JSkeETCH: Sketching for Java

Jinseong Jeon™ Xiaokang Qiu' Jeffrey S. Foster” Armando Solar-Lezama'

*University of Maryland, College Park, USA

ABSTRACT

Sketch-based synthesis, epitomized by the SKETCH tool, lets
developers synthesize software starting from a partial pro-
gram, also called a sketch or template. This paper presents
JSKETCH, a tool that brings sketch-based synthesis to Java.
JSKETCH’s input is a partial Java program that may include
holes, which are unknown constants, expression generators,
which range over sets of expressions, and class generators,
which are partial classes. JSKETCH then translates the syn-
thesis problem into a SKETCH problem; this translation is
complex because SKETCH is not object-oriented. Finally,
JSKETCH synthesizes an executable Java program by inter-
preting the output of SKETCH.

Categories and Subject Descriptors

1.2.2 [Automatic Programming]: Program Synthesis

General Terms

Design, Languages.

Keywords

o . Park .TMassachusetts Institute of Technology, .USA.
jsjeon@cs.umd.edu xkgiu@csail.mit.edu jfoster@cs.umd.edu asolar@csail.mit.edu

Program Synthesis, Programming by Example, Java, SKETCH.

1. INTRODUCTION

Program synthesis aims to automate the development of
complex pieces of code. Deriving programs completely from
scratch given only a declarative specification is very chal-
lenging for all but the simplest algorithms, but recent work
has shown that the problem can be made tractable by start-
ing from a partial program—referred to in the literature as
a sketch [8], scaffold [10] or template—that constrains the
space of possible programs the synthesizer needs to consider.
This approach to synthesis has proven useful in a variety
of domains including program inversion [9], development of
concurrent data-structures [7], and automated tutoring [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ESEC/FSE’15, August 30 — September 4, 2015, Bergamo, Italy

© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00
http://dx.doi.org/10.1145/2786805.2803189

934

i JSketch :
N | i
]]
Jsk +—| Parser Decoder —> java
i i
! 5 !
]]
| | AST out |
I I
: v sk i
I I
]]
i Encoder > 2ketch '
i olver)
I I
]]

Figure 1: JSKETCH Overview.

This paper presents JSKETCH, a tool that makes sketch-
based synthesis directly available to Java programmers. JS-
KETCH is built as a frontend to the SKETCH synthesis system,
a mature synthesis tool based on a simple imperative lan-
guage that can generate C code [8]. JSKETCH allows Java
programmers to use many of the SKETCH’s synthesis fea-
tures, such as the ability to write code with unknown con-
stants (holes written ??) and unknown expressions described
by a generator (written {| e* |}). In addition, JSKETCH
provides a new synthesis feature—a class-level generator—
specifically tailored for object-oriented programs. Section 2
walks through a running example of JSKETCH.

As illustrated in Figure 1, JSKETCH compiles a Java pro-
gram with unknowns to a partial program in the SKETCH
language and then maps the result of SKETCH synthesis
back to Java. The translation to SKETCH is challenging be-
cause SKETCH is not object oriented, so the translator must
model the complex object-oriented features in Java—such
as inheritance, method overloading and overriding, anony-
mous/inner classes—in terms of the features available in
SKETCH. Section 3 briefly explains several technical chal-
lenges addressed in JSKETCH. Section 4 describes our ex-
perience with JSKETCH. JSKETCH is available at http:
//github.com/plum—-umd/java-sketch/.

2. OVERVIEW

We begin our presentation with two examples showing
JSKETCH’s key features and usage.

Basics. The input to JSKETCH is an ordinary Java pro-
gram that may also contain unknowns to be synthesized.
There are two kinds of unknowns: holes, written ??, repre-
sent unknown integers and booleans, and generators, written
{] e* |}, range over a list of expressions. For example, con-

http://github.com/plum-umd/java-sketch/
http://github.com/plum-umd/java-sketch/

sider the following Java sketch, similar to an example from
the SKETCH manual [6]:

1 class SimpleMath {
2 static int mult2(int x) { return (?? = {| x , 0 |}); }
3}

Here we have provided a template for the implementation of
method mult2: The method returns the product of a hole and
either x or 0. Notice that even this very simple sketch has 233
possible instantiations. To specify the desired solution, we
provide a harness with assertions about the mult2 method:

4 class Test {
5 harness static void test() { assert(SimpleMath.mult2(3) == 6); }

6}
Now we can run JSKETCH on the sketch and harness.
$./jsk.sh SimpleMath.java Test.java

The result is a valid Java source file in which holes and
generators have been replaced with the appropriate code.

$ cat result/java/SimpleMath. java
class SimpleMath {
static public int mult2
return 2 * x;

bl

(int x) {

Finite Automata. Now consider a harder problem: sup-
pose we want to synthesize a finite automaton given sample
accepting and rejecting inputs.! There are many possible
design choices for finite automata in an object-oriented lan-
guage, and we will opt for one of the more efficient ones:
the current automaton state will simply be an integer, and
a series of conditionals will encode the transition function.
Figure 2a shows our automaton sketch. The input to
the automaton will be a sequence of Tokens, which have a
getld method returning an integer (line 8). An Automaton is
a class—ignore the generator keyword for the moment—with
fields for the current state (line 9) and the number of states
(line 10). Notice these fields are initialized to holes, and
thus the automaton can start from any arbitrary state and
have an arbitrary yet minimal number of states (restricted
by SKETCH’s minimize function on line 11). The class includes
a transition function that asserts that the current state is in-
bounds (line 13) and updates state according to the current
state and the input Token’s value (retrieved on line 14).
Here we face a challenge: we do not know the number of
automaton states or tokens, so we cannot bound the num-
ber of transitions. To solve this problem, we use a feature
inherited from SKETCH: the term minrepeat { e } expands to
the minimum length sequence of e’s that satisfy the har-
ness. Here, the body of minrepeat (line 16) is a conditional
encoding an arbitrary transition—if the guard matches the
current state and input token, then the state is updated and
the method returns. Thus, the transition method will be syn-
thesized to include however many transitions are necessary.
Finally, the Automaton class has methods transitions and ac-
cept; the first performs multiple transitions based on a se-

quence of input tokens, and the second one determines whether

the automaton is in an accepting state. Notice that the in-
equality (line 21) means that states 0 up to some bound will

LOf course, there are many better ways to construct finite
automata—this example is only for expository purposes.

7
8
9
10

11

e

3
24
25
26
27
28

35
36
37
38
389
40

42

935

interface Token{ public int getld (); }
generator class Automaton {
private int state = ?7;
static int num_state = ??;
harness static void min_num_state() { minimize(num_state); }
public void transition (Token t) {
assert 0 < state && state < num_state;
int id = t.getld ();
minrepeat {
if (state ==7?? &&id == ??) { state = ??; return; }
bl
public void transitions (Iterator <Token> it) {
while (it .hasNext()) { transition (it.next()); }
}

public boolean accept() { return state < ??; }

(a) Automaton sketch.

class DBConnection {
class Monitor extends Automaton {
final static Token OPEN =
new Token() { public int getld() { return 1; } };
final static Token CLOSE =
new Token() { public int getld() { return2; } };
public Monitor() { }
}
Monitor m;
public DBConnection() { m = new Monitor(); }
public boolean isErroneous() { return ! m.accept(); }
public void open() { m.transition (Monitor.OPEN); }
public void close() { m.transition (Monitor.CLOSE); }
1
class CADsR extends Automaton { ...
public boolean accept(String str) {
state = init_state_backup;
transitions (convertTolterator (str));
return accept();

bl

(b) Code using Automaton sketch.
Figure 2: Finite automata with JSKETCH.

be accepting; this is fully general because the exact state
numbering does not matter, so the synthesizer can choose
the accepting states to follow this pattern.

Class Generators. In addition to basic SKETCH generators
like we saw in the mult2 example, JSKETCH also supports
class generators, which allow the same class to be instan-
tiated differently in different superclass contexts. In Fig-
ure 2a, the generator annotation on line 8 indicates that Au-
tomaton is such a class. (Class generators are analogous to
the the function generators introduced by SKETCH [6].)
Figure 2b shows two classes that inherit from Automaton.
The first class, DBConnection, has an inner class Monitor that
inherits from Automaton. The Monitor class defines two tokens,
OPEN and CLOSE, whose ids are 1 and 2, respectively. The
outer class has a Monitor instance m that transitions when the
database is opened (line 34) and when the database is closed
(line 35). The goal is to synthesize m such that it acts as an
inline reference monitor to check that the database is never
opened or closed twice in a row, and is only closed after

43 class TestDBConnection {

44 harness static void scenario_good() {

45 DBConnection conn = new DBConnection();

46 assert ! conn.isErrorneous();

47 conn.open(); assert ! conn.isErroneous();

48 conn.close(); assert ! conn.isErroneous(); }

// bad: opening more than once

harness static void scenario_bad1() {
DBConnection conn = new DBConnection();
conn.open(); conn.open(); assert conn.isErroneous(); }

// bad: closing more than once

54 harness static void scenario_bad2() {
55 DBConnection conn = new DBConnection();
56 conn.open();

conn.close(); conn.close(); assert conn.isErroneous();
ss)}
class TestCADsR {
// Lisp—style identifier : c(ald)+r
harness static void examples() {
CADsR a = new CADsR();
assert | a.accept('c"); assert! a.accept("cr");
assert a.accept("car"); assert a.accept("cdr");
assert a.accept("caar"); assert a.accept("cadr");
assert a.accept("cdar"); assert a.accept("cddr");

Figure 3: Automata use cases.

it is opened. The harnesses in TestDBConnection in Figure 3
describe both good and bad behaviors.

The second class in Figure 2b, CADsR, adds a new (over-
loaded) accept(String) method that converts the input String
to a token iterator (details omitted for brevity), transitions
according to that iterator, and then returns whether the
string is accepted. The goal is to synthesize an automaton
that recognizes c (a|d) +r. The corresponding harness Test-
CADsR.examples() in Figure 3 constructs a CADsR instance and
makes various assertions about its behavior. Notice that this
example relies critically on class generators, since Monitor and
CADsR must encode different automata.

Output. Figure 4 shows the output produced by running
JSKETCH on the code in Figures 2 and 3. We see that the
generator was instantiated as Automatoni, inherited by DB-
Connection.Monitor, and Automaton2, inherited by CADsR. Both
automata are equivalent to what we would expect for these
languages. Two things were critical for achieving this re-
sult: minimizing the number of states (line 11) and having
sufficient harnesses (Figure 3). (Details can be found in a
companion technical report [1].)

We experimented further with CADsR to see how changing
the sketch and harness affects the output. First, we tried a
smaller harness, i.e., fewer examples. In this case, the syn-
thesized automaton covers all the examples but not the full
language. For example, if we omit the four-letter inputs in
Figure 3 the resulting automaton only accepts three-letter
inputs. Whereas going to four-letter inputs constrains the
problem enough for JSKETCH to find the full solution. Sec-
ond, if we omit state minimization (line 11), then the syn-
thesizer chooses large, widely separated indexes for states,
and it also includes redundant states (that could be merged
with a textbook state minimization algorithm). Third, if we
manually bound the number of states to be too small (e.g.,

68
69
70
71
72
73

7

79

%

0
81
82
83
84
85
86
87
88
89
90

91

92
93
94

936

class Automatont {
int state = 0; static int num_state = 3;
public void transition (Tokent) { ...
assert 0 < state && state < 3;

if (state ==0&&id ==1) { state = 1; return; } // open@
if (state ==1&&id==1) { state = 2; return; } // open 2x
if (state ==1&&id==2) { state = 0; return; } / (init)@
if (state ==0 && id ==2) { state = 2; return; } // close 2x

}

public boolean accept() { return state < 1; } ...
1
class DBConnection{ class Monitor extends Automatont { ...} ...}
class Automaton2 {
int state = 0; static int num_state = 3;
public void transition (Tokent) { ...
assert 0 < state && state < 3;
if (state ==0 && id==99) { state = 1; return; } / ¢
if (state ==1&&id==97) { state = 2; return; } // ca
if (state ==1 &&id == 100) { state = 2; return; } // cd
if (state ==2 && id == 114) { state = 0; return; } / c(a/d)+r@
}
public boolean accept() { return state < 0; }

}

class CADsR extends Automaton2 { ... }

Figure 4: JSKETCH Output (partial).

manually set num_state to 2), the synthesizer runs for more
than half an hour and then fails, since there is no solution.
Of these cases, the last two are relatively easy to deal with
since the failure is obvious, but the first one—knowing that a
synthesis problem is underconstrained—is an open research
challenge. However, one good feature of synthesis is that, if
we do find cases that are not handled by the current imple-
mentation, we can simply add those cases and resynthesize
rather than having to manually fix the code (which could
be quite difficult and/or introduce its own bugs). More-
over, minimization—trying to ensure the output program is
small—seems to be a good heuristic to avoid overfitting.

3. IMPLEMENTATION

We implemented JSKETCH as a series of Python scripts
that invoke SKETCH as a subroutine. JSKETCH comprises
roughly 5.7K lines of code, excluding the parser. There are
a number of challenges in the implementation of JSKETCH;
due to space limitations we discuss only the major ones.

Class hierarchy. The first issue is that SKETCH’s language
is not object-oriented. To solve this problem, JSKETCH fol-
lows a similar approach to [4] and encodes objects with a
new type V_Object, defined as a struct containing all possible
fields plus an integer identifier for the class. More precisely,
if C1,...,Cy, are all classes in the program, then we define:

struct V_Object {
int class_id; fields-from-C1
1

where each C; gets its own unique id.

JSKETCH also assigns every method a unique id, and it
creates various constant arrays that record type informa-
tion. For a method id m, we set belongsTo[m] to be its class
id; argNum[m] to be its number of arguments; and argType[m][i]
to be the type of its i-th argument. We model the inher-

... fields-from-Cy,

itance hierarchy using a two-dimensional array subcls such
that subcls[i][j] is true if class i is a subclass of class j.

Encoding names. When we translate the class hierarchy
into JSKETCH, we also flatten the namespace. During this
process we must not conflate overridden or overloaded method
names, or inner classes. Thus, we name inner classes as In-
ner_Outer, and we differentiate anonymous classes using dis-
tinct numbers, e.g., Cls_1. To support method overriding
and overloading, methods are named Mtd_Cls_Params, where
Mtd is the name of the method, Cls is the name of the class
in which it is declared, and Params is the list of parame-
ter types. For example, in the finite automaton example,
CADsR inherits method transition from Automaton2 (the second
variant of the class generator), hence the method is named
transition_Automaton2_Token(V_Object self, V_Object t) in SKETCH.
The first parameter represents the callee of the method.

Dynamic dispatch. For each method m, we simulate dy-
namic dispatch in SKETCH by introducing a function that
dispatches based on the class_id field of the callee:

95 void dyn_dispatch_m(V_Object self, ...) {

96 int cid = self.class_id;

97 if (cid == RO_id) return m_RO_P(self, ...);
9s if (cid == R1_id) return m_R1_P(self, ...);
99

100 return;

101 }

Note that if m is static, the self argument is omitted.

Java libraries. To perform synthesis, we need SKETCH equiv-
alents of any Java standard libraries used in the input sketch.
Currently, JSKETCH supports the following collections and
APIs: ArrayDeque, lterator, LinkedList, List, Map, Queue, Stack,
TreeMap, CharSequence, String, StringBuilder, and StringBuffer. Li-
brary classes are implemented using a combination of trans-
lation of the original source using JSKETCH and manual cod-
ing, to handle native methods or cases when efficiency is
an issue. Note that several of these classes include generics
(e.g., List), which is naturally handled because the all objects
are uniformly represented as V_Object.

Limitations and unsupported features. As Java is a very
large language, JSKETCH currently only supports a core sub-
set of Java. We leave several features of Java to the future
versions of JSKETCH, including packages, access control, ex-
ceptions, and concurrency. Additionally, JSKETCH assumes
the input sketch is type correct, meaning the standard parts
of the program are type correct, holes are used either as inte-
gers or booleans, and expression generators are type correct.
This assumption is necessary because, although SKETCH it-
self includes static type checking, distinctions between differ-
ent object types are lost by collapsing them all into V_Object.

Using SKETCH. We translate JSKETCH file, which is com-
posed of the user-given template and examples, as well as
supporting libraries to .sk files as input to SKETCH. For ex-
ample, SimpleMath from Section 2 translates to

102 int e_h1 =77;

103 int mult2_SimpleMath_int(int x) { returne_h1 « {| x | 0 [}; }
104 harness void test_Test() { assert mult2_SimpleMath_int(3) == 6; }

937

Details of how SKETCH works can be found elsewhere [5, 6].

After solving the synthesis problem, JSKETCH then un-
parses these same Java files, but with unknowns resolved
according to the SKETCH synthesis results.

4. EXPERIENCE WITH JSKETCH

We developed JSKETCH as part of the development of an-
other tool, PASKET [2], which aims to construct framework
models, e.g. mock classes that implement key functional-
ity of a framework but in a way that is much simpler than
the actual framework code and is more amenable to static
analysis. PASKET takes as input a log of the interaction be-
tween the real framework and a test application, together
with descriptions of the API of the framework and design
patterns the framework uses. PASKET uses these inputs to
automatically generate an input to JSKETCH which is then
responsible for actually synthesizing the models. Through
PASKET, we have used JSKETCH to synthesize models of key
functionality from the Swing and Android frameworks. The
largest JSKETCH inputs generated by PASKET contain 117
classes and 4,372 lines of code, and solve in about two min-
utes despite having over 73'® x 1642® possible choices; this
is possible thanks to a new synthesis algorithm called Adap-
tive Concretization [3] that is available in SKETCH and was
also developed as part of this work.

5. ACKNOWLEDGMENTS

This research was supported in part by NSF CCF-1139021,
-1139056, -1161775, and the partnership between UMIACS
and the Laboratory for Telecommunication Sciences.

6. REFERENCES

[1] J. Jeon, X. Qiu, J. S. Foster, and A. Solar-Lezama.
JSKETCH: Sketching for Java. CoRR, abs/1507.03577,
2015.

[2] J. Jeon, X. Qiu, J. S. Foster, and A. Solar-Lezama.
Synthesizing Framework Models for Symbolic
Execution. Unpublished manuscript, 2015.

[3] J. Jeon, X. Qiu, A. Solar-Lezama, and J. S. Foster.
Adaptive Concretization for Parallel Program
Synthesis. In CAV, July 2015.

[4] R. Singh, S. Gulwani, and A. Solar-Lezama.
Automated Feedback Generation for Introductory
Programming Assignments. In PLDI, pages 15-26,
2013.

[5] A. Solar-Lezama. Program sketching. Int. J. STTT,
15(5-6):475-495, 2013,

[6] A. Solar-Lezama. The Sketch Programmers Manual,
2015. Version 1.6.7.

[7] A. Solar-Lezama, C. G. Jones, and R. Bodik.
Sketching concurrent data structures. In PLDI, pages
136-148, 2008.

[8] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite
programs. In ASPLOS, pages 404-415, 2006.

[9] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S.
Foster. Path-Based Inductive Synthesis for Program
Inversion. In PLDI, pages 492-503, June 2011.

[10] S. Srivastava, S. Gulwani, and J. S. Foster. From
program verification to program synthesis. In POPL,
pages 313-326, 2010.

	Introduction
	Overview
	Implementation
	Experience with JSketch
	Acknowledgments
	References

