
Don’t Panic: Reverse Debugging of Kernel Drivers

Pavel Dovgalyuk, Denis Dmitriev, and Vladimir Makarov
Institute for System Programming, Russian Academy of Sciences

{pavel.dovgaluk, denis.dmitriev, vladimir.makarov}@ispras.ru

ABSTRACT
Debugging of device drivers’ failures is a very tough task
because of kernel panics, blue screens of death, hardware
volatility, long periods of time required to expose the bug,
perturbation of the drivers by the debugger, and non-determi-
nism of multi-threaded environment. This paper shows how
reverse debugging reduces the influence of these factors to the
process of drivers debugging. We present reverse debugger as
a practical tool, which was tested for i386, x86-64, and ARM
platforms, for Windows and Linux guest operating systems.
We show that our tool incurs very low overhead (about 10%),
which allows using it for debugging of the time sensitive
applications. The paper also presents the case study which
demonstrates reverse debugging of the USB kernel drivers
for Linux.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging —
Debugging Aids

General Terms
Performance, Reliability

Keywords
Debugging, deterministic replay, reverse debugging, kernel
debugging, USB

1. INTRODUCTION
Every hardware device that is designed for connecting

to computer needs drivers for operating systems. Drivers
of hardware are difficult to debug. Drivers work in the
privileged mode, and every invalid operation or non-catched
exception leads to kernel panic in Linux or BSoD in Windows.
This behavior is fatal to system, which cannot recover and
continue its execution.

Dealing with operating system faults is not the only prob-
lem in debugging. Stopping the program in the debugger

may cause timeout in data processing or data transfer. The
behavior of the connected device may change and the bug will
disappear. Each program run can expose different behavior
of the program without giving a chance to examine the bugs.

Reverse debugging is the solution for the problems with
drivers debugging. It focuses on recording program behavior.
Reproducing the recorded buggy scenario again and again
becomes quite simple.

Key benefit of reverse debugging is examining the prior
program states [7], which allows tracing sources of the data
values back in time. One can set a breakpoint in the pro-
gram and then “execute” it backwards to see whether this
breakpoint could be hit in the past as it was set before
execution.

The paper presents a tool for debugging of user and kernel-
level applications that interact with hardware devices. In
summary, this paper makes the following contributions:

• Low-overhead method for deterministic replay of hard-
ware communications, which supports all commodity
USB devices, serial port, audio and network adapters.

• Implementation of replay debugging based on QEMU
and GDB, which works with unmodified state of the
art operating systems.

• Practical tool for debugging of the kernels for com-
modity operating systems executed on state of the art
hardware platforms.

2. REVERSE DEBUGGING DESIGN
There are no available implementations of reverse debug-

gers that support multiple targets and capable of debugging
communications with external hardware. Multi-platform
support implies that debugger should be made on top of
the virtual machine. We chose QEMU [1], an open source
simulator, for the implementation of reverse debugging tools,
because it is fast enough due to its dynamic translation en-
gine and supports multiple targets including x86, x86-64,
ARM, MIPS, and PowerPC.

There were some efforts on making reverse execution in
QEMU [3, 4, 5]. But all these efforts were research projects
or intermediate results in other areas. Some of them were
targeted to a single platform, others were too slow or could
not replay operations with peripheral devices. And none of
these projects finished with a practical and publicly available
tool capable of reverse debugging.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08...$15.00
http://dx.doi.org/10.1145/2786805.2803179

938

R
ep
la
y
en
gi
n
e

Network model

Keyboard model

Mouse model

USB model

Serial model

Audio model

Real time clock model

QEMU

Events log

Network packets

Keyboard input

Mouse input

USB packets

Serial port

Audio adapter

Real time clock

Figure 1: Sources of non-determinism in virtual ma-
chine.

2.1 Record and Replay
The first version of our reverse debugging implementation

was based on QEMU v0.13, which was the latest at that
moment [6]. Now we are using the version 2.3, which provides
more accurate simulation and supports USB passthrough.

Our reverse debugging mechanism utilizes recording and
replaying virtual machine behavior to travel back in time.
All non-deterministic inputs of the virtual machine are re-
corded and replayed. Figure 1 shows the non-deterministic
data from peripheral devices saved into the log. Inputs from
simulated hardware, guest memory, software interrupts, and
execution of instructions are not saved, because they are
deterministic and can be replayed with simulation. Saving
only high-level non-deterministic events makes the log file
smaller and simulation faster.

Replay engine needs to know when to inject saved real
world events when replaying. We specify these moments of
time by counting the number of instructions executed be-
tween every pair of consecutive events. Record/replay reuses
icount feature of QEMU to perform instructions counting.
icount allows deterministic execution in absense of external
inputs. We extended this mode to allow record and replay
of the whole virtual machine execution.

2.2 Reverse Debugging Interface
QEMU supports GDB guest remote debugging protocol.

This support includes breakpoints, watchpoints, single-step-
ping and other common debugging options. We added sup-
port of reverse debugging commands (reverse step, reverse
continue) into QEMU. GDB just passes desired command
through the remote interface. These commands become
usable only when replaying the execution. Reverse step
proceeds to the previously executed instruction. Reverse
continue finds the latest breakpoint hit before the current
step [2].

Both of these commands require loading of previously saved
system snapshots as shown in figure 2. We save snapshots
while recording to allow restoring them later. The first
snapshot is created at the start of the simulation. Others
are taken every N’th second (where N is the command line
option).

Under the hood of reverse-continue

Rewind to checkpoint

Examine breakpoints

Rewind again

Run to breakpoint

Visible behavior of reverse-continue

Figure 2: Reverse debugging through deterministic
replay.

After loading the latest snapshot, simulator runs forward to
find a desired point (for reverse step) or to examine all break-
points that were hit (for reverse continue). If no breakpoints
were found, simulator loads earlier snapshot and searches for
breakpoints again.

2.3 Hardware Devices Passthrough
QEMU provides passthrough capability for USB devices

and COM ports. It also allows connecting audio inputs
and network adapters to the “real world”. Recording and
replaying implementation is similar for all hardware devices.
We describe USB passthrough in this section as the closest
to the real hardware. QEMU passes USB devices with all
their parameters into the guest machine.

USB passthrough in QEMU is implemented with libusb
library, which provides generic access to USB devices. Our
record/replay supports all data transfer modes of the USB
devices: control, interrupt, bulk, and isochronous. We do
not open the connection to real USB device while replaying.
All device’s parameters and operations results are read from
the log.

There are several types of non-deterministic inputs in
communications with external devices. They may be divided
into synchronous and asynchronous types.

Functions calls working with hardware (e.g. libusb calls)
are synchronous events, because they are invoked by the
simulator’s code. Return values of these functions are non-
deterministic for the virtual machine. When any of such
functions is about to be called in replay mode, replay engine
just reads its previously recorded return values from the log.

Incoming USB or network packets and serial interrupts
occur asynchronously, because they are initiated by external
devices. All these inputs are added to the queue in the
record/replay module. This queue is processed and flushed to
the log file at the specific phases of the simulator’s execution.
In replay mode the same code eventually reads the queue
items from the log. All packets are injected into the virtual
guest devices that processes inputs as they are coming from
the real world.

3. PERFORMACE EVALUATION
AND CASE STUDY

In this section we will examine buggy kernel driver us-
ing reverse debugging. We also present measurements of

939

long usbInfoIoctl(struct file *f,
unsigned int cmd, unsigned long arg)

{
int i;
struct urb *urb;
char *buf, result[24];
struct usb_device *device;
...
/* Receive data from USB */
transmit_bulk_package(&urb, device, &buf, 36,

usb_rcvbulkpipe(device, 0x82), 0x00000201);
/* Some result processing */
memcpy(result, buf, rand());
for (i = 0; i < 24; i++)

printk(KERN_INFO "result[%i] = %c\n", i, result[i]);
...
return 0;

}

Figure 3: Some buggy code in the USB driver.

user@debian:~/kernelModule$ sudo ./test
[938.289683] Kernel panic - not syncing; stack-protector:
Kernel stack is corrupted in: c89e93d0
[938.289741]
[938.293354] Pid: 2768, comm: test Tainted: G 0 3.2.0-4-686-pae
#1 Debian 3.2.65-l+deb7ul
[938.293853] Call Trace:
[938.296274] [<c12c0c2a>] ? panic+0x4d/0xl41
[938.298932] [<c1038576>] ? __stack_chk_fail+Oxd/Oxd
[938.301428] [<c89e93d0>] ? usbInfoIoctl+0x217/0x21d [usb_info]
[938.301782] [<c89e93d0>] ? usbInfoIoctl+0x217/0x21d [usb_info]
[938.302003] [<c10291ff>] ? kmap_atomic_prot+0x2f/OxeO
[938.302583] [<c10d9857>] ? do_vfs.ioctl+0x459/0x48f
[938.302784] [<c12c85a7>] ? do_page_fault+0x342/0x35e
[938.302972] [<c12c8594>] ? do_page_fault+0x32f/0x35e
[938.303173] [<c10cIf85>] ? kmem_cache_free+0xle/0x4a
[938.303445] [<c10cd5e7>] ? do_sys_open+0xc3/0xcd
[938.303642] [<c10d98d1>] ? sys.ioct1+0x44/0x67
[938.303829] [<c12c9edf>] ? sysenter_do_call+0x!2/0xl2

Figure 4: Stack trace shown when kernel panic hap-
pens.

the performance overhead for recording and replaying the
execution.

At first, we tested record/replay engine with USB flash
card, USB camera, USB notifier, and USB encryption key.
These devices use different versions of USB protocol and all
types of data transfer. We recorded their operations in several
scenarios and successfully replayed them. We also tested
record and replay for other hardware devices: microphone,
COM port, and network adapter.

To check whether reverse debugging is capable to help
examining bugs in drivers, we created Linux driver for USB
stick. Driver code contains a bug — when request from user
is processed the kernel panics and user has to reboot the
machine.

Consider the code in figure 3. This code shows the fragment
of the faulty ioctl function in the USB driver. This function
is meant to receive the user’s requests through a memory-
mapped file and process them.

Received data is copied to the buffer buf and processed
— we copy it to another buffer and output to the log using
printk function.

When we load the module and send a request, it triggers
kernel panic. Guest system shows the call trace (figure 4),
which reports that stack was smashed. Other details about
origin of the failure are not available.

(gdb) break 378
Breakpoint 1 at 0xc89e93ba: file

/home/user/kernelModule/usb_info.c, line 378.
(gdb) continue
Continuing.

Breakpoint 1, usbInfoIoctl (f=0xc5309f0c, cmd=3349205032,
arg=3310012224) at /home/user/kernelModule/usb_info.c:378

375 return 0;
(gdb) info frame
Stack level 0, frame at 0xc5309f34:
eip = 0xc89e93ba in usbInfoIoctl (/home/user/kernelModule/

usb_info.c:271); saved eip 0xc10d9857
called by frame at 0xc5567bf0
source language c.
Arglist at 0xc5309eec, args: f=0xc4f09b80, cmd=2147791873,

arg=3216111224
Locals at 0xc5309eec, Previous frame’s sp is 0xc5309f34
Saved registers:
esi at 0xc5309f28, edi at 0xc5309f2c, eip at 0xc5309f30

(gdb) watch *0xc5309f30
(gdb) reverse-continue
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
0xc89e939e in usbInfoIoctl (f=0xc5309f0c, cmd=3349205032,

arg=3310012224) at /home/user/kernelModule/usb_info.c:371
371 memcpy(result, buf, size);

Figure 5: Reverse debugging of the kernel module
in GDB.

At first, we have to run QEMU in recording mode with
USB stick attached. Then we have to figure out the addresses
in the memory where our module resides. Address of the
specific section name can be obtained with the command
cat /sys/module/usb_info/sections/.name

The next step is triggering the failure. We created test
program, which uses ioctl function to send a message to
the loaded kernel module. After starting that program the
system immediately goes to panic.

Now we’ve got an recorded event log, which can be used
for replaying kernel panic scenario. This event log should be
passed into replay engine to start reverse debugging process.
Then we connect to QEMU with GDB through remote debug-
ging protocol and load symbol information for our module.
Symbols can be loaded with the command add-symbol-file

with the offsets returned by cat command before.
After examining the panic log showed in figure 4 we de-

cided to check the corruption of the return address stored
in stack, because we know that stack was smashed. We set
the breakpoint to the last line of usbInfoIoctl function and
continued the execution. Then we figured out the memory
cell where return address resides (figure 5), set a watchpoint
at that address and issued reverse-continue command.

Debugger “continued execution” in backward direction and
stopped at the following line of usbInfoIoctl function:
memcpy(result, buf, rand());

Stopping at this function call obviously means buffer over-
run with stack overwriting and corruption of return address
by the unsafe version of memcpy function. rand function call
here does not allow examining of this failure with traditional
cyclic debugging.

We showed that our reverse debugging tool can be used
for elimination of the tough bugs that are caused by memory
corruption. Buggy program can corrupt memory by buffer
overflow, invalid pointer operations, attack to printf func-

940

tion, and so on. Recording program execution pushes aside
non-deterministic obstacles as in our example.

We also measured the time and space overhead that de-
terministic execution and events logging incur. There were
several testing environments. The first one was executing
the programs on Windows XP (for i386) and the second one

— on Debian Wheezy (for i386 and ARM). Our tool incurs
recording overhead from 3% to 10%. Replaying overhead
ranges from 130% to 190% that is quite reasonable for using
interactive reverse debugging.

We also measured disk space used for the execution log. It
was in range from 10 Kb/sec when OS is idle to 715 Kb/sec
when there are many interrupts and disk operations. Log
growth rate is small enough to allow using execution recording
for long periods of time.

4. RELATED WORK
Reverse debugging was a subject of different research pro-

jects. Authors of [4, 11] used VMWare to implement reverse
debugging. There was a publicly available VMWare-based
reverse debugger, but now support of this debugger is dis-
continued and it cannot be downloaded anymore.

Another project dedicated to kernel reverse debugging is
Time-Travelling Virtual Machine (TTVM) [9]. It works only
with modified version of User Mode Linux on x86 platform.
Other hardware and software platforms are not supported.
Bugs in recompiled drivers will probably work differently
due to changed environment. Our solution is better than
TTVM, because it supports execution of commodity oper-
ating systems and supports replaying communications with
real hardware.

Simics is a multi-target simulator from Wind River [8].
Reverse debugging in Simics supports full-system and even
multi-system debugging. All commodity operating systems
can be executed by the virtual machine. Wind River didn’t
provide an academic license for evaluation, but Rittinghaus
et al. reported that Simics works up to 40 times slower than
open source QEMU [10]. Our QEMU-based solution is fast
enough to debug time sensitive applications.

5. CONCLUSION AND DISCUSSION
This paper demonstrates how virtual machine with reverse

debugging support can be used to debug kernel drivers that
communicate with real hardware. We presented record/re-
play engine for QEMU that allows low-overhead recording
and replaying of the system execution. We tested record/re-
play for i386, x86-64, and ARM.

Reverse debugging allows examining of the whole system
behavior with returning back in time. Replay engine sup-
ports “real world” network cards, audio adapters, serial port,
and USB devices. Reverse debugging may be performed in
offline mode when the device, which was used to record the
execution, is unavailable.

Our approach has several limitations. We have not tested
our tool for other platforms supported by QEMU. And it
cannot replay operations with real world devices connected
to system bus, because they cannot be passed through to
the guest machine.

We submitted reverse debugging patches into the QEMU
development mailing list and published it on github1. Every

1https://github.com/Dovgalyuk/qemu/tree/rr-15

deverloper can apply these patches and get his/her own
experience in reverse debugging.

6. ACKNOWLEDGMENTS
The work was partially supported by the Russian Ministry

of Education and Science within the framework of the base
part of state task, and RFBR, research project No. 14-07-
00411 a.

7. REFERENCES
[1] F. Bellard. Qemu, a fast and portable dynamic

translator. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’05,
pages 41–41, Berkeley, CA, USA, 2005. USENIX
Association.

[2] B. Boothe. Efficient algorithms for bidirectional
debugging. SIGPLAN Not., 35(5):299–310, May 2000.

[3] S. S. Chia-Wei Hsu. Free: A fine-grain replaying
executions by using emulation. The 20th Cryptology
and Information Security Conference (CISC 2010),
2010.

[4] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling
dynamic program analysis from execution in virtual
environments. In USENIX 2008 Annual Technical
Conference on Annual Technical Conference, ATC’08,
pages 1–14, Berkeley, CA, USA, 2008. USENIX
Association.

[5] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and
R. Whelan. Repeatable reverse engineering for the
greater good with panda. Oct. 2014.

[6] P. Dovgalyuk. Deterministic replay of system’s
execution with multi-target qemu simulator for
dynamic analysis and reverse debugging. In Proceedings
of the 2012 16th European Conference on Software
Maintenance and Reengineering, CSMR ’12, pages
553–556, Washington, DC, USA, 2012. IEEE Computer
Society.

[7] J. Engblom. A review of reverse debugging. In in S4D,
2012.

[8] J. Engblom, D. Aarno, and B. Werner. Full-system
simulation from embedded to high-performance
systems. In R. Leupers and O. Temam, editors,
Processor and System-on-Chip Simulation, pages 25–45.
Springer US, 2010.

[9] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines.
In Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’05, pages 1–1,
Berkeley, CA, USA, 2005. USENIX Association.

[10] M. Rittinghaus, K. Miller, M. Hillenbrand, and
F. Bellosa. Simuboost: Scalable parallelization of
functional system simulation. In Proceedings of the 11th
International Workshop on Dynamic Analysis (WODA
2013), Houston, Texas, Mar. 16 2013.

[11] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam,
B. Weissman, and V. Inc. Retrace: Collecting execution
trace with virtual machine deterministic replay. In In
Proceedings of the 3rd Annual Workshop on Modeling,

Benchmarking and Simulation, 2007.

941

