
TACO: Test Suite Augmentation for Concurrent Programs

Tingting Yu
Department of Computer Science

University of Kentucky
Lexington, Kentucky, 40506, USA

tyu@cs.uky.edu

ABSTRACT
The advent of multicore processors has greatly increased the preva-
lence of concurrent programs to achieve higher performance. As
programs evolve, test suite augmentation techniques are used in re-
gression testing to identify where new test cases are needed and
then generate them. Prior work on test suite augmentation has fo-
cused on sequential software, but to date, no work has considered
concurrent software systems for which regression testing is expen-
sive due to large number of possible thread interleavings. In this
paper, we present TACO, an automated test suite augmentation
framework for concurrent programs in which our goal is not only to
generate new inputs to exercise uncovered changed code but also to
explore new thread interleavings induced by the changes. Our tech-
nique utilizes results from reuse of existing test inputs following
random schedules, together with a predicative scheduling strategy
and an incremental concolic testing algorithm to automatically gen-
erate new inputs that drive program through affected interleaving
space so that it can effectively and efficiently validate changes that
have not been exercised by existing test cases. Toward the end, we
discuss several main challenges and opportunities of our approach.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools

Keywords
Regression Testing, Concurrency

1. INTRODUCTION
Testing real world concurrent program is challenging primarily

because concurrency faults are sensitive to execution interleavings.
Unless a specific interleaving is exercised during testing that can
cause faults to occur and cause their effects to be visible, they will
remain undetected. Unfortunately, in real world concurrent pro-
grams, the interleaving space is often too large to be thoroughly
explored [6]. To address this problem, numerous program analysis
and testing techniques have been used, such as dynamic monitor-
ing [2] and deterministic scheduling [7]. However, most of these

techniques are concerned about single version of programs and do
not consider evolved software.

Regression testing is used to perform re-validation of evolving
software. To reduce cost of regression testing, various approaches
have been suggested based on existing test cases, including regres-
sion test selection and test case prioritization. However, existing
test cases may not be adequate to validate the code or system be-
haviors that are present in a new version of a system. Test suite
augmentation (RTA) addresses this problem by identifying code el-
ements affected by changes and generating test cases to cover those
elements. For example, research on different flavors of static/dy-
namic symbolic execution has been shown to be effective at gen-
erating program inputs that execute modified code [10]. However,
most research on test suit augmentation has focused on sequential
programs, and to our knowledge none has considered the issues
involved in augmenting test cases for concurrent programs.

Unlike sequential programs for which RTA considers only in-
puts, adapting RTA to concurrent programs requires generating both
inputs and interleavings to explore changes introduced in the mod-
ified programs. In our prior work [11] we developed a regression
testing framework focusing on selection and prioritization at the
input level, by identifying affected shared variable (SV) accesses
related to data races. Terragni et al. [8] further addresses regression
testing of concurrent programs at interleaving level by searching
only interleavings pertinent to affected SV accesses. The insight
behind this approach is that only a small percentage of accesses
(1% for real-world applications in their study) are affected; inter-
leavings that do not contain affected accesses can be skipped in
regression testing. While both SIMRT and RECONTEST reduce
the cost of regression testing of concurrent programs, they focus
on using existing test inputs and do not consider exploring affected
interleaving space in which new inputs are needed.

In this paper, we present the first Test suite Augmentation frame-
work for COncurrent programs – TACO, that integrates approaches
to test input augmentation with predicative scheduling techniques,
focusing on program changes leading to potentially erroneous thread
interleavings. TACO operates in three steps. First, TACO ex-
ecutes modified program by using existing test inputs under ran-
dom schedules. For each trace obtained from a test execution,
TACO identifies shared variable (SV) accesses affected by pro-
gram changes. For a given affected SV pair covered in the trace,
TACO actively seeks alternative thread interleavings related to this
pair. The alternative interleavings are inferred by matching an in-
terleaving coverage criterion. In the second step, TACO leverages
concolic testing to generate new inputs that cover uncovered af-
fected SV pairs; newly discovered pairs are explored in the same
manner as Step 1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2803201

918

g1 = 1 , g2 = 1 ;
. . .

T1:
. . .
1 .
(& l k) ;
2 . i f (b < 0)
3 . g2 = 3 ;
4 . e l s e {

5 . cond_wait(&cond, &lk);--

6 . g1 = 0 ; }
7 . mutex_unlock (& l k) ;

T2:
. . .
8 . mutex_ lock (& l k) ;
9 . i f (a >=0) {
1 0 . x = g1 + 1 ;
1 1 . y = g2 + a ; }
1 2 . e l s e
1 3 . x = a ∗ g1 ;
1 4 . c o n d _ s i g n a l (&cond) ;
1 5 . mutex_unlock (& l k) ;

. . .
1 6 . i f (b >3}
1 7 . b = b / x ;

Figure 1: An Example
While a concurrency fault is triggered by a specific interleav-

ing among a set of memory accesses, its effects usually propagate
across a single thread through data and control dependencies until
it causes the program to fail [12]. When a new interleaving is in-
troduced, it is necessary to test whether the change of a data state
induced by this interleaving can introduce faults. Thus, the objec-
tive of our third step is to test propagation effects of new interleav-
ings. To do this, TACO employs a forward static slicing technique
to compute elements affected by the new interleavings and then di-
rects concolic testing to generate new test inputs that cover them.
Our preliminary results from an ongoing study demonstrate the po-
tential of TACO in terms of cost-effectiveness.

2. PROBLEM STATEMENT
We use an example – see Figure 1, to motivate TACO as well as

illustrate the novelty of TACO by comparing it to existing work.
The program has two threads T1 and T2, where g1 and g2 are
shared between the threads, and a and b are inputs to the program.
Deleted lines are denoted as "--". The original and modified pro-
grams are denoted by P and P ′ respectively. This change in P ′ can
cause an order violation – one type of concurrency faults, because
g1 at line 6 is no longer synchronized by wait-signal: T2 should
not read g1 at line 6 until a signal is called (line 14). This fault
leads to a “division by zero" failure.

We now illustrate how to apply TACO to expose this regression
fault. Suppose there are two existing test inputs for P , where t1
is {a =2, b = 2} and t2 is {a = 3, b = -1}. TACO first employs
our previous work SIMRT to select test inputs that are likely to
expose concurrency faults. By using impact analysis in SIMRT,
g1 at line 6 is considered affected because it is no longer protected
in P ′, whereas g2 is not affected because the code change does
not affect the interleaving space related to g2. Since a concurrency
fault involves at least two shared variable (SV) accesses, SIMRT
identifies a set of affected SV pairs (SV P s), such that for two SV s
in each pair, at least one of them is affected, and at least one of them
is a write access. In this example, the affected SV P s are svpaff1 =
<(6, w(g1)), (10, r(g1))> and svpaff2 = <(6 w(g1)), (13, r(g1))>,
where w is a write and r is a read. Therefore, t1 is selected for
reuse; t2 is discarded because it does not exercise affected SV P s.

In the first step of our approach, TACO takes t1 as a starting
point. Suppose t1 is executed on P ′ following a random schedule
σ1: (8, lock(lk))→(9, br)→(10, r(g1))→(11, r(g2))→
(14, signal(cond))→(15 unlock(lk))→(16, br)→(1, lock(lk))
→(2, br)→(6,w(g1))→(7, unlock(lk)), where br indicates a branch
predicate. svpaff1 is covered in this trace. Next, given an interleav-
ing coverage criterion, TACO seeks alternative interleaving involv-
ing svpaff1 for t1. Suppose an inter-thread def-use criterion [6] is
used, the coverage target svpt becomes <(6,w(g1))→(10, r(g1))>.
So TACO will need to reverse the two accesses related to g1 in the
original trace to form a new schedule σ2 that makes (10, r(g1))
happen before (6, w(g1)). However, after σ2 is enforced on P ′, no
faults are detected.

TACO then proceeds to the second step. Since g1 in svpaff2 at
line 13 is not covered by t1 with either σ1 or σ2, TACO attempts
to generate a new input targeting this SV . As such, t3 = {a =-1,
b = 2} is generated for this purpose. By executing t3 on P ′ with
a random schedule σ3, a trace is obtained in which (13, r(g1))
happens before (6, w(g1)). So an alternative interleaving σ4 = <(6,
w(g1))→(13, r(g1))> becomes the next target. However, after σ4

is enforced using t3, the fault is still not revealed.
At the last step, for each new interleaving within its input– <t1,

σ2>, <t3, σ4>, TACO locates the variable in a thread which is
last modified by a remote access. For σ2, x is modified at line 10
and that for σ4, x is modified at line 13. TACO then performs a
forward static slicing on T2, treating x at line 10 and line 13 as
slicing criterion, so x at 17 becomes a new coverage target. Next,
TACO invokes concolic testing to generate new inputs with respect
to σ2 and σ4. As a result, a new input t4 = {a =1, b = 4} for σ2

and an input t5 = {a =-1, b = 4} for σ4 are generated. The fault is
triggered by enforcing σ4 with input t5.

This fault is interesting because it requires combination of a spe-
cific schedule with a particular input to manifest. This example
further provides evidence showing that existing regression testing
techniques for concurrent programs are not adequate. The work
that is most related to TACO is our previous work SIMRT [11],
CAPP [4] and recent work RECONTEST [8]. SIMRT [11] se-
lects test cases at the input level and does not consider change
impact in the interleaving space. CAPP systematically explores
program changes related to concurrency semantics. RECONTEST
improves efficiency of CAPP by searching problematic interleav-
ings among only affected shared variables. However, all above
techniques rely on existing test inputs and thereby restrict their
capabilities in Step 1 of TACO. In contrast, TACO explores af-
fected interleavings as well as generating new test inputs to drive
program through additional intelreaving space induced by code
changes. While full concolic testing techniques for concurrent pro-
grams such as CON2COLIC [1] considers both inputs and inter-
leavings, they focus on single program versions and do not reduce
cost of regression testing (same to re-test all). In this example,
CON2COLIC would unnecessarily explore unaffected interleavings
related to g2.

3. APPROACH

3.1 Identify Affected Elements
A key step in regression testing is to identify affected program

entities induced by code changes. Our previous work SIMRT as
well as RECONTEST have developed impact analysis techniques
specific to concurrent programs to identify affected shared memory
accesses. RECONTEST employs a dynamic change impact analy-
sis and may miss accesses not exercised by existing test inputs. In
contrast, TACO leverages SIMRT by using a conservative static
analysis to identify affected shared variable pairs (SV P s) across
the whole program; false positives can be eliminated during test
execution. TACO also extends SIMRT by considering more sce-
narios, such as SV s involving user-defined synchronizations.

The set of affected SV P s, denoted as SV Paff, are used to con-
struct new interleavings, where svp(m)aff denotes an affected
pair in SV Paff accessing to memory m. Specifically, TACO ex-
ecutes a test input t on P ′ and obtains a runtime trace TR(t) that
captures program execution as a sequence of events e, including
memory accesses, synchronization operations, branches, and path
conditions. A thread schedule σm = describes a partial or-
der relation on a set of SV accesses em to memory m. This order
relies on a specific interleaving coverage criterion (e.g., Def-Use,

919

PInv) [6]. An interleaving criterion is a patten of inter-thread de-
pendencies through SV accesses, which helps select representa-
tive interleavings to effectively expose concurrency faults. An in-
terleaving criterion is satisfied if all feasible interleavings of SV
defined in the criteria is covered. The current implementation of
TACO employs a Def-Use criteria, which is satisfied if and only if
a write w in one thread happens before a read r in another thread
and there is no other write to the variable read by r between them.

An affected thread interleaving σ∆m(t) contains at least one
svp(m)aff in P ′. σ∆m(t) denotes a set of all alternative inter-
leavings of σ∆m(t) by reshuffling the order of occurrences of the
memory accesses m to match the interleaving coverage criterion.
The interleaving space of an input, denoted as IS(t), is a set of all
feasible interleavings for all SV P s observed from TR(t). IS(t)∆
contains at least one affected interleaving. Since the interleaving
prediction is performed off-line, many affected interleavings can
be infeasible, which can be eliminated during test execution.

3.2 Test Suite Augmentation
Algorithm 1 displays TACO augmentation algorithm. The algo-

rithm begins with an initial set of existing test inputs selected by
SIMRT, and an iteration limit niter – a "tuning" parameter. The
algorithm initializes the coverage targets SV Pt to SV Paff – a set
of affected SV P . The main loop continues until we explore all
affected interleavings and their impacts, or reach the iteration limit.
Step 1. This step invokes SchedExplorer to explore affected
interleaving space for each existing test input (line 5-7). Sched-
Explorer exercises test input t on P ′ with a random schedule to
obtain TR(t) (line 22). IS(t)∆ is set to empty as no alternative
schedules have been explored at this point (line 23). All affected
interleavings in the trace are added to IS(t)∆ if it has not been
explored by other test inputs (line 25).

Next, the algorithm invokes SchedDiscover to seek all alter-
native interleavings IS(t)∆ according to an interleaving coverage
criterion C (line 26). The algorithm iteratively removes an inter-
leaving σm from IS(t)∆, attempting to enforce it on P ′ to obtain
a new trace TR(t)′ (line 30). If such interleaving is successfully
enforced, it is added to IS(t)∆; coverage information of affected
SV P is updated (lines 31-33). During the enforced execution, we
might observe affected SV P s that have not been observed so far
due to the fact that the new execution changed program control
flow. If such SV P is discovered, the algorithm predicts all alterna-
tive interleavings related to it and add them to IS(t)∆ (lines 34-35).
The algorithm continues exploration until IS(t)∆ is empty.
Step 2. This step directs concolic testing on P ′ to generate new
inputs to cover uncovered SV P targets in Step1. The algorithm
enters a loop in which it selects each uncovered single SV in the
SV Paff serving as a target for concolic testing procedure Input-
Generator (line 9). The parameter "-" indicates that no specific
interleavings are applied. Procedural InputGenerator begins
by locating branches (bt) for which the source node is a predicate
node p that is covered by at least one existing test inputs (lines 41-
42); these become immediate targets for input generation. The al-
gorithm then collects all path conditionsPCbt for test inputs whose
execution traces reach p (lines 43-44). For each such path condition
pc, the algorithm generates a new path condition pc′ by negating bt
in pc and removing all subsequent branches (lines 45-46). If pc′ has
not been seen before, and that pc′ has a solution, the algorithm uses
it to generate a new test case tnew (lines 47–49). Otherwise, the al-
gorithm ignores it and moves on to the next path condition. After
InputGenerator returns a new test input to the main procedu-
ral (line 9), the algorithm invokes SchedExplorer to explore
interleaving space of this input.

Algorithm 1 TACO algorithm
1: procedure AUGMENTATION(P, P ′, niter , T)
2: SV Paff = ConImp(P , P ′)
3: SV Pt = SV Paff

4: whileNotDone do
5: for each t ∈ T do . T can be ordered
6: SchedExplorer(t, C)
7: end for
8: for each svt ∈ SV Paff and svt is not covered do
9: tnew = InputGenerator(svt, T ,−)

10: SchedExplorer(tnew , C)
11: end for
12: for each σm ∈ IS(t)∆ do . Test propagation effects
13: Saff = SeqImp(rd(mlast))
14: for each st ∈ SV Pt and st is not covered do
15: InputGenerator(st, t, σm)
16: end for
17: end for
18: return IS∆
19: end while
20: end procedure
21: procedure SCHEDEXPLORER(t, C)
22: TR(t) =Random(P ′, t)
23: IS(t)∆ = φ
24: for each σ∆m ∈ TR(t) and σ∆m is not explored do
25: IS(t)∆ = IS(t)∆ ∪ σ∆m

26: IS(t)∆ = IS(t)∆ ∪ SchedDiscover(σ∆m)
27: end for
28: while IS(t)∆ 6= φ do
29: remove a σm from IS(t)∆
30: TR(t)′ =Enforce(P ′, t, σm)
31: if successfully enforced then
32: IS(t)∆ = IS(t)∆ ∪ σ′

m
33: Update SV Pt . Update coverage information
34: if a new interleaving σ′

∆m
found in TR(t)′ then

35: IS(t)∆ = IS(t)∆ ∪ σ∆m
36: end if
37: end if
38: end while
39: end procedure
40: procedure INPUTGENERATOR(st, T , σm)
41: bt =Branch(st)
42: p = Predicate(st)
43: Tbt = all test inputs in T that reach p
44: PCbt = path conditions obtained from executing test cases in Tbt
45: for each pc ∈ PCbt do
46: pc′ =DelNeg(pc, bt)
47: if pc′ 6∈ PCbt then
48: tnew = Solve(pc′) . If pc′ 6= UNSAT
49: return tnew
50: end if
51: end for
52: end procedure

In the example of Figure 1, r(g1) in svp(g1)aff2
is the tar-

get to be covered. t1 is selected for reuse, since its trace contains
predicate p at line 9 that controls reachability of r(g1). First, t1’s
path condition, (a >= 0 ∧ b <= 3), is selected. DelNeg is ap-
plied, obtaining another path condition, (a < 0). By using solver
to solve this path condition, a new test input t3 is produced (i.e., {a
= -1, b = 2}), that covers the false branch of p. At the same time,
more path conditions can be collected because t3 may exercise new
paths. Next, the algorithm uses t3 to explore affected interleavings
related to svp(g1)aff2

.
Step 3. This step attempts to generate test inputs to cover ele-
ments in sequential program affected by new interleavings. For
each affected interleaving σm in IS(t)∆, the algorithm locates the
variable who reads the last remote write mlast in σm; this read
value may propagate across local thread all the way to the the out-
put. The algorithm first invokes SeqImp (line 13), a static forward
slicing [9] module to compute a sequential slice Saff, consisting of
statements affected by rd(mlast) through data and control depen-
dences (line 14). Next, the algorithm invokes InputGenerator
(line 15) to generate a new input to cover each such statement ac-
cording to its interleaving σm.

In the example of Figure 1, as illustrated in Section 2, x at 17 is a
new coverage target for <t1, σ2> and <t3, σ4>. The path conditions
for both t1 and t3 are selected to generate new inputs because both

920

test inputs cover the predicate of b at line 16. Consider the PC
(a < 0 ∧ b <= 3) for t3, DelNeg is applied to obtain a new PC
(a < 0 ∧ b > 3), producing a new input t5 (i.e., {a =-1, b = 4}).
By enforcing t3’s interleaving σ4 along with t5, the "division by
zero" fault is exposed.

3.3 Preliminary Evaluation
Our algorithm was implemented on CLOUD9 symbolic execu-

tion engine1. We modified CLOUD9’s scheduler to control execu-
tion of affected interleavings. The impact analysis (ConImp and
SeqImp modules) was implemented on CODESURFER2, a com-
mercial static analysis tool to perform sophisticated analysis (e.g.,
static slicing, data-flow analysis) on C/C++ source code. As fu-
ture work we intend to implement the impact analysis on LLVM to
seamlessly integrate it with our framework.

In the preliminary stage of evaluation, we applied TACO on two
toy programs – PROD-CONS and RWLOCK, which are shipped with
CLOUD9. We modified the programs by inserting additional pred-
icates and concurrency semantics to increase program complexity.
We used CCMUTATOR [5], a mutation generator for multithreaded
C/C++ applications to simulate modified program versions by in-
jecting 18 concurrency faults (versions). We ran each version pair
on TACO with randomly generated 50 test cases. TACO detected
all 18 regression concurrency faults. We next disabled Input-
Generator and used only existing inputs (e.g., RECONTEST). In
this case, 11 faults were detected. We next employed re-test all by
applying TACO on the whole program level rather than focusing on
affected program entities (e.g., CON2COLIC); this increased test-
ing time by 120x on average. While additional studies are needed,
the early results are promising, demonstrating that TACO can be
more cost-effective that existing techniques.

4. CONTRIBUTIONS AND VISION
We have presented an automated regression test suite augmen-

tation framework, TACO, for use in detecting concurrency faults
that are induced due to code changes. The novelty of TACO is
that it targets two essential aspects of concurrent programs – test
inputs and thread interleavings. TACO treats test input generation
and interleaving exploration uniformly, in which new test inputs are
generated from test reuse to direct exploration of affected interleav-
ing space that has not been covered by existing inputs. TACO is
a configurable framework that allows engineers to flexibly manage
its modules and parameters. For example, one can disable Step 2
and Step3 to actively explore thread interleavings within existing
inputs. Also, one can disable impact analysis and let TACO gen-
erate inputs and interleavings for the whole program. In addition,
TACO can also be used to replay regression concurrency faults by
leveraging its active scheduler.

Our work is still preliminary and contains a few limitations. To
create effective RTA techniques we need to investigate factors that
can potentially influence their the cost and effectiveness. We would
like to provide at lease three major factors for future research.
Interleaving coverage criteria. Interleaving coverage criteria may
impact how well TACO works. Lu et. all [6] introduced seven in-
terleaving coverage criteria, which are designed based on different
concurrency fault models. Their cost ranges from exponential to
linear. Study by Hong et al. [3] further confirmed that effectiveness
concurrency fault detection can vary across different criteria. While
TACO employs Def-Use criteria by default, it is important to in-
vestigate cost-effectiveness of RTA when using other interleaving
criteria in the context of regression testing.
1https://sites.google.com/site/dslabepfl/proj/cloud9
2http://www.grammatech.com/research/technologies/codesurfer

Ordering affected program entities. TACO operates on lists of
affected interleavings and sequential elements. Our current imple-
mentation employs random search for these entities, but we be-
lieve that the order in which these elements are searched can affect
the techniques. We conjecture that by guiding concolic testing to-
ward paths that cover the most not-yet-covered affected SV s in a
depth-first order may speed up the augmentation process, because
test cases generated for SV s earlier in flow may incidentally cover
SV s occurring later in flow, obviating the need to consider those
SV s again. By doing this can also maximize the number of inter-
leavings to be explored per test input so as to reduce the number of
invocations of concolic testing for later test inputs.
Test inputs effectiveness. As noted in Section 3, TACO may en-
counter the same affected SV P s across different inputs. To reduce
cost, we employ a heuristic to test interleavings for each SV P only
once. This may end up with using only earlier test inputs while ig-
noring later ones that may be more powerful at revealing faults,
which may in turn cause concolic testing in Step 3 to be invoked
more frequently than necessary. We propose three possible solu-
tions. First, we conjecture that reordering test inputs for each itera-
tion in the main algorithm can take advantage of diverse test inputs
and may improve effectiveness of Step 2. A second solution is to
leverage dynamic concurrency fault detection techniques [2] to re-
port faults based on access patterns instead of output. This disables
Step 3 but at the cost of dynamic analysis and potential false posi-
tives induced [11]. Third, we hypothesize that the depth in which
predicted interleavings are actively tested for the same input can
influence cost-effectiveness of the technique. Instead of testing for
all predicted interleavings within the same input, we can let TACO
use "round-robin" across test inputs in a manner that after an in-
terleaving is explored, TACO proceeds to a different input until all
inputs are used, then starting again from the first input to explore a
different interleaving and so on.

5. REFERENCES
[1] A. Farzan, A. Holzer, N. Razavi, and H. Veith. Con2Colic

Testing. In FSE, pages 37–47, 2013.
[2] C. Flanagan and S. N. Freund. FastTrack: Efficient and

Precise Dynamic Race Detection. In PLDI, pages 121–133,
2009.

[3] S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel. Are
Concurrency Coverage Metrics Effective for Testing: A
Comprehensive Empirical Investigation. STVR,
25(4):334–370, 2015.

[4] V. Jagannath, Q. Luo, and D. Marinov. Change-aware
Preemption Prioritization. In ISSTA, pages 133–143, 2011.

[5] M. Kusano and C. Wang. CCmutator: A Mutation Generator
for Concurrency Constructs in multithreaded C/C++
Applications. In ASE, pages 722–725, 2013.

[6] S. Lu, W. Jiang, and Y. Zhou. A Study of Interleaving
Coverage Criteria. In FSE companion, pages 533–536, 2007.

[7] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu. Finding and Reproducing Heisenbugs in
Concurrent Programs. In OSDI, pages 267–280, 2008.

[8] V. Terragni, S.-C. Cheung, and C. Zhang. RECONTEST:
Effective Regression Testing of Concurrent Programs. In
ICSE, 2015.

[9] M. Weiser. Program Slicing. In ICSE, pages 439–449, 1981.
[10] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen.

Directed Test Suite Augmentation: Techniques and
Tradeoffs. In FSE, pages 257–266, 2010.

[11] T. Yu, W. Srisa-an, and G. Rothermel. SimRT: An
Automated Framework to Support Regression Testing for
Data Races. In ICSE, pages 48–59, 2014.

[12] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu,
and T. Reps. ConSeq: Detecting Concurrency Bugs Through
Sequential Errors. In ASPLOS, pages 251–264, 2011.

921

