
Automatically Recommending Test Code Examples to
Inexperienced Developers

Raphael Pham
Software Engineering Group
Leibniz Universität Hannover

Hanover, Germany
Raphael.Pham@inf.uni-

hannover.de

Yauheni Stoliar
Leibniz Universität Hannover

Hanover, Germany
Yauheni.Stoliar@se.uni-

hannover.de

Kurt Schneider
Software Engineering Group
Leibniz Universität Hannover

Hanover, Germany
Kurt.Schneider@inf.uni-

hannover.de

ABSTRACT
New graduates joining the software engineering workforce
sometimes have trouble writing test code. Coming from uni-
versity, they lack a hands-on approach to testing and have
little experience with writing tests in a real-world setting.
Software companies resort to costly training camps or men-
toring initiatives. Not overcoming this lack of testing skills
early on can hinder the newcomer’s professional progress in
becoming a high-quality engineer.
Studying open source developers, we found that they rely
on a project’s pre-existing test code to learn how to write
tests and adapt test code for their own use. We propose
to strategically present useful and contextual test code ex-
amples from a project’s test suite to newcomers in order to
facilitate learning and test writing.
With an automatic suggestion mechanism for valuable test
code, the newcomer is enabled to learn how senior develop-
ers write tests and copy it. Having access to suitable tests
lowers the barrier for writing new tests.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Mis-
cellaneous; D.2.5 [Software Engineering]: Testing and
Debugging—Testing Tools

General Terms
Management, Human Factors

Keywords
Testing, Newcomers, Recommendation, Examples

1. INTRODUCTION
Computer Science students sometimes leave university with

a dismissive and negative view on software testing [6]. Stu-
dents reported to have problems in writing test code — the

learning curve and technical barrier kept them from applying
their theoretical knowledge in a real-world setting. This is
problematic, as such inexperienced developers will soon ap-
ply for software engineering positions. Companies will have
to take care of this gap in testing skills, however, provid-
ing training camps or mentoring initiatives is costly. Here,
we see a need to support such inexperienced developers in
adopting a good and healthy testing culture. The question
arises: “How can novice developers be supported in writing
more and better tests?”
We propose to automatically suggest test cases from
the project’s tests to newcomers so that they can
adopt the presented testing techniques. In a previous
study about the testing culture on a social coding site [7],
we observed the role of existing tests for project newcom-
ers. New contributors heavily relied on existing test code to
write their own tests. Often, they searched for tests in the
existing code base that would suit their needs and copied
and adapted them. Being able to access tests lowered the
barrier for writing tests: analyzing existing tests, users ob-
served and learnt how other users wrote tests.
The inexperienced developer shall use the suggested test
code example as a basis for writing her own test code. To
this end, the most suitable test code must be selected among
the set of written tests: First, the suggested test code must
serve as a good basis for the new test, i.e. only a relatively
small amount of changes need to be made. In this sense, the
test code suggestion has to take into account the current
changes to the production code. Second, the suggested test
code shows features of the test framework that the newbie
can learn and use.

2. RELATED WORK
The idea of using existing code examples as a learning

aid is not new. In 2011, Barzilay et al. describe it as an
”act of embedding a code segment from an example into a
software system being developed” [2]. While staying on the
theoretical level, Barzilay et al. suggest an overlay structure
to example embedding as a part of code reuse and identify
several categories, practices, and possible tool application
areas. Although providing many vital examples and expla-
nations [1], there is no mention of the peculiarities of exam-
ple embedding for software testing.
The concept of example embedded programming spawned
different tools: Edwards et al. present an eclipse plug-in
which operates on a set of pre-written code examples, high-
lighting their occurrences in code [4]. These stand-alone

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2803202

890

examples are used in real-life code and allow for learning
without having to leave the IDE. Similar to Edwards, we
use tracing to determine suitable code and operate on pre-
viously created content, however this content does not need
to be explicitly created for learning purposes — instead,
we use content that is already existing (such as the exist-
ing test suite). Hummel et al. introduce “Code Conjurer”,
a tool that uses queries to search for code examples [5].
Again, “Code Conjurer” operates on a pool of pre-written
examples, albeit provided by an external source. Brandt et
al. present “Blueprint”, an IDE plug-in that provides code
examples on demand — including context information for
it [3]. It mines regular websites and fetches the descriptions
from around the code examples. Our search showed quite a
few attempts to apply using example-centric programming.
However only few of them mention the writing of software
tests as a possible application area. In contrast to our ap-
proach, both“Code Conjurer”and“Blueprint” require a user
written and explicit query and do not provide any insights
into the matching decisions to the user. Targeting inex-
perienced developers — such as graduate students during
onboarding — operating query-less and offering insights for
learning is crucial. Additionally, we limit the search set for
test code to the project’s own test suite in order to guar-
antee applicability of the suggested test code. Direct and
easy applicability of the test code is important as it reduces
frustration and facilitates adoption of our approach among
inexperienced developers. Lastly, our approach supplies the
newcomer with a browsable list of test code examples that
is automatically tailored to the changes that the newcomer
has made. This, we hope, facilitates a learning effect.
Qusef et al. describe a pragmatic approach to find corre-
spondence between unit tests and the tested classes [8]. Al-
though our matching approach was influenced by Qusef et
al., their idea is quite the opposite. It traces contents of
tests to a specific classes, thusly improving the refactoring
process. However Qusef et al. do not expand their approach
to finding test code from source code.

3. OUR APPROACH
Our approach focusses on a newly hired graduate with

some experience in coding and little experience in writing
tests. Different challenges arise when trying to suggest suit-
able test code examples: How do we automatically under-
stand the changes made to the production code — in order
to find a suitable example of test code? How do we know
which test case is suited to serve as a basis for the currently
needed test?

3.1 Test Recommender
In an ongoing effort, we have implemented our approach

as an Eclipse IDE Plugin, called Test Recommender (see Fig.
1). The use case for Test Recommender (TR) is as follows: A
new graduate makes changes to production code and when
she is done, she triggers Test Recommender by the push
of a button in her IDE. TR analyzes the changes made by
the newcomer. Next, Test Recommender searches through
the set of existing tests and looks for any test code that is
similar to what the newcomer might need in this situation:
Is there any test that tests something remotely similar to
what the newcomer needs (according to her code changes)?
The Test Recommender window pops up and suggests a list
of suitable tests, ascending from best suited to marginally

Figure 1: Suggesting a suitable example of test code
in the IDE of a newcomer.

suited. Tests that did not match the Test Recommender’s
heuristic will not be included in that list. Lastly, the user
browses through the set of presented tests, choses one and
uses it to write her test.

3.2 Helping Newcomers
The main view of Test Recommender features two panes.

The left pane is informative and explains why this test has
been recommended. For the newcomer, this facilitates an
understanding of why a particular test has been shown to
her. Also, it can give her an idea of where to find other tests
and how to approach the search for tests in general.
The right pane shows the recommended test code example
and is browsable: The newcomer can click through all sug-
gestions using the buttons below the right pane. Each time,
the rationale on the left pane and the suggestion will update.
Seeing senior developer’s test code in action should give the
newcomer an understanding of how such tests can be used.
Both the rationale on the left as well as the test code on
the right are highlighted. This facilitates a quicker grasp of
important parts of the code.

3.3 Technical Approach
We want to match current changes in the production code

to tests in the existing test suite. Our goal is to present a
subset of suitable tests to the novice in the manner of “Look,
here are some tests, these might be useful to you.” The sug-
gested tests should be an aid to the user, giving her an idea
of how to write a test and how to use the test framework and
take advantage of its features. Here, our general rationale
for finding a suitable tests is “suitable test code will use the
same types as the current changes to the production code”
(types can be classes or primitive data types). For example,
a test that covers a certain class will at least use this class
to instantiate an object of this class. Going through the set
of tests one by one, we compare types used in the changes to
the ones used in each test and rank these tests accordingly.
At best, the newcomer changes a class that is already cov-
ered by a written test case — this test case would certainly
refer to this class in test code and it would be suited for
adoption. At worst, the newcomer introduces a new class
that is not mentioned at all in the test suite. Our tool will
attempt to look for similar classes in the test suite that re-

891

side in the same package: Maybe tests for other classes in
the same package as the current code changes could be use-
ful as test examples? For example, classes from the package
‘view’ and tests for classes in the package ‘view’ have similar
instantiation patterns. If the newcomer adds a new view ob-
ject with no tests, being presented with a test for another,
similar view object can help.
The following steps illustrate how our tool works: First,
we need to identify the changes made to the project
without any interaction from the user. We leverage infor-
mation of the versioning system (Subversion): We compare
the changed code base to the last commit in order to find
which lines of code have been touched.
Second, we search the set of changed lines for classes
used and distinguish our findings into three categories: Project
classes are user written, more unusual and point to a stronger
connection to the test code (if found there as well). Non-
project classes are part of the core libraries of the program-
ming language and are more common, such as String. These
reside somewhere in the packages of the programming lan-
guages. Lastly, primitive data types, such as int are fun-
damental building blocks of the programming language and
have no specific package location. The set of project, non-
project classes, primitive types and their package locations
make up the so-called change set.
Third, we analyze the test suite in a similar manner
to the change set, i.e. extract project classes, non-project
classes, and used primitive data types of each test. This re-
sults in a so-called test set for each test.
Fourth, in the matching step, we compare the change
set to each test set. Our matching takes into account five
categories of findings:

1. Matches in project classes: the strongest indicator for
suitability — the candidate test uses the same user-
written classes as the current changes.

2. Similarity of project classes used in the change set and
project classes used in the test set: do project classes
used in the test originate in the same package as the
current changes to the production code?

3. Matches in non-project classes. Similar to step 1 but
the classes originate outside the project, be it the core
library of the programming language or any 3rd party
library.

4. Similarity in non-project types: see step 2, but with
non-project classes.

5. Exact match in primitive types: the least significant
match indicator — a test uses the same primitive types
as the current changes. Our similarity concept will not
work for primitive data types as they are fundamental
building blocks of the programming language and have
no specific package location.

4. EVALUATION
Our approach is primarily aimed at graduates who are

joining the software engineering workforce. To better un-
derstand the impacts of our approach, we performed a first
tentative evaluation. We wanted to understand wether they
agreed with the provided matching and prioritization of a
suitable test code and what advantages they recognized in

using our approach. Our population consisted of 10 stu-
dents in computer science (nine) and computer engineering
(one) who were just about to get their degrees. These stu-
dents included four master and six bachelor students. All of
these students had been programming during lecture courses
of their recent semesters. Their programming experience
ranged from one year up to eight years. Their testing expe-
rience ranged from none to up to two years.
In our evaluation process we used paper printouts of source
code as our Test Recommender tool was not finished yet.
We used the open source project ‘Picasso’ 1 as a source for
real-world production code and test code. We selected a
relatively small commit that only edited one class. We re-
moved the developer-provided test code that belonged to
these changes from the project’s test suite and applied our
approach to the remaining tests. Our tool ranked 23 of
those tests according to their hypothesized suitability as a
‘copy&paste’-template for a newcomer, from high to low.
We picked six test code suggestions: two test codes with
highest ratings for suitability, two with middle ratings and
two with lowest ratings. We were interested in whether these
ratings were at least reflected in how students would assess
the suitability of these test code suggestions for writing their
own test code. Using two tests for each quality level helped
to smooth out minor deviations.
Each participant was presented with the source code of the
commit (as a printed listing, presented with formatting and
syntax highlighting similar to Eclipse’s code editor), asked to
examine the code and to explain the character of the changes
made. We rated their level of understanding: Seven partici-
pants were able to explain both of the two main changes to
the code while the three explained only one.
After that, each participant was shown the six suggestions
for test code. We asked each participant to examine the
tests one by one and explain them for better understand-
ing. Each participant was asked to select one of the tests
that —according to them — was best suited to be used as
a ‘template-for-reuse’ in this situation, i.e. for copy & paste
& adaption. Eight of ten participants selected a test code
suggestion from the two top matches. The remaining two
participants opted for a middle match.
We asked participants to explain their reasoning behind their
selection — we wanted to know what our participants were
looking for when looking for test code to copy from. Partici-
pants preferred test code that used classes that were affected
in the changes. Seeing how things worked was important to
our participants. The main motivation was to see how these
objects could be used and invoked: “That test shows me
how to use the constructor of the class used in changes.”
One participant decided to go with the a longer test, calling
bigger size an advantage, because “bigger test shows more”.
However, short and concise style of test code can seem more
accessible and less intimidating. One participant selected a
middle-matched test code for its shortness which made it
“easy to understand”.
Next, we asked the participants to describe briefly what ad-
vantages they saw in being presented with test examples.
Participants welcomed the concept of test code suggestions
as templates (“It can be directly used as a template”) over
having to write tests from scratch. Test code suggestions
helped them to get going with testing, “It saves my time,

1https://github.com/square/picasso

892

Middle

Bottom

Participants 1 to 10

Top ranked
test by TR

Middle ranked
test by TR

Bottom ranked
test by TR

Top

Figure 2: Participants’ ranking of six test cases ac-
cording to their usefulness as a copy-template.

I can start right away”. Would our participants like to use
TR when developing? On a scale of 1 (‘absolutely not’) to
10 (‘definitely yes’), five participants chose rating 8 and four
participants chose rating 6. One participant chose rating 7.
As a final task, we asked the participants to order the re-
maining five tests according to their perception of useful-
ness as a template for copying. Unsurprisingly, the tests
with no correspondence to the changes (only few classes in
common) were quickly ranked last. Fig. 2 shows the or-
dering that participants chose, distinguished in three tiers:
Test Recommender predicted white tests to be most useful
to newcomers, gray tests had a middle rank and black tests
had a very low rating. Overall, the ranking by our partici-
pants matched the ranking of the Test Recommender. This
is most evident when considering low ranked tests — decid-
ing that a test code suggestion is not relevant seems easier.
As already indicated in the participants’ multi-facetted rea-
soning for selecting the best suited test code suggestion, the
ordering differs more regarding better ranked suggestions.

5. DISCUSSION AND FUTURE WORK
Our approach helps newcomers in adopting systematic

software testing and facilitates learning of real-world test
techniques. Our tool suggests suitable test code to newcom-
ers based on the changes they made to the production code
and saves them the hassle of searching a project’s test suites
on their own. Finding just the right test in a big test suite
can be daunting for a newcomer.
We put additional effort in implementing a browsable and
newcomer-friendly “single-click” solution. As we have seen
in our first evaluation, the browsability feature of our ap-
proach is important when dealing with newcomers. New-
comers have little experience and can work best with a di-
verse offering of examples. This facilitates an understanding
of what techniques are available and how senior developers
use them. The reasoning for choosing one test case over an-
other was diverse, which supports the need for a browsable
offering of test examples.
Our evaluation is exploratory and of little statistical signif-
icance. It is more qualitative in nature. Our population
of 10 students participants is small and we cannot claim
generalizability. However, we deem students (who are just
before their graduation) a suitable evaluation population for
our actual target population: graduates who have just en-
tered the job market. We do not think that the experience
level in graduates between university and their first day at
work differs much. Although the results of our evaluation

are promising, we are missing a confirming evaluation that
shows a measurable advantage of our approach in a real-
world setting. This final evaluation is currently in prepara-
tion.

6. CONCLUSION
This work introduces the concept of strategically and au-

tomatically suggesting test code to newcomers. Newly hired
and inexperienced developers — such as new graduates —
sometimes have problems in writing test code in a real world
setting. Analyzing existing and working test code can help in
understanding how senior developers approach testing and
facilitate learning. However, finding a suitable test code can
be challenging for the new hire when the test suite is big
— and asking senior developers can become bothersome.
Our Eclipse plugin Test Recommender analyzes the
changes a newcomer has made to the production
code and suggests a suitable example of test code
from the existing test suite. This can help the new hire
in overcoming the technical learning curve faster by copy-
ing test strategies from senior developers. We evaluated our
approach with promising results: most of our participants
embraced our approach and would like to use test recom-
mendation in real world software development.

7. REFERENCES
[1] O. Barzilay. Example embedding. In 10th SIGPLAN

symposium on New ideas, new paradigms, and
reflections on programming and software, pages
137–144. ACM, 2011.

[2] O. Barzilay, O. Hazzan, and A. Yehudai. Characterizing
example embedding as a software activity. In ICSE
Workshop on Search-Driven Development-Users,
Infrastructure, Tools and Evaluation, pages 5–8. IEEE
Computer Society, 2009.

[3] J. Brandt, M. Dontcheva, M. Weskamp, and S. R.
Klemmer. Example-centric programming: integrating
web search into the development environment. In
SIGCHI Conference on Human Factors in Computing
Systems, pages 513–522. ACM, 2010.

[4] J. Edwards. Example centric programming. ACM
SIGPLAN Notices, 39(12):84–91, 2004.

[5] O. Hummel, W. Janjic, and C. Atkinson. Code
conjurer: Pulling reusable software out of thin air.
Software, IEEE, 25(5):45–52, 2008.

[6] R. Pham, S. Kiesling, O. Liskin, L. Singer, and
K. Schneider. Enablers, Inhibitors, and Perceptions of
Testing in Novice Software Teams. In 22th Intern.
Symposium on the Foundations of Software
Engineering, FSE, 2014.

[7] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and
K. Schneider. Creating a shared understanding of
testing culture on a social coding site. In Int. Conf. on
Software Engineering, ICSE, pages 112–121. IEEE
Press, 2013.

[8] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia, and
D. Binkley. Scotch: Slicing and coupling based test to
code trace hunter. In WCRE, pages 443–444, 2011.

893

