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ABSTRACT

Scalability is a major challenge for existing behavioral log
analysis algorithms, which extract finite-state automaton
models or temporal properties from logs generated by run-
ning systems. In this work we propose to address scalability
using statistical tools. The key to our approach is to consider
behavioral log analysis as a statistical experiment. Rather
than analyzing the entire log, we suggest to analyze only a
sample of traces from the log and, most importantly, provide
means to compute statistical guarantees for the correctness
of the analysis result. We present two example applications
of our approach as well as initial evidence for its effective-
ness.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Veri-
fication—Statistical methods; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms
Algorithms, Reliability

Keywords

Log analysis, specification mining

1. PROBLEM AND MOTIVATION

Running systems, be it web servers, virtual machines on
the cloud, industrial robots, or network routers, generate
logs that document their actions. The analysis of these logs
carries much potential to improve software engineering tasks
from documentation and comprehension to test generation
and verification. Existing algorithms and tools for behav-
ioral log analysis include various specification mining and
model inference approaches, which extract finite-state au-
tomaton (FSA) models or temporal properties. Example
approaches include [3,10-12,14,15,17,21].
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However, a major challenge for all behavioral log analysis
algorithms is scale. Indeed, as logs become larger and consist
of millions of lines, and as the semantics of a log line is
stateful and depends on the lines that precede or follow it,
directly or indirectly, when applied to real-world large logs,
all existing algorithms take forever to complete and require
unrealistic amount of memory.

In this work we propose to address the scalability
of behavioral log analysis algorithms using statistical
tools. Rather than analyzing the entire log, we suggest to
analyze only a sample of traces from the log and, most im-
portantly, provide means to compute statistical guarantees
for the correctness of the analysis result.

Specifically, we develop an approach to adding sta-
tistical guarantees to behavioral log analyses. Given
an analysis of interest and a sample of traces from a log,
we compute the statistical confidence one may have in the
analysis results. Conversely, given an analysis of interest
and a required level of statistical confidence, we compute a
stopping criteria, e.g., a sample size, for which indeed the
analysis results can be trusted at the required statistical
confidence level.

2. BACKGROUND AND RELATED WORK

While there has been much research on developing be-
havioral log analysis algorithms, only very little has been
published on their scalability on the one hand and on the
confidence one may have in their output on the other hand.
Recently, Cohen and Maoz [6] have presented k-confidence, a
confidence measure for k-Tails [4] which computes the prob-
ability that the log is complete (this work is extended to two
other algorithms in [7]). These works do not provide any sta-
tistical guarantees. In contrast, our new work is based on
statistical hypothesis testing and is thus much more robust
and general than the one presented in [6,7]; it can answer
many other questions, beyond log completeness, as we later
demonstrate in Section 3.3, and it provides the engineer with
much flexibility in adapting to different algorithms and set-
ting up required levels of accuracy on the one hand and
statistical confidence on the other hand.

The approach we suggest is a pure black box approach.
We do not look at the code of the program that created the
log and take only the log itself as input. In many real-world
situations, indeed the code is not available or is just too
complex and too large to be a subject for static analysis.

It is important to note that our approach assumes that
traces are randomly and independently sampled from the
log and that the log adequately reflects the behavior of the
system under investigation. This assumption may not al-



ways hold, e.g., if traces and logs depend on running tests
that were generated according to some strategy. Our ap-
proach should therefore not be used as is as a means to
evaluate the quality of test suites.

3. APPROACH AND UNIQUENESS

The key to our approach is to consider behavioral
log analysis as a statistical experiment. For example,
if the log is divided into traces, each new trace in the log is
considered a trial which may contribute to the acceptance or
rejection of an hypotheses about the system that generated
the log. This setup allows us to apply well-known tools for
statistical inference. We present basic definitions and show
two examples.

3.1 Basic Definitions

A trace over an alphabet ¥ is a finite word
o = (e1,e2,...,em) where e1,...,em € XN. Let M be a
model over an alphabet ¥. We use T'(M) C ¥* to denote
all traces accepted by the model M. A log of M, 1 C T(M)
is a finite set of traces from T'(M). We denote the set of all
possible logs of M by L(M).

In the behavioral log analysis setup, M and thus also
L(M) and T(M) are unknown. All we know is a log [ from
L(M). We assume that the distribution of traces in I closely
resembles the distribution of traces in T'(M), i.e., that the
log includes typical uses of the system under investigation.

3.2 Example I: k-Tails

k-Tails [4] is a well-known algorithm for extracting a can-
didate behavioral model from a log of execution traces. It
has been extensively used in the dynamic specification min-
ing literature and tools, in several variants, e.g., [1,8, 16,
17,19]. One variant of k-Tails, presented in [2], reads each
trace and collects k-sequences, i.e., sequences of k consecu-
tive events. It then uses these k-sequences to construct the
k-Tails FSA. Most importantly, the FSA is uniquely defined
by the set of k-sequences observed in the log.

Since a log may be too large to analyze, one would like
to define a stopping criterion to indicate that “enough” traces
were seen. For this purpose, we define a notion of §-complete-
ness as follows: alog ! € L(M) is 6-complete when the total
probability of all the unobserved k-sequences to be observed
in the next trial (i.e., in the next randomly selected trace
from T'(M)), is smaller than or equals 6. 4 is a statistical
bound. Intuitively, in our context, ¢ can be viewed as a
target sensitivity level to infrequent sequences.

Hypothesis testing as a stopping criteria. Our null
hypothesis is that the log is not J-complete, i.e., that the
probability of a new random trace to reveal new informa-
tion (include a sequence of events of length k that has not
appeared in previously analyzed traces) is larger than 6.
We stop reading new traces when this hypothesis can be
rejected.

The experiment protocol proceeds iteratively as follows.
At each step we pick a random trace from the log and check
if the trace includes previously unobserved k-sequences; if so,
we start a new experiment for the new knowledge base (i.e.,
the new set of all observed sequences so far); otherwise, we
increment the number of trials since the last new k-sequence
was observed; when this number is larger than N, the null
hypothesis can be safely rejected. But where does N come
from?
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We model our analysis as a series of Binomial experi-
ments [20]. Given a target sensitivity J, and a statistical
significance level «, we apply a Binomial proportion test [5]
to compute N, the number of consecutive trials (new traces)
that do not reveal new information required to reject the null
hypothesis, i.e., to safely conclude that the log is §-complete.

More formally, we describe the setup of iteratively ran-
domly selecting a trace from a log and comparing the facts
extracted from it (i.e., k-sequences in our example) against a
knowledge base in terms of a Binomial experiment model [20]
(this corresponds to a single experiment in the series):

e The experiment consists of N repeated independent
trials (in our context, traces we have read since the
last trace that revealed at least one new k-sequence)

e Each trial has a probability of success p (in our context,
a success is a trace that reveals at least one new k-
sequence)

e The probability of success does not change throughout
the experiment (in our context, the knowledge base of
k-sequences observed so far determines p)

Given the above modeling as a Binomial experiment, the
distribution to observe k successful trials (i.e., traces reveal-
ing at least one new k-sequence) out of N trials is:

Bin(N, k) = (]]Z) PP —p)N "

Ideally, we would stop analyzing traces once all the k-
sequences have been observed, i.e., when p = 0. However, in
our context, we do not know the complete set of k-sequences
and p is unknown. Therefore, we bound it inside a Binomial
proportion confidence interval [5].

Definition 1 (Binomial proportion confidence interval). Let
p denote the proportion of successful trials over N random
trials from Bin(N,k); let z denote the 1 — 2o percentile
of a standard normal distribution, where we refer to « as
the error percentile. Then, p has a probability of (1 — «)
to be contained within the Binomial proportion confidence

interval
[ﬁ—z\/*l P —B).p+ 24/ =p(1 - §)]
N ’ N

Remark 1. The above formula relies on Normal approx-
imation to a Binomial. We chose to present it due to its
relative simplicity. However, it is inadequate when p =~ 0.
Other, superior methods to compute a Binomial proportion
confidence interval exist in the literature. In our calculations
in the preliminary evaluation we used Jeffrey’s interval [5].
The statistical mathematical details and the reason for our
choice are outside the scope of this short paper.

Definition 2 ((a,0)-confidence). A («,d)-confidence reflects
a 1 — a confidence that the true (but unknown) probability
of success p is less than 4, i.e.,

ﬁupper bound(l—a) S é

Based on the Binomial proportion confidence interval for-
mula, we find the stopping criteria by computing the number
of unsuccessful consecutive trials N required to guarantee
(a,8)-confidence.

Remark 2. The proportion of success changes every time
a new fact is learned. In k-Tails, when the knowledge base



is empty (i.e., no event sequence is known), the probability
of success on any trace (longer than k) equals one. On the
other extreme, when the knowledge base is complete (i.e., all
possible event sequences of length k are known), the proba-
bility of success is zero. Therefore, when computing the pro-
portion confidence interval, we must re-approximate p after
learning a new fact, as the probability of success changes.
This is why we start a new Binomial experiment after every
success (i.e., after observing any new k-sequence).

We conclude with a concrete example. If we select a tar-
get sensitivity level of § = 0.05 and a significance level of
a = 0.01, Jeffrey’s interval gives us N = 77. If we follow the
protocol presented at the beginning of this section, we can
stop reading traces from the log once we analyze N = 77
consecutive traces without new information. Then, we run
k-Tails only on the sample of traces analyzed so far, and
obtain 1 —a = 0.99 confidence level that the null hypothesis
was correctly rejected, i.e., that the probability of any un-
observed k-sequence to be included in the next (randomly
selected) trace is less than § = 0.05. In short, we say that
the sample is §-complete with a significance level a.

Remark 3. Interestingly, and perhaps surprisingly, note
that N depends on d and «, but not on any specific detail
of the k-Tails algorithm, not even the chosen k. However,
this independency can be explained: the details of the k-
Tails algorithm and the choice of the parameter k affect the
very success or failure of each trial in the experiment. This
points to a major advantage of our approach (also in contrast
to [6,7]); it can be easily extended to any analysis algorithm
that one can cast into the Binomial experiment protocol.

3.3 Example II: Property satisfaction frequency

Consider an engineer interested in the frequency of traces
in the log that satisfy a certain property. For example, the
property of interest may represent a bad scenario, and the
engineer wants to estimate its frequency in a log coming from
real-world executions of the system. As analyzing the entire
log is infeasible, we are using statistical means to estimate
this frequency. We sample traces, estimate the frequency,
and would like to stop sampling once we know that the con-
fidence interval around the estimated frequency is smaller
than § for a given statistical significance level a.

Let us refer to the true (but unknown) property satis-
faction frequency in the system under investigation, i.e., in
T(M), by p, and the estimated frequency by p. We de-
fine a notion of J-similarity as follows: a log | € L(M) is
d-similar if the estimated frequency p, computed as the pro-
portion of satisfaction of the property in the traces in [,
satisfies |[p — p| < 4.

Given this notion, we propose the following iterative ex-
periment protocol: pick a random trace from the log, check
if the trace satisfies the desired property and update p to
be the frequency of the property satisfaction observed in the

traces so far; compute d= |ﬁupper bound(l—a) _ﬁlower bound(l—a) ‘7

if d is smaller than ¢ stop sampling new traces. But where
would the bounds come from?

Confidence interval as a stopping criteria. As done
in the previous section, we define a Binomial experiment.
Here, we change the interpretation given to a successful trial.
A new trace is considered as a success, if it satisfies the
desired property. The analysis of the confidence interval
remains the same. In this context, the null hypothesis is
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that the true frequency p of the property lays outside of the
confidence interval. We stop sampling (i.e., reject the null
hypothesis), once we observe that the size of the confidence
interval is sufficiently small. That is, when we stop, the
log we have analyzed so far is d-similar with a statistical
significance level «. In other words, the probability that the
true frequency p is far from p by more than § is less than a.
As an example property of interest, consider an imple-
mentation of a caching mechanism on a web server. A log
from such a server can be partitioned into traces based on
user session and IP addresses. Then, an engineer may be in-
terested in the frequency of a suboptimal scenario, where a
user requests a page that she had already seen in the session
but the server cannot fetch its contents from the cache.
Consider a concrete example. If we set a = 0.05, after ob-
serving the property in 10 out of 50 traces (with a frequency
p = 0.2), we achieve 95% (1-«) confidence that the true fre-
quency of the property, p, is in the interval 0.108 < p < 0.326
(di = 0.218). By reading more traces, we may be able to
narrow this interval and get a more precise result, at the
same significance level. For example, after observing the
given property in 200 out of 1000 traces, for the same 95%
(1-a) confidence we achieve 0.176 < p < 0.226 (d2 = 0.05).
Thus, if we set § = 0.05 and use the procedure presented
above, we would stop reading new traces at this stage.
Further, increasing the significance level a narrows the
interval d as well. E.g., after observing the given property
in 200 out of 1000 traces (p = 0.2), with o = 0.10 we get
0.18 < p < 0.221 (ds = 0.041). This occurs since increasing
«, increases the probability for an error (i.e., the probability
that the true frequency lays outside of the interval).
Finally, an observation: p affects the interval size as well,
e.g., with a = 0.05, and after observing the given property in
50 out of 1000 traces, we get 0.038 < p < 0.065 (ds = 0.027).
The interval size d4 is nearly half the size of d2, obtained for
the same sample size and the same significance level.

Remark 4. Note that the Binomial proportion interval size
0 is monotonically decreasing in the significance level o and
monotonically decreasing in the sample size N. This holds
for any of the methods to compute the Binomial proportion
interval. Also note that the ¢ is not symmetric around the
estimated proportion p. Therefore, to achieve §-similarity,
the interval size d must be less than § (and not 29).

Remark 5. As in the previous example with k-Tails, here
too, the stopping criteria depends on the user selected o
and J, but does not depend on the property of interest. The
only assumption is that the analysis is able to decide, given
a trace, whether it satisfies or does not satisfy the property.
Thus, our approach is general and can be easily applied to
many properties of interest.

4. PRELIMINARY RESULTS

As an early evaluation of our approach, we have imple-
mented d-completeness analysis for k-Tails with £ = 3, and
applied it to logs generated from four FSA models, taken
from three previously published works [9,13,18]. The mod-
els varied in size and complexity: alphabet size ranged from
10 to 43 (mean 24.5), number of states from 6 to 18 (12.25),
and number of transitions from 28 to 209 (88.75).

In our evaluation, we fixed the target sensitivity § to 0.05.
For three different statistical significance levels «, 0.15, 0.05,
and 0.01, we computed the number of unsuccessful consecu-
tive trials N required to guarantee («,0)-confidence: 31, 49,



800 * 2.50% % _
700 . ~ cvs.net
* 2.00% = e
600 : - ° ~ java net Datagram&ocket
7] = >
8 500 4+ 250 = ;
S — o V% ~ Java.net Socket
5 - Q ~
o 400 = — =+ e X X -
g + — — 3 ~ ZipOutputStream
o 2 1.00%
5 300 <] h
o ~
3+ _ X =) X
200 oo T * o .
N 0.50% +— — _° R
100 = S ————— I
0 0.00%
0.85 0.9 0.95 1 0.85 09 !

Confidence level

Confidence level

Figure 1: For § fixed at 0.05: Confidence level (1-«) vs. # of read traces (left) and vs. unobserved ratio (right)

and 77 resp. For each of the four models, we used a trace
generator to generate about 2000 random traces. We con-
ducted the experiment according to the protocol described
in Example I. We repeated each experiment 30 times for
each of the four models and the three values of .

In Fig. 1 we report the average number of traces analyzed
(left) and the unobserved ratio (right), which is the ratio
between the number of unobserved k-sequences and the total
number of k-sequences possible in the model, achieved when
reaching the stopping criteria.

As expected, to obtain lower statistical significance levels,
we had to read more traces yielding lower unobserved ratio.
Still, from the logs of 2000 traces we only had to analyze
between 60 and 800 traces yielding unobserved ratio between
0.01% and 2.45%. The variance in number of traces and in
the unobserved ratio can be attributed to the variance in
the four models size and complexity.

Note that we do not report the ratio between the original
log size and the number of traces we have read, as the stop-
ping criteria is independent of the original log size. Indeed,
one should expect similar number of read traces for logs of
any size, as large as we want. Thus, the potential gain in
scalability is unbounded.

d-completeness was achieved in all experiments for all mod-
els, which hints that our analysis is conservative and can be
further improved to reduce the number of read traces.

S. CONTRIBUTIONS AND FUTURE WORK

In this short paper we introduced the use of trace sampling
and statistical inference to address the scalability challenge
in the behavioral analysis of large logs. The key to the ap-
proach is to consider each new trace in a log as a trial in
an experiment. We demonstrated the application of our ap-
proach to two different analyses: the k-Tails specification
mining algorithm and the problem of computing the fre-
quency of a property satisfaction in the log. Preliminary
evaluation provides evidence for the reliability of our cal-
culations and for the usefulness of our approach in dealing
with large logs.

We are working on the following future research. First, we
investigate other, more elaborated stopping criteria. Second,
we extend our evaluation beyond the four models mentioned
above to real-world logs provided by our industrial partners.
Finally, we look for additional behavioral log analyses where
our statistical inference approach can be applied.
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