interface of UMTG and orchestrate the other components of
UMTG that implement the steps in Figure 1 (see Figure 4
where the black circles denote the steps).

The UMTG Doors plug-in provides the menu buttons that
activate the UMTG steps related to the elicitation of use
cases while the UMTG Rhapsody plug-in provides the menu
buttons that activate the steps related to test generation.
Figure 5 shows the contextual menus provided by the UMTG
plug-ins where black circles denote the corresponding steps
in Figure 1.

The UMTG Rhapsody plug-in also provides the inter-
face to visualize and edit the artefacts produced by UMTG.
UMTG takes advantage of the plug-in architecture of Eclipse
to reuse functionality provided by third party plug-ins. In
particular, UMTG relies upon the following user interfaces:
the Eclipse Web Browser to visualize the domain entities
missing from the domain model, the OCL editor provided
by the Eclipse OCL plug-in [4] to support software engineers
in editing the list of OCL constraints, the Eclipse Text Edi-
tor to visualize abstract test cases, the default Eclipse Table
Editor (e.g. Microsoft Excel) to edit mapping tables, and
the Eclipse Project Explorer to list the UMTG artefacts.

The other components in Figure 4 implement the steps of
the UMTG workflow automated by the UMTG toolset, i.e.
Steps 2, 3, 5, 8, and 10 in Figure 1. The NLP Processor
implements Steps 2 and 3. It is based on the GATE work-
bench [11], an open source NLP framework. To load use
cases from IBM Doors, UMTG uses the Doors Document
Exporter, an API that exports Doors content as text files.

The UMTG Rhapsody plug-in implements steps 5, 8, and
10. The UMTG Rhapsody plug-in relies upon a third party
application, the Rhapsody XMI Toolkit, to export the do-
main model in the XMI format. This is necessary since

Rhapsody saves models into its own proprietary format. The
Consistency Checker and the Abstract Tests Generator im-
plement steps 5 and 8. The OCL Solver is the constraint
solver described in [9].

The Executable Test Generator implements Step 10, it
takes the mapping table and the abstract test cases as in-
put, and generates the executable test cases as output. The
Executable Test Generator exploits the Door eXtension Lan-
guage (DXL) to load the generated test cases into Doors.
The DXL functionality is also used to automatically gener-
ate the traceability links between use case specifications and
the generated test cases. UMTG adds to each generated test
case a set of traceability links indicating the flow of the use
case specifications covered by the test cases. Furthermore,
for each use case flow covered by a test case, it generates
traceability links indicating the test cases covering it.

4. TEST CASES AND MAPPING TABLES
UMTG generates two sets of test cases: abstract test cases

and executable test cases (see Figure 6).
Abstract test cases include test inputs and oracles ex-

pressed in terms of domain model entities. The left part of
Figure 6 shows an example of an abstract test case. Abstract
test cases are saved in text files under the Eclipse/Rhapsody
workspace. Each abstract test case includes a header sec-
tion that depicts the steps of the scenario under test, and
a body section with a list of input operations and oracles.
The header lines in Figure 6 show that the test case covers
a scenario in which the condition the cable shield integrity is
valid is false (header lines begin with the symbol #). One
of the test inputs in Figure 6 is an assignment of the value
NotOK to CableShieldIntegrityStatus (this is the value that
falsifies the condition above).

The executable test cases generated by UMTG extend the
abstract test cases by including calls to the test driver func-
tions that need to be invoked to execute the system.

The right part of Figure 6 shows a portion of an executable
test case generated by UMTG. The generated test case in-
cludes lines with abstract test inputs that are included to
provide high-level operation descriptions. These lines are
followed by the test driver functions with the concrete in-
puts to be used to test the system. Label A in Figure 6
points to the high level operation description that indicates
that the test case must set the CableShieldIntegrityStatus to
the ‘failed’ status. Label B points to the corresponding test
driver function, i.e., Set AMGB. Set AMGB is used to sim-
ulate an input signal coming from a sensor (in this case it
sends an error status on the channel of the shield integrity
sensor). The generated test case also contains test oracles.
Label C shows an oracle implemented by means of an invo-
cation of function Lin Publish, which is used to check the
signals sent on a channel.

Executable test cases are generated by means of a map-
ping table that is provided by software engineers. Figure 7
shows a portion of the mapping table used for BodySense.
To generate calls to driver functions, UMTG parses each
line in the abstract test cases according to the mapping ta-
ble. The mapping table is made of five columns. The first
two columns provide operation names and regular expres-
sions that match an input in the abstract test case. The
last three columns provide the driver function calls and pa-
rameters that should be added to the executable test case
when an abstract input matches the regular expression.

944

The system sets all errors as not detected.
..
[TRUE] The system VALIDATES THAT the seat heater circuit
integrity is valid.
The system requests CableShieldIntegrityStatus from the
BodySenseSensor.
[FALSE] The system VALIDATES THAT the cable shield integrity
is valid.
Postcondition: The system sets CableShieldIntegrityError as
detected.
..
<INPUT> BodySenseSensor.SeatHeaterCircuitIntegrityStatus =
DomainModel::HWStatus::OK
<INPUT> BodySenseSensor.CableShieldIntegrityStatus =
DomainModel::HWStatus::NotOK
...
<CHECK> CableShieldIntegrityErrorIsDetected

A

B

C

Figure 6: Example of an Abstract (left) and a corresponding Executable (right) Test Case Generated by UMTG

Figure 7: Portion of a Mapping Table

5. EVALUATION
UMTG has been adopted to automatically generate test

cases from the use case specifications of BodySense [16]. The
case study includes six different use case specifications of
varying length. Each specification includes from 25 to 50
steps and several alternative flows, from 6 to 13. While the
domain model includes 58 entities, 63 attributes, 22 associ-
ations and 35 inheritance relations.

Since both the elicitation of use case specifications and
the definition of a domain model are common software engi-
neering practices, to evaluate the additional modelling effort
required by UMTG we focus on the number of OCL con-
straints to be defined by software engineers. We defined 53
OCL constraints for BodySense, a number which has been
considered acceptable by IEE engineers.

In the case study, UMTG covers all the scenarios of the
use cases under test, more than the manually derived test
cases. UMTG covers a total of 100 scenarios, while manually
written test cases cover 80 scenarios. These results mostly
depend on the fact that RUCM reduces imprecision and in-
completeness in use cases, thus leading to the identification
of more scenarios.

Our evaluation also shows that UMTG effectively gener-
ates test inputs from use case specifications. The tool scales
as the entire system test generation can easily be run over
night for a representative industrial system.

6. CONCLUSION
We presented our tool, UMTG, for automatically gen-

erating executable system test cases by exploiting the be-
havioural information implicitly described in use case spec-
ifications. UMTG successfully brings automatic test gen-
eration to industrial practice by integrating advanced tech-
nologies, i.e. NLP and OCL constraint solving, with state-
of-practice development environments such as Eclipse, IBM
Doors, and Rhapsody.

Empirical results obtained with an industrial case study
show that UMTG is effective to automatically generate test
inputs from use case specifications. Our experience indi-
cates that modeling requirements in UMTG is realistic and
feasible in an industrial context. In the future, we plan to
conduct more case studies with more involvement of the IEE

engineers to further evaluate the usability of our tool.
UMTG and a video demonstration are available at the

following URL: https://sites.google.com/site/umtgtestgen.

7. ACKNOWLEDGMENT
This work has been supported by the Fonds National de

la Recherche, Luxembourg (FNR/P10/03), and by IEE. We
would like to thank Thierry Stephany for his support.

8. REFERENCES
[1] Bpm-x. http://www.bpm-x.com.

[2] Conformiq designer. http://www.conformiq.com/.

[3] Eclipse IDE. http://www.eclipse.org.

[4] Eclipse OCL. http://www.eclipse.org/modeling/.

[5] IBM Doors. http://www-
03.ibm.com/software/products/en/ratidoor.

[6] IBM Rhapsody. http://www-
03.ibm.com/software/products/en/ratirhapfami.

[7] IEE sensing solutions. http://www.iee.lu.

[8] SpecExplorer. http://research.microsoft.com/en-
us/projects/specexplorer/.

[9] S. Ali, M. Zohaib Iqbal, A. Arcuri, and L. Briand.
Generating test data from OCL constraints with
search techniques. IEEE TSE, 39(10):1376–1402, 2013.

[10] A. Bertolino and S. Gnesi. Use case-based testing of
product lines. SIGSOFT SEN, 28(5):355–358, 2003.

[11] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. In In ACL’02, 2002.

[12] M. J. Escalona, J. J. Gutierrez, M. Mej́ıas, G. Aragón,
I. Ramos, J. Torres, and F. J. Domı́nguez. An
overview on test generation from functional
requirements. JSS, 84(8):1379–1393, 2011.

[13] B. Hasling, H. Goetz, and K. Beetz. Model based
testing of system requirements using UML use case
models. In ICST 2008. IEEE.

[14] OMG. BPMN specification. http://www.bpmn.org/.

[15] OMG. The Object Constraint Language.
http://www.omg.org/spec/OCL/.

[16] C. Wang, F. Pastore, A. Goknil, L. Briand, and M. Z.
Iqbal. Automatic generation of system test cases from
use case specifications. In ISSTA 2015. ACM.

[17] T. Yue, L. C. Briand, and Y. Labiche. Facilitating the
transition from use case models to analysis models:
Approach and experiments. ACM TOSEM, 22(1),
2013.

945

