
RDIT: Race Detection from Incomplete Traces

Arun K. Rajagopalan
Texas A&M University

College Station, Texas, USA
arunxls@tamu.edu

Jeff Huang
Texas A&M University

College Station, Texas, USA
jeff@cse.tamu.edu

ABSTRACT
We present RDIT, a novel dynamic algorithm to precisely
detect data races in multi-threaded programs with incom-
plete trace information – the presence of missing events.
RDIT enhances the classical Happens-Before algorithm by
relaxing the need to collect the full execution trace, while
still guaranteeing full precision. The key idea behind RDIT
is to abstract away the missing events by capturing the invo-
cation data of the missing methods. This provides valuable
information to approximate the possible synchronization be-
havior introduced by the missing events. By making the
least conservative approximation that two missing methods
introduce synchronization only when they access common
data, RDIT guarantees to detect a maximal set of true races
from the information available. We have conducted a prelim-
inary study of RDIT on a real system and our results show
that RDIT is promising; it detects no false positive when
events are missed, whereas Happens-Before reports many.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging - Diagnostics; De-
bugging aids

General Terms: Algorithms, Design, Theory

Keywords: Missing Trace, Data Race, Happens-Before,
Precise, Reachable Addresses

1. INTRODUCTION
One of the most serious problem in today’s concurrent

software systems is probably data races. They manifest non-
deterministically, often appearing only on very rare execu-
tions and have caused many real world problems. These
include the Therac-25 medical accidents [7] and the 2003
blackout in the USA and Canada [12]. To detect data races,
researchers have proposed a wide range of techniques, both
static and dynamic, targeting different types of software at
various stages of the software development process. Most
detectors are based on one of three techniques: LockSet [9],
Happens-Before [6], or a combination of the two.

A crucial issue in these tools are false alarms. Because
data races are difficult to diagnose and validate, any false
alarms could significantly decrease programmer productiv-
ity and make the tool less useful. However, it remains highly
challenging to develop a false-alarm-free race detection tech-
nique. The general problem of precisely identifying all data
races is NP-hard [8], and the LockSet algorithm is known
to be incomplete. The difficulty comes not only from the
algorithmic complexity, but also from various practical is-
sues. Although Happens-Before (HB) is precise theoreti-
cally, in practice, HB-based techniques tend to report many
false positives.

1.1 Missing Events
A primary practical factor causing false positives are miss-

ing events. Happens-Before is often applied on a dynamic
execution trace of events performed by the threads. To guar-
antee preciseness, Happens-Before requires that the trace
information be complete, that is, all critical events are cap-
tured. This is however, a strong requirement for large scale
programs and is not easily achievable. Sometimes, we may
even desire to miss certain events for performance reasons.
Some common situations where we miss events are:

• External libraries These may be loaded in a different
language or even on the fly over the network where we
do not have access to add necessary instrumentation
to capture the events.
• Performance sensitive applications Such applica-

tions may hand-off execution of critical sections to an
optimized external program usually written in a lower
level language.
• System calls Calls into the host operating system’s

libraries. Some examples include sending and receiv-
ing data over the network bus in MPI programming.
These calls are inherently synchronized.
• Localized debugging Programmers may be inter-

ested in debugging a specific section of the application
for data races and can choose to skip instrumenting
large sections of their program to speed up run-time.

In all these situations, we may end up missing vital trace
information. If the missing section contains synchroniza-
tion primitives that would have led to a HB edge, Happens-
Before based tools would generate false positives.

Example. Consider the trace in Figure 1. We have two
threads T1 and T2 performing a Write (event e1) and Read
(event e2) on a common address X. The grayed out region
in-between the two events e1 and e2 is the region of interest
where we would like to check for any synchronization. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2803209

914

Figure 1: Ad-hoc synchronization in the missing methods
results in false positives reported by Happens-Before.

synchronization can either be in the form of a HB edge in-
ducing event such as LOCK/UNLOCK, FORK/JOIN, or an
ad-hoc synchronization which causes an ordering in the pro-
gram execution. In the absence of any such synchronization,
we will flag e1 and e2 as a race. When all computations in
this region are missed, e1-e2 will be reported as a race.

However, this is a false alarm when the two missing meth-
ods introduce an ad-hoc synchronization on a shared address
Y (set to 0 initially). Thread T1, after performing the write
to X, sets Y = 1. Before thread T2 can perform the Read
of X, it waits while the value of Y 6= 1. Thus, Read(X) from
thread T2 can occur only after the Write(X) from thread
T1. The shared address Y is used as a barrier in thread T2
to induce a desired ordering.

1.2 Our New Idea
In this paper, we explore an enhancement to the Happens-

Before algorithm that relaxes the need to collect complete
trace information, that is, to precisely detect data races in
the presence of missing events. A naive technique to avoid-
ing false positives would involve adding HB edges between
all missing events that occur on different threads. Although
this approach is guaranteed to detect no false positives, it
is overly conservative and misses a lot of true data races, as
we shall see below.

Our new algorithm, RDIT, uses program analysis to rea-
son about the missing events and provides the guarantee
that all detected races are real races, at the cost of fewer de-
tected races. However, as compared to the naive approach,
RDIT detects a maximal set of true data races from the
available program trace. Our key observation is that al-
though the computations inside the missing methods cannot
be instrumented, we can usually capture the invocation of
those missing methods. The runtime data at the invocation
sites actually provides valuable information to approximate
the behavior of the missing methods.

Consider our example in Figure 1. Both missing methods
have accesses to the same memory address Y . In the absence
of this shared address, there is no possibility for these two
missing methods to introduce any synchronization. More
generally, if the two missing methods in threads T1 and T2
reach addresses A and B, respectively, and if A 6= B, then
we can safely conclude that no ordering can be induced in
T1 and T2 through this pair of missing methods.

This observation leads to our first contribution - gathering
a set of reachable addresses at the invocation of each miss-

ing method. We abstract each external library or missing
method call as two events: MethodBegin and MethodEnd.
Only if the reachable addresses of two missing methods over-
lap, we add the necessary HB edges on the abstracted events.
With this enhancement, the same Happens-Before algorithm
can be applied to detect races without any change.

We have conducted a preliminary study on a popular
database system – Apache Derby, and our results show that
our algorithm is promising: it detects zero false positives,
whereas the original Happens-Before algorithm reports many
false alarms.

We next introduce necessary background on race detection
with Happens-Before, then describe our RDIT algorithm in
more detail.

2. DATA RACES AND HAPPENS-BEFORE
A data race occurs when there are unordered conflict-

ing accesses in the program without proper synchroniza-
tion. Happens-Before analysis has been implemented in
many state of the art dynamic race detection tools such
as ThreadSanitizer [11], FastTrack [3], and RVPredict [4].
These tools usually have two phases - an instrumentation
phase that generates an execution trace, and an analysis
phase that takes the trace as an input and detects races,
either online or offline. All necessary information needed
for race detection is collected during the instrumentation
phase. This includes several program events such as READ-
/WRITE, LOCK/UNLOCK, WAIT/NOTIFY, etc. In ad-
dition, various run-time parameters such as thread ID, mem-
ory address, etc., are also collected to aid the analysis. The
amount of information gathered in this phase is limited by
the run-time slowdown we are able to tolerate. Thus, the
goal during instrumentation is to minimize the run-time
overhead while collecting all the information needed for the
analysis.

The gathered execution trace is then fed to the analysis
engine. Happens-Before analysis proceeds by building a Di-
rected Acyclic Graph (DAG) representing the trace. The
vertices of this graph correspond to program events such as
READ/WRITE while the edges correspond to HB edges. A
HB edge is added between two events if they are performed
by the same thread or there is some synchronization (such
as FORK/JOIN, LOCK/UNLOCK, WAIT/NOTIFY) be-
tween them. If two conflicting events (a READ-WRITE or
a WRITE-WRITE event pair) do not have a path between
them in the DAG, then the two events are reported as a
race.

In practice, Happens-Before is typically implemented us-
ing vector clocks, or its variants [3], to realize the principle of
Lamport clocks [6]. In addition to the program order, syn-
chronization events result in HB edges and cause the vector
clock to update. Every conflicting access to shared memory
leads to a check against the vector clocks of the threads in-
volved. If the vector clocks of two conflicting accesses are not
comparable, meaning that the two accesses are not ordered,
then a data race is detected.

3. ALGORITHM
In our new algorithm, every missing method comprises

of two events - a MethodBegin and a MethodEnd. The
instrumentation phase is tasked with gathering this infor-
mation. We refer to this pair of events as a BarrierPair.

915

Figure 2: A program trace consisting of 4 threads and 6
BarrierPairs. HB edges are added between the BarrierPairs
if they have overlapping reachable addresses.

For example, Figure 2 illustrates six BarrierPairs in a trace
- a, b, c, d, e and f . The shaded region indicates the region
of program execution where missing events are encountered.
A BarrierPair contains the following attributes:

• A thread-ID denoting the thread that called the miss-
ing method.
• A MethodBegin event corresponding to the invocation

of the missing method.
• A MethodEnd event corresponding to the return of

the missing method.
• A set of addresses that can be reached by this Barri-

erPair.
• A (possibly empty) set of recorded events that occur

in-between the begin and end events of the BarrierPair
for the particular thread.

RDIT, an extension of the Happens-Before algorithm, is
described in Algorithm 1. If the trace is missing events
(synchronization events in particular), then the DAG con-
structed by Happens-Before will have missing edges between
its vertices, giving us false positives. Since we aim to achieve
no false positive, we conservatively approximate the syn-
chronization behavior of the missing methods, and add a
HB edge between missing methods that share at least one
common address in its reachable address set. While this
approach is conservative, it is the least conservative one, be-
cause as long as the reachable address sets of two missing
methods intersect, they may use the intersected address to
synchronize. In other words, our algorithm guarantees that
we detect a maximal set of true races from the information
available.

Our algorithm proceeds in two phases - the first phase
gathers all the BarrierPairs from the program trace and the
second phase adds HB edges between BarrierPairs from dif-
ferent threads that have at least one common reachable ad-
dress. Associated with each thread is a BeginStack. This
stack stores the MethodBegin events encountered by this
particular thread. For every MethodBegin event, we push
onto the stack, and for everyMethodEnd event encountered,
we pop from the top of stack. This ensures that a correct
BarrierPair is constructed. For all other events, we leave the
original Happens-Before algorithm unmodified. At the end
of the first phase, we would have constructed a DAG from

Algorithm 1 The RDIT Algorithm

1: input← τ // input trace
2: bpArray ← ∅ // Initialization
3: for all threads t in τ do
4: t.BeginStack ← ∅
5: end for
6:
7: // Process trace and gather BarrierPairs
8: for all events e in τ do
9: t← e.tid // thread ID

10: if e = MethodBegin then
11: t.BeginStack.push(e)
12: else if e = MethodEnd then
13: mBegin← t.BeginStack.pop()
14: bp← new BarrierPair(mBegin, e)
15: bpArray.add(bp)
16: else
17: // Process normal HB events
18: end if
19: end for
20:
21: // Add HB edges between BarrierPairs
22: for all (bp1, bp2) in bpArray do
23: if bp1.tid 6= bp2.tid then
24: if bp1.addr ∩ bp2.addr 6= ∅ then
25: addHBEdge(bp1.events, bp2.events)
26: end if
27: end if
28: end for
29:
30: // Call the original HappensBefore algorithm
31: for all (e1, e2) in τ do
32: if (e1, e2) conflict then
33: HappensBefore(e1, e2)
34: end if
35: end for

the execution trace containing HB edges between synchro-
nization events that were recorded.

In order to account for the missing events, the second
phase then takes this DAG as input and iterates through all
pairs of BarrierPairs. We add HB edges between the first
BarrierPair from each of the different threads that satisfies
the criteria of at least one common reachable address. Since
HB is transitive, it suffices to add HB edges on the begin/end
events. The added HB edge is always in the direction of
increasing trace location, i.e., a HB edge between two events
e1 and e2 goes from e1 → e2 if e1 occurs before e2 in the
trace. Figure 2 illustrates a trace with HB edges added
between BarrierPairs that intersect.

Finally, we perform race detection using the original HB
algorithm. A pair of nodes are said to be conflicting if they
are either a READ-WRITE or a WRITE-WRITE pair. We
look at all such pairs of conflicting events (e1, e2) in the trace
and check if there exists a path from e1 → e2 in the DAG.
If such a path does not exist, then we report a race.

In the preceding algorithm analysis, we have made the as-
sumption that the addresses that are used to perform syn-
chronization are local in scope i.e., they are passed in as
a parameter at the missing method’s invocation site. For
addresses that are global in scope, such as public static
variables in Java, their contribution to synchronization is

916

ignored as their inclusion would reduce RDIT to the naive
approach. Although global addresses could then potentially
result in false positives reported by our algorithm, this is a
minor concern since such programming practices are discour-
aged and are rarely seen in large production grade programs.

4. PRELIMINARY RESULTS
Implementation We have implemented RDIT in RVPre-

dict [4], a dynamic race detection tool for Java programs.
Instrumentation is performed using ASM [1]. During instru-
mentation, we insert logger methods into source byte-code
that records all the necessary events. The set of ‘reachable
addresses’ of a particular method is computed as the union
of the set of reachable addresses of each of its parameters. To
calculate the ‘reachable address’ set of a particular object,
we perform a breadth-first search through its declared fields
and inheritance stack. Each unique address is pushed onto
a queue. We iterate this process until the queue is empty.
The set of addresses we gather in this way is the complete
set of addresses reachable by that particular method.

Results We evaluated our tool against Apache Derby, a
widely used open source Java database management system.
Since the application is large, we can easily simulate miss-
ing events. To simulate the condition of missing events, we
randomly exclude certain classes and packages from being
instrumented. Table 1 shows the reported number of races
by Happens-Before and our RDIT algorithm with various
number of randomly missed classes. All experiments were
conducted on an 8-core Linux machine with OpenJDK 1.7.0
and 32GB heap space.

Table 1: Results on Apache Derby Database

Missing Classes HB RDIT RDIT False Positives
0 4 4 0
22 67 3 0
23 63 4 0
27 69 4 0
29 64 4 0

Our results show that when no class is excluded, both
Happens-Before and RDIT report 4 races. However, when
22-29 random classes were excluded, a large number (63-
69) of races are reported by Happens-Before, whereas RDIT
consistently reported 3-4 races only. We also manually in-
spected these races and found that all races reported by
RDIT were real, that is, RDIT reported no false positive.

On the contrary, we found many false alarms among those
63-69 races reported by Happens-Before. Moreover, for some
races, it was very difficult and time-consuming to determine
their validity, and as such we were not able to make a con-
clusive judgment.

5. RELATED WORK
Data race detection has been widely discussed in the liter-

ature. Our technique is distinguished in that it is the first to
address the practical problem of missing events. Although
Happens-Before is precise, its guarantee of no-false-positive
is only true when the entire execution trace is available.

Several techniques [10, 5, 2] exist to improve accuracy of
the detected races through runtime validation. These tech-
niques take a set of potential races as input and execute the

program again trying to simulate the inter-leavings neces-
sary to induce the race. If the conditions to reproduce the
race are not met, the race is marked as NoRace and not
reported. While these techniques can prune false positives,
they require multiple runs of the program, and thus suffer
from livelocks and missed true races.

6. ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their

constructive comments. This research is supported by fac-
ulty start-up funds from Texas A&M University and a Google
Faculty Research Award to Jeff Huang.

7. CONCLUSION AND FUTURE WORK
We have presented a novel enhancement to the classical

Happens-Before algorithm that ensures preciseness in sit-
uations when the trace information is incomplete – miss-
ing events. Our algorithm requires only a single run of the
program and guarantees no false positive. We have imple-
mented RDIT in Java and conducted a preliminary evalua-
tion on a large database application. Our results show that
our algorithm detects only real races even when arbitrary
sections of code are missed.

Our study opens several interesting directions for future
work. First, we plan to formalize the BarrierPair model of
our algorithm and establish it’s theoretical soundness. Sec-
ond, we plan to fully realize our algorithm and evaluate its
performance on several larger real world multi-threaded sys-
tems. Third, we plan to optimize runtime performance and
integrate our algorithm in popular race detection tools with
large user base such as ThreadSanitizer.

8. REFERENCES
[1] ASM bytecode analysis framework.

http://asm.ow2.org.

[2] S. Biswas, M. Zhang, and M. D. Bond. Lightweight
data race detection for production runs.

[3] C. Flanagan and S. N. Freund. Fasttrack: efficient and
precise dynamic race detection. In PLDI, 2009.

[4] J. Huang, P. O. Meredith, and G. Rosu. Maximal
sound predictive race detection with control flow
abstraction. In PLDI, 2014.

[5] J. Huang and C. Zhang. PECAN: Persuasive
Prediction of Concurrency Access Anomalies. In
ISSTA, 2011.

[6] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. CACM, 1978.

[7] J. Lim. An engineering disaster: Therac-25.
http://en.wikipedia.org/wiki/Therac-25, 1998.

[8] R. H. B. Netzer and B. P. Miller. What are race
conditions: Some issues and formalizations. LOPLAS,
1992.

[9] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multi-threaded programs. TOCS, 1997.

[10] K. Sen. Race directed random testing of concurrent
programs. In PLDI, 2008.

[11] K. Serebryany and T. Iskhodzhanov. Threadsanitizer:
data race detection in practice. In WBIA, 2009.

[12] S. B. C. to Blackout. Securityfocus.
http://www.securityfocus.com/news/8016, 2004.

917

http://asm.ow2.org

	Introduction
	Missing Events
	Our New Idea

	Data Races and Happens-Before
	Algorithm
	Preliminary Results
	Related Work
	Acknowledgment
	Conclusion and Future Work
	References

