
GitSonifier: Using Sound to Portray Developer Conflict
History

Kevin J. North, Shane Bolan, Anita Sarma, Myra B. Cohen
Dept. of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588-0115, USA

{knorth,sbolan,asarma,myra}@cse.unl.edu

ABSTRACT
There are many tools that help software engineers analyze
data about their software, projects, and teams. These tools
primarily use visualizations to portray data in a concise and
understandable way. However, software engineering tasks
are often multi-dimensional and temporal, making some vi-
sualizations difficult to understand. An alternative for rep-
resenting data, which can easily incorporate higher dimen-
sionality and temporal information, is the use of sound. In
this paper we propose the use of sonification to help por-
tray collaborative development history. Our approach, Git-
Sonifier, combines sound primitives to represent developers,
days, and conflicts over the history of a program’s develop-
ment. In a formative user study on an open source project’s
data, we find that users can easily extract meaningful infor-
mation from sound clips and differentiate users, passage of
time, and development conflicts, suggesting that sonification
has the potential to provide benefit in this context.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Program-
ming teams

General Terms
Design, Human Factors

Keywords
version control history, sonification, conflicts

1. INTRODUCTION
Software engineers are becoming increasingly reliant on

tools that aggregate and present information about the code
or tasks they work on. For instance, tools exist to help iden-
tify and resolve version control conflicts before they become
central to a project’s critical path [9], the most comprehen-
sive of which contextualize the information that is gathered.
Other tools provide information to aid debugging or code

comprehension [6] or to view code change history [9]. A
majority of these tools present information through visual-
izations; however, visual data can be limiting if tasks are of
high dimensionality or include temporal information. Take,
for instance, the history of a distributed development task.
Multiple users may join or leave the project, make commits,
or sit idle for days at a time, especially in an open source
context. When conflicts occur, they can last for days before
resolution is complete. And more than a single conflict can
happen at any one time. If we consider just developers, days
and conflicts, this is a 3-dimensional space. If we also add
the number and size of conflicts, the ability to easily view
this information quickly deteriorates.

Using sound to portray data (or sonification) has been
successfully applied in many domains including software en-
gineering. One of the first tools, SonicFinder, utilized sound
as auxiliary feedback to users. Sonification has also been
used for program comprehension [5, 11], performance tun-
ing [3], and debugging [10, 12]. McIntosh et al. create a
sonification of project histories that renders an artistic or-
chestral composition [7]. Hussein et al. show that sonifica-
tion is a good alternative to visualization for program com-
prehension. While these projects provide an argument for
sonification, there is no work that satisfies our goal – to uti-
lize sound to understand and improve collaborative software
development through the use of historical conflict data.

Several awareness tools exist that inform developers work-
ing in parallel about emerging conflicts, via unobtrusive
alerts or visualizations that present the state of the project
[9]. Here we explore how sonifying this data may provide
additional context. Suppose a project manager wants to
“hear” her team’s recent activities each morning to be aware
of who made new commits and who might have version con-
trol conflicts with another. She can listen while performing
other tasks, and if she notices anything interesting, e.g., a
conflict, she can switch her attention for a few seconds. This
provides the ability to multitask, absorbing background in-
formation. In contrast, a visualization portraying history
(e.g., [8]) requires undivided attention. In addition, devel-
opers might listen to a sonification of the project to obtain
a quick understanding of the intensity and pattern (rhythm)
of commits and conflicts before joining the team.

In this paper, we propose the use of sonification and per-
form a formative study to evaluate the feasibility of hearing
conflict management data. Our study shows that users can
comprehend the information presented with high accuracy,
regardless of their prior experience with music, suggesting a
potential alternative for information discovery and contex-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2803199

886

tualization in coordinated project development. The contri-
butions of this work are (1) the use of sonification for un-
derstanding Git conflict history, implemented as GitSonifier
and (2) a user study showing that the data within GitSoni-
fier sound clips can be easily understood, with no correlation
between accuracy and prior musical experience.

2. BACKGROUND
There are several techniques for designing sonifications.

Audification plays (as sound) data that is already in the form
of a physical wave. Mild transformations can be applied
to the data. For example, seismologists audify earthquake
records, but since the waves have a frequency lower than
humans can detect, the records are sped up, making them
easier to hear [4]. We do not use audification in this work,
but instead use other sonification techniques.

Auditory icons are sounds representing pieces of data.
They are selected so that their meanings are intuitive. For
example, the SonicFinder program added sound effects to a
file explorer, such as the sound of an object scrapping on the
ground while a user dragged a file. The sound effect is intu-
itive because dragging an object in the real world produces
a scrapping sound [2,4].

Parameter mapping sonification (PMSon) maps different
dimensions of a data set to a characteristic sound wave,
which is then manipulated over time to represent the data.
Consider using a thermometer in a pot of boiling water.
The thermometer’s reading can be shown by a visual graph
of temperature over time. Analogously, a PMSon could map
the temperature to a sound wave’s pitch, increasing the pitch
as the temperature gets higher [4]. SonicFinder used PMSon
to indicate the size of a file as it was dragged [2].

Like auditory icons, earcons are sounds associated with
data. Earcons use sounds that have an abstract relationship
with the data. As a result, interpreting earcons requires
training, but earcons can be used when data has no natural
auditory metaphor available. Earcons are usually musical
motifs, or short musical phrases. Related earcons can share
musical characteristics so their relationship is easier to recall
[4]. Motifs have several characteristics. Pitch refers to which
notes are played. Rhythm is the timing of the notes. Timbre
is the sound of the instrument playing the motif. A measure
is a group of notes representing all or part of a motif, and is
the basic unit of time in music.

In this work we use earcons to represent our data, since
we do not have a natural sound for software commits or con-
flicts. This is consistent with other recent sonification work
in software engineering [5–7,10–12]. We also use PMSon to
signal the intensity of conflicts.

3. GITSONIFIER
Figure 1 shows how GitSonifier works1. GitSonifier parses

Git data (#2), flattens the data into a timeline (#3), adds
a layer indicating the number of conflicts (#4), and renders
the music clip (#5). To start (#1), data is collected from
a team’s Git repository. The Git tree is then walked to
identify commits that introduce and resolve conflicts.

Next, the Git data is passed to the sonifier module (step
#2), which parses three key data elements: commit authors,
days on which commits were made, and when conflicts occur.

1GitSonifier sounds and experimental data are on our web-
site: http://cse.unl.edu/~myra/artifacts/NIER15/

Git
History

Team

Sonifier

Sounds

!!!!!!!!!!!!!Timeline!

Days Commits

Conflicts

Parameterization

Conflicts

Manager

1!

2!

3!

4!

5!

6!

Commits/
days

Figure 1: GitSonifier

Each developer is assigned a musical motif as an earcon that
is created using unique timbre, pitches, and rhythm. This
makes them easier to differentiate [4]. Each commit is rep-
resented by a measure of music because untrained listeners
can intuitively tell when a measure begins and ends.

As a result, the amount of time the sonification plays to
represent a day’s worth of commits is longer or shorter de-
pending on how many commits were made during the day.
Accordingly, each day is represented by an earcon called a
day separator. The day separator plays for one measure
when one day ends and another begins. For instance, if de-
veloper A and developer B commit in that order one day,
and then developer A makes another commit the next day,
then developer A’s earcon, developer B’s earcon, a day sep-
arator, and developer A’s earcon would play in that order
for one measure each. On days when no activity occurs, the
day separator is played multiple consecutive times to show
the number of days that pass. These steps processing the
Git data into a timeline are shown as step #3.

Conflict earcons are represented by a drum motif. Al-
though still abstract, these are close to auditory icons, since
there is a meaning behind the choice. We first identify when
conflicts are introduced and resolved on the timeline. Then,
we portray the number of unresolved conflicts during each
commit and day separator by parameterizing the earcons
(step #4). The more unresolved conflicts there are during a
commit or day separator, the louder the earcons will be dur-
ing the corresponding measure. Conflicts are played as an
overlay onto the commit timeline. We do this because con-
flicts can exist in a Git project concurrently with commits
being added. In future work, we can parameterize (step #4)
and overlay additional data, such as the size of commits.

Finally, in step #5 we combine the timeline data and the
conflicts into a music clip, which is exported and played (step
#6) for a manager or software development professional.

To implement GitSonifier, we created .wav files for our
earcons. Each file is one measure long, making it easy to
combine them. We wrote a program to parse the Git data.
We then use Beads, a Java library, to combine the sounds
on the timeline [1]. It can combine sounds both sequen-
tially, playing commits and day separators in order, and con-
currently, playing commits and conflicts at the same time.
Songs generated by GitSonifier are played at a tempo of 100
beats per minute. In our informal experience, this is fast
enough to be enjoyable, but slow enough to be understood.

4. USER EVALUATION
To evaluate whether sonification is an effective means for

portraying development history, there are several questions
that need to be answered. For example, are users able to dis-

887

http://cse.unl.edu/~myra/artifacts/NIER15/

tinguish information encoded in a sonification? How can we
leverage the multi-dimensionality of music to portray com-
plex data? How much complexity can be encoded in a soni-
fication so that users are able to parse the different types
of information? Are there any length restrictions on the
sonifications, so that users are not overwhelmed?

As an initial step, we perform an exploratory study to
evaluate the basic assumption that developers can distin-
guish a set of information encoded in a sonification. Before
we evaluate whether users can listen and comprehend the
music while performing other tasks, we need to first deter-
mine whether sonification is feasible. We ask the following
three research questions.
RQ1: How well do participants interpret the sounds
representing a Git history?

RQ2: How efficient is the use of sonification for un-
derstanding a Git history?

RQ3: What was the participants’ evaluation of soni-
fication?
Participant Characteristics. We recruited six partici-
pants who have experience working in teams and using ver-
sion control systems. They have experience in Git, SVN,
and CVS, ranging from 1.5 months to 10 years. Most have
experience working in small teams. Three have no music
background, whereas others have between 10 - 25 years of
experience in music. Four are male and two are female.
Study Design. We used GitSonifier to create a soundclip
of the history of a GitHub project, Voldemort2, which spans
a 2-day development period and includes 3 developers and
1 conflict. This resulted in a 26-second long clip. We then
created ten variants of this clip by adding or removing users,
days, and conflicts from the history. Some variants change
only one parameter, while others change two or all three
parameters. Each variant includes 1 to 3 days, 2 to 4 de-
velopers, and 0 to 3 conflicts. Each sonification (variant)
is 24-29 seconds long so that there is enough data encoded,
but at the time same it is feasible to complete a set of 10
clips in the study time period. Of the 10 clips, one is the
same as the original, and two are duplicates.

Participants were trained on what earcons meant in the
sonification of the original data (from here on, we call it
the training clip). They then had to complete a brief quiz
about the data in the training clip. They could review the
training clip and the earcons multiple times. Participants
had to answer all the questions correctly before proceeding.

Next, the participants completed a set of ten tasks (one
per variant). Each task had 3 questions that asked if the
training clip and the variant clip had the same, more or
fewer (1) developers, (2) days and (3) conflicts. The train-
ing clip was included in the task description for review. We
measured the times-to-completion of tasks and correctness
scores per question. Tasks were presented in a random order
to minimize learning effects. At the end of the experiment,
participants filled out a survey on the usability of the soni-
fication. Finally, there was an exit interview in which the
researchers could ask about specific (anomalous) actions.

We had users compare clips to see whether they can un-
derstand and differentiate the meaning of the clips. This
design lines up with our use case of a manager listening to
a sonification each morning, listening for unusual patterns
rather than just listening to isolated data.

2https://github.com/voldemort/voldemort

5. RESULTS

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

N
um

be
r o

f C
or

re
ct

 A
ns

w
er

s

Task ID

Developers

Days

Conflicts

Figure 2: Correct Answers by Category

0	

60	

120	

180	

240	

300	

360	

420	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ti
m

e
(s

ec
on

ds
)

Task by Order Answered

Participants
P1 P2 P3

P4 P5 P6

Figure 3: Amount of Time to Answer Each Question

Our results indicate that participants can easily under-
stand the information encoded in a sonification (RQ1). Each
participant answered 27 to 30 questions correctly, with an
average of 29 correct answers per participant; four out of
six got all answers correct. Figure 2 shows participants’ cor-
rectness scores for each question per task. There were no
discernable learning effects.

Figure 3 shows the time to completion of each task, sorted
in the order in which tasks were attempted. Participants
were able complete the tasks quickly (RQ2), and became
faster as they progressed through the tasks. This is es-
pecially true for P3 and P4. The overall average time to
complete each task across all participants was 1 minute, 11
seconds. The longest time for a task was 6 minutes, 21 sec-
onds, which was participant’s (P3) first task; he/she rapidly
improved as he/she progressed through the tasks. On aver-
age participants took 40.3 seconds across all tasks. A key
factor in how long it took to perform a task depends on how
many times a participant listened to the sonifications. Three
of the participants answered most of the questions (per task)
after only listening to the (task) sonification once or twice,
and without listening to the training clip. They were able
to answer questions consistently in about 50 seconds.

The exit survey included questions on the usability of
the sonification on a Likert scale from 1 to 5, with 5 be-
ing the highest score. For most questions, the median score
is 5. This shows that participants liked the sonifications and
found it easy to understand (RQ3) - see Table 1 for the mean
(Avg) and median (Med) scores.

5.1 Discussion
Listening to Sonification(s). Four out of the six par-
ticipants listened to the training clip at least once during
the study. Two re-listened on their first and third tasks,
respectively, to ensure that they remembered the original
sonification. Another re-listened when he/she realized the

888

https://github.com/voldemort/voldemort

Table 1: Questionnaire Results
Question Avg Med

It was easy to tell the different sounds apart 4.8 5.0
It was easy to hear who each developer was 4.8 5.0
It was easy to hear the number of conflicts 4.7 5.0
It was easy to hear when days passed 4.7 5.0
The sound helped me understand the data 4.2 4.0
I would be interested in hearing the
development data of my own teams’ projects

4.5 4.5

current clip was the same as the training clip and wanted
to confirm it. The fourth re-listened on questions 1 and 6
to double-check their work. When we asked participants
why they did not listen to the training clip more often, they
said that they had memorized the important information
from the training clip. For example, one participant said,
“I kind of memorized the number and type of developers, the
conflicts, and the number of days, so I didn’t really need to
[listen to the training clip again].”

One participant (P5), with ten years of version control ex-
perience, but no musical background always listened to the
current task both before and after answering each question
(in a task) in order to be confident of his/her answers. This
significantly added to the completion time.
Incorrect Responses. In Task 5, three participants got
the question about conflicts wrong. The task’s sonification
had two conflicts, and the conflict that was introduced first
was resolved before the second conflict was introduced. As a
result, drums appeared, then stopped, then restarted. This
was likely the most challenging task for the participants be-
cause they failed to notice the silence (for one measure) be-
tween the two conflicts’ drums. This suggests that a single
measure of silence may not be enough.
Effects of Background. All participants who had experi-
ence playing an instrument or composing music got a perfect
score on each task, despite the task’s difficulty. This sug-
gests that people with music backgrounds had more success
in interpreting sonifications. However, the effect size of this
is not high: the lowest overall score that any participant got
was 27 out of 30 questions correct.

We did not find any connection between experience and
using sonification and there was no correlation between the
participants’ music experience and the time to completion
for tasks. The two slowest participants (P3 and P4 in Figure
2) were non-native English speakers. They quickly improved
their times as they progressed. We also did not find any
effect of experience in version control on using sonification.
Sonification Effects. When considering developer sounds,
two participants missed one question each. One of them
misread the question and realized this mistake on his/her
own later. Questions regarding conflicts had the most incor-
rect answers. One task (discussed above) had a short gap
between two sets of conflict drums. 3 participants missed
the “new” conflict. Two other questions regarding a conflict
were missed as well, but these were on a case by case ba-
sis. All participants correctly answered questions about the
number of days. The day separator sound may have stood
out among the rest of the sounds because it was written
in a different key and had a distinct motif. This might in-
dicate that earcons that are very distinct from the rest of
the sounds may work better. However, we need to consider
how the different notes sound when put together, a series of

distinct earcons may not be aesthetically pleasing. We will
experiment overlaying different kinds and lengths of earcons
in the future, especially for conflict earcons.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a novel approach and built

a tool, called GitSonifier, for sonifying conflict history data
so that project managers or development team members can
easily comprehend it. We have applied this to conflict data
from a Git repository and performed a formative user study
to evaluate whether or not users can understand the content
by listening to the resulting sound clips. Our study shows
that the majority of users were able to differentiate the data
between clips and thought that differences were easy to hear.
As future work, we will expand our implementation of Git-
Sonifier and will provide it as an Eclipse plug-in. We plan to
perform larger user studies to compare with visualizations
and to isolate the multitasking use case. We also plan to
apply our sonification approach to additional areas where it
has shown to have potential, such as testing and debugging.

7. ACKNOWLEDGMENTS
This work was supported in part by NSF grants CCF-

1253786, IIS-1110916 and CCF-1161767.

8. REFERENCES
[1] Beads, 2015. http://www.beadsproject.net/.

[2] W. W. Gaver. The SonicFinder: An interface that
uses auditory icons. HCI, 4(1):67–94, Mar. 1989.

[3] C. Henthorne and E. Tilevich. Sonifying performance
data to facilitate tuning of complex systems:
Performance tuning: Music to my ears. In OOPSLA,
pages 35–42, 2010.

[4] T. Hermann, A. Hunt, and J. G. Neuhoff. The
sonification handbook. Logos Verlag Berlin, 2011.

[5] K. Hussein, E. Tilevich, I. Bukvic, and S. Kim.
Sonification design guidelines to enhance program
comprehension. In ICPC, pages 120–129, May 2009.

[6] A. Kuhn, D. Erni, P. Loretan, and O. Nierstrasz.
Software cartography: thematic software visualization
with consistent layout. J. of Soft. Maint. and Evo.:
Research and Practice, 22(3):191–210, 2010.

[7] S. McIntosh, K. Legere, and A. Hassan. Orchestrating
change: An artistic representation of software
evolution. In CSMR-WCRE, pages 348–352, Feb 2014.

[8] M. Ogawa and K.-L. Ma. Code swarm: A design
study in organic software visualization. IEEE VCG,
15(6):1097–1104, Nov 2009.

[9] A. Sarma, D. Redmiles, and A. van der Hoek.
Categorizing the spectrum of coordination technology.
Computer, 43(6):61–67, 2010.

[10] A. Stefik, K. Fitz, and R. Alex. Increasing fault
detection effectiveness using layered program
auralization. In SERP, Jan 2006.

[11] A. Stefik, K. Fitz, and R. Alexander. Layered program
auralization: Using music to increase runtime program
comprehension and debugging effectiveness. ICPC,
pages 89–93, 2006.

[12] P. Vickers and J. L. Alty. Siren songs and swan songs
debugging with music. Com. ACM, 46(7), July 2003.

889

http://www.beadsproject.net/

	Introduction
	Background
	GitSonifier
	User Evaluation
	Results
	Discussion

	Conclusions and Future Work
	Acknowledgments
	References

