
Iterative Distribution-Aware Sampling
for Probabilistic Symbolic Execution

Mateus Borges†‡ Antonio Filieri† Marcelo d’Amorim‡ Corina S. Păsăreanu∗

† Univ. of Stuttgart
Germany

‡ Fed. Univ. of
Pernambuco

Brazil

∗ CMU SV/NASA Ames Research Center
USA

ABSTRACT
Probabilistic symbolic execution aims at quantifying the probability
of reaching program events of interest assuming that program inputs
follow given probabilistic distributions. The technique collects
constraints on the inputs that lead to the target events and analyzes
them to quantify how likely it is for an input to satisfy the constraints.
Current techniques either handle only linear constraints or only
support continuous distributions using a “discretization” of the input
domain, leading to imprecise and costly results.

We propose an iterative distribution-aware sampling approach
to support probabilistic symbolic execution for arbitrarily complex
mathematical constraints and continuous input distributions. We
follow a compositional approach, where the symbolic constraints
are decomposed into sub-problems whose solution can be solved
independently. At each iteration the convergence rate of the com-
putation is increased by automatically refocusing the analysis on
estimating the sub-problems that mostly affect the accuracy of the
results, as guided by three different ranking strategies.

Experiments on publicly available benchmarks show that the
proposed technique improves on previous approaches in terms of
scalability and accuracy of the results.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

Keywords
Symbolic Execution, Monte Carlo Sampling, Probabilistic Analysis

1. INTRODUCTION
Probabilistic symbolic execution is a promising technique for

quantifying the probability of reaching program events of interest
assuming that program inputs follow given probabilistic distribu-
tions [2, 9, 28]. The input distributions allow data from real world
observations to be incorporated in the analysis of programs that
interact with their environment, as well as to encode uncertainty
in design assumptions about the usage profile of a program. The
technique has many potential applications, e.g. it can be used in
debugging, for ranking program errors, in analyzing the control

software of autonomous vehicles that interact with uncertain envi-
ronments, for computing software reliability, and for quantitative
information flow analysis, to name a few.

The technique [2, 9, 11, 28] uses a symbolic execution of the
program to collect symbolic constraints on the inputs that lead to
the occurrence of target program events. The constraints are then
analyzed to estimate their solution spaces and to quantify how likely
it is for an input distributed according to a given probabilistic distri-
bution to satisfy the constraints. However the current techniques are
quite limited as they can either handle only linear constraints [11,
28] or, if they handle complex mathematical constraints [2], they
only use uniform input distributions, while more complex distri-
butions are handled using discretization techniques, which may be
imprecise and costly in practice.

To achieve higher accuracy and scalability for the analysis of
non-linear constraints under continuous input distributions we pro-
pose an iterative distribution-aware statistical analysis method. Our
method is compositional and builds upon qCORAL [2] to decompose
the analysis of program constraints into sub-problems that can be
solved separately. We improve upon qCORAL by providing an itera-
tive technique that re-focuses the sampling effort on the constraints
that have higher impact on the accuracy of the probabilistic anal-
ysis results. Further, the method samples the inputs according to
the distributions defined in the input profiles, avoiding the cost of
discretizing continuous distributions, as was needed with qCORAL.

Statistical methods have proved to be effective in solving inte-
gration problems such as those arising from probabilistic analysis.
Especially when the number of variables grows, statistical methods
outperform symbolic and numerical ones [16]. Nonetheless, general
statistical integration methods available off-the-shelf are not capable
of exploiting all the information about a program behavior obtained
through symbolic execution: e.g., certain constraints have higher
impact in driving the program execution toward the occurrence of a
target event. Similarly, certain constraints have higher impact on the
convergence rate of statistical estimation, since they provide more
information about the possibility for the target event to occur.

Based on this insight, we analyze the path conditions leading to
the occurrence of the target event to rank the constraints according
to their impact on the convergence of the statistical analysis. Exploit-
ing this ranking, our method iteratively re-focuses the sampling to
gather more information about the satisfaction of the most important
constraints first, achieving higher estimation accuracy in a shorter
time. We propose three ranking strategies: two of them are based on
gradient descent optimization [21] while the third one uses a simple
but efficient heuristic which gives more importance to the constraints
whose probability estimates are farther from convergence.

We provide a formal assessment of our technique, study its con-
vergence, and evaluate it experimentally on publicly available bench-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08...$15.00
http://dx.doi.org/10.1145/2786805.2786832

866

goal = new Uniform(-10, 10);
flapPosition = new Uniform(-5, 5);
windEffect = new Normal(0,0.5,-15,15); //weak wind
//windEffect = new Normal(0,7.25,-15,15); //strong wind
actuatorEffect = 5;
MAX_POSITION = 15;
MIN_POSITION = -15;

if(goal < 0){ // actuator
flapPosition = flapPosition - actuatorEffect +

windEffect;
} else{
flapPosition = flapPosition + actuatorEffect +

windEffect;
}
if (flapPosition > MAX_POSITION || // safety check

flapPosition < MIN_POSITION){
throw new OverrunException();

}

Figure 1: Flap controller.

marks from [2, 9, 28], including real world software taken from
the medicine and the aero-space domains. Our experimental results
show significant improvement over previous discretization-based
approaches and built-in routines of general purpose mathematical
tools, both in terms of accuracy of results and analysis time.

1.1 Example
To illustrate our analysis we introduce a small code snippet mod-

eling a safety check for a simplified flap controller of an aircraft
modified from [9] (see Figure 1). The controller is composed of a
flap actuator and a safety check to avoid overrun of the flap. The
variables influencing the behavior of the flap are the goal position,
the current position of the flap, and the wind effect. The actuator
performs a move towards the goal but the actuation can be hindered
by the effect of the wind that can lead to an overrun of the flap.

The goal position can vary in the range [−10,10], while the
current position of the flap when the next control step is activated is
assumed to be within [−5,5]. For both these variables, any value in
the domain is considered equally likely, i.e. the concrete inputs are
assumed as realizations of a Uniform distribution over each variable
domain.

The wind effect is instead assumed to behave as a Normal dis-
tribution, with mean 0 and a standard deviation which depends on
the strength of the wind. We will consider two different application
scenarios: in case of weak wind, the standard deviation is assumed
to be 2, meaning that the effect is most of the time quite close to
0; in case of strong wind, the standard deviation is assumed to be
7.25, so larger values of the the wind effect are more likely. In either
case, the effect of the wind is bounded by the interval [−15,15].
This simplified model exemplifies how the uncertainty about this
physical phenomena can be taken into account for the analysis.

In Figure 1, the random distributions for the input variables are
characterized by the value of their parameters and the lower and up-
per bound of the domain (which are always the last two arguments).
The Uniform distribution does not need additional parameters be-
sides the domain. The Normal distribution is characterized by its
mean and its standard deviation, respectively, besides the domain.

The probabilistic distribution of the wind effect can be obtained
systematically from telemetry mission data. It is possible, for exam-
ple, to measure the frequency over time of values occurring within
certain ranges during a mission to obtain realistic usage profiles.
Techniques for the automatic inference of probabilistic profiles are
described elsewhere, see e.g. [12].

Analyzing the example program. Probabilistic symbolic execu-
tion computes the probability of a certain event to occur or not
during the execution of the program, given a usage profile. The re-

sult of this kind of analysis is not a boolean (indicating presence or
absence of an error), but a quantitative figure, whose value depends
on both the program and its usage. In this example the probability
of throwing an OverrunException is only 0.04% in the presence of
weak wind, but it grows up to 8.43% when the wind is strong.

This paper describes a technique for the automatic estimation
of the probability for a target event to occur given input profiles
described by continuous probability distributions over floating-point
input domains, enhanced by a set of strategies to speed up the
convergence rate of the estimation.

2. BACKGROUND

2.1 Probabilistic Symbolic Execution
Probabilistic symbolic execution quantifies the probability of

the software satisfying a given (safety) property [9, 11, 28]. This
approach is comprised of two stages: symbolic execution [17] and
solution space quantification. Tools to support the first stage are
presented in e.g. [9, 11, 28]; this paper focuses on the second stage:
solution space quantification. We provide here a quantification
procedure that can be easily incorporated in the above tools.

Symbolic execution is a program analysis technique that executes
programs on symbolic, rather than concrete inputs, and computes
the values of program variables as symbolic expressions in terms
of the inputs. Symbolic execution abstracts all possible program
executions into a symbolic execution tree, where the nodes are the
symbolic program states and the edges are the program instructions.
Each symbolic execution path is uniquely identified by a path con-
dition (PC), i.e. a constraint that the program inputs have to satisfy
for driving the execution along the corresponding path. To avoid
the problem of non-terminating executions, the approach bounds
the symbolic execution tree. The paths hitting the execution bound
are specifically marked and provide an index of the dependability of
the analysis [9]. Let PCT be the set of PCs identifying executions
satisfying the target property; similarly PCF denotes the set of PCs
for the paths that lead to property violation.

For example, for the code in Figure 1, the set of path conditions
PCF leading to the occurrence of an OverrunException are:
goal<0 && flapPosition-actuatorEffect+windEffect > 15
goal<0 && flapPosition-actuatorEffect+windEffect < -15
goal>=0 && flapPosition+actuatorEffect+windEffect > 15
goal>=0 && flapPosition+actuatorEffect+windEffect < -15

The goal of the second stage – solution space quantification – is to
compute the expected probability that the program inputs satisfy
any of the PCs in PCT , given a probabilistic distribution over the
input domain. Formally:∫

D
1PCT (x) · p(x) (1)

where D is the input domain defined as the Cartesian product of
the domains of the input variables, p(x) is the probability of an
input x to occur according to the probability distribution over the
inputs, and 1PCT (x) is the indicator function on PCT , that returns 1
when x satisfies any of the PCs in PCT , and 0 otherwise [23]. The
probability of failure can be computed similarly.

2.2 Monte Carlo Estimation
Exact solutions to Equation (1) are not always possible because

the integral might be ill-conditioned by the presence of complex
non-linear constraints or because of scalability issues to deal with
high dimension problems [16]. Monte Carlo methods provide a
general, approximate solution to the integration problem. The basic
solution, called “hit-or-miss” [27] (HM-MC), consists in generating

867

n random inputs over the input domain (drawn according to the
specified distributions) and to count the number of hits, i.e. the
inputs satisfying any of the constraints in PCT , and, conversely, the
number of misses. The ratio x̂ between the number of hits and n is
an efficient, unbiased, and consistent estimator of the probability of
satisfying the constraints [23]. The mean and the variance of x̂ are:

E
[
x̂
]
= x̄ Var

[
x̂
]
=

x̄ · (1− x̄)
n

(2)

where x̄ = ∑n1PCT (xi)/n is the sample mean. The accuracy of the
estimate x̄ can be assessed through the variance of x̂: the closer the
variance is to 0 the more accurate is the estimation. As evident from
Equation (2), variance decreases with the number of samples, going
asymptotically to 0 when n→ ∞.

Stratified Sampling and Interval Constraint Propagation (ICP).
The slow convergence rate of Monte Carlo hit-or-miss methods [16]
can be improved by using stratified sampling, which partitions the
input domain into regions (strata) which can be analyzed separately,
using for instance hit-or-miss Monte Carlo. The local result x̂i
associated to each region Ri is combined to obtain an estimator x̂
over the global input domain with the following properties:

E
[
x̂
]
= ∑

i
wi ·E

[
x̂i
]

Var
[
x̂
]
= ∑

i
w2

i ·Var
[
x̂i
]

(3)

where wi is defined as wi = size(Ri)/size(D), i.e. the ratio between
the size of the strata Ri and the entire domain D. The use of stratified
sampling never increases the variance of the global estimator and,
in the worst case, it is equivalent to non-stratified sampling.

In previous work [2] we proposed the use of an interval constraint
propagation solver, RealPaver [14] to prune out regions of the so-
lution space that do not contain any solution of PCT ; consequently
improving convergence even further. RealPaver produces as output
a set of boxes whose union reliably contains all the solutions of a
given (complex, non-linear) constraint. Stratified sampling is then
used for composing the results of analyzing the boxes.

2.3 Compositional Quantification
In probabilistic symbolic execution the number of constraints

to analyze can be very large, leading to potentially high analysis
cost. To address this issue, we follow the compositional approach
from [2] that splits the analysis into smaller sub-problems based on
the structure of the constraints composing PCT (or PCF), allowing
also the reuse of partial results.

PCT contains all the PCs leading to property satisfaction. The
goal is thus to quantify the probability of satisfying the disjunction∨

pc∈PCT pc. Note that all PCs are disjoint by construction.

2.3.1 Handling Disjunction
Assume that we estimated the probability of satisfying two path

conditions, pci, pc j ∈ PCT , through the estimators x̂i and x̂ j , respec-
tively, and for these estimators we know mean and variance. Let
us denote by x̂ the estimator of the disjunction pci ∨ pc j that we
want to compute. We can use the following composition rule (for
disjunction) [2] to compute the mean and an upper bound for the
variance of x̂.

E
[
x̂
]
= E

[
x̂i
]
+E

[
x̂ j
]

Var
[
x̂
]
≤Var

[
x̂i
]
+Var

[
x̂ j
]

(4)

2.3.2 Handling Conjunction
Each path condition pci is a conjunction of simpler constraints

ci0 ∧ ci1 ∧ . . .cim. This set of (conjoined) constraints can be parti-
tioned in independent subsets; each subset including the constraints

which are related through variable dependency. Intuitively, two
variables i and j depend on one another if there exists a constraint
predicating on both of them (e.g., vi > v j +1) or if they both depend
on a third variable. This dependency relation is symmetric and
transitive by construction and is extended with reflexivity (i.e., vi
always depends on itself), becoming an equivalence relation which
induces a partition {V0,V1, . . . ,Vn} on the set of variables V .

For each constraint cik of pci, A(cik,v) indicates that cik predicates
on variable v. Let Ci j denote the set of constraints occurring in pci
and predicating on any of the variables in V j (i.e. Ci j = {cik |
A(cik,v)∧ v ∈V j}). Let x̂i j and x̂ik be the estimators of Ci j and Cik,
respectively. Then, we can use the following composition rule (for
conjunction) [2] to compute the estimator x̂ of Ci j ∧Cik:

E
[
x̂
]

= E
[
x̂i j
]
·E
[
x̂ik
]

Var
[
x̂
]

= E
[
x̂i j
]2 ·Var

[
x̂ik
]
+E

[
x̂ik
]2 ·Var

[
x̂i j
]

(5)

+Var
[
x̂i j
]
·Var

[
x̂ik
]

The rule extends naturally to many constraints. Note that some
constraints may occur in multiple PCs; we can thus cache and re-use
the analysis results, for efficiency.

For example, analyzing the PC extracted in Section 2.1 for the
example from Figure 1, the following six independent constraints
can be identified (notice that being actuatorEffect a constant,
symbolic execution simplifies it):

c_0: goal < 0 c_1: goal >= 0
c_2: flapPosition + windEffect > 20
c_3: flapPosition + windEffect < -10
c_4: flapPosition + windEffect > 10
c_5: flapPosition + windEffect < -20

Each of these constraints can be analyzed independently using the
Monte Carlo techniques described in Section 2.2 and their estimators
can be combined according to the structure of the the PCs using the
composition rules of Equations (4) and (5).

3. DISTRIBUTION-AWARE SAMPLING
In this section, we extend the compositional sampling approach

from [2] with an efficient way to handle inputs that follow con-
tinuous distributions. Specifically we enhance the Monte Carlo
estimation with a distribution-aware sampling strategy, where the
random samples can be generated according to a continuous distribu-
tion instead of a uniform one. However, the use of interval constraint
propagation (i.e. RealPaver) and stratified sampling requires some
care, since we need to restrict the sampling to specific sub-regions
of the input domains.

We assume that each input variable i is defined over a bounded
continuous interval [a,b] and its values are distributed according to
a known distribution Distributioni(θi), restricted, or truncated [7],
to this interval. θi is a (possibly empty) constant vector of known pa-
rameters characterizing the distribution, e.g., a Normal distribution
is characterized by the values of its mean and its variance, while an
Exponential distribution only by its mean. We will use the notation
Distributioni(θi)|a,b to represent the distribution truncated to the
interval [a,b]. The mapping between input variables and their corre-
sponding truncated probability distributions constitutes the usage
profile (see the variable declaration in Figure 1).

As mentioned in Section 2, the output of ICP is a set of boxes
containing all the inputs satisfying PCT . Each box is defined by
the conjunction of constraints of the form vi ∈ [ai,bi], where each
variable is restricted to a particular interval within its domain. Since
in general the range of Distributioni(θi) may fall outside [ai,bi], we
need to restrict the sampling to [ai,bi]. A simple approach would
be to generate for each variable vi a set of samples x1

i ,x
2
i , . . .x

n
i

868

(drawn according to the distribution) and then prune out all the x j
i /∈

[ai,bi]. However this may be inefficient, especially if the intersection
between the range of Distributioni(θi) and [ai,bi] is small.

We propose an efficient solution obtained by exploiting the re-
sults of probability theory for truncated distributions [7]. Consider
a random variable vi with Distributioni(θi). Each distribution is
associated to a unique, known, cumulative distribution function
CDFi(t) defined as CDFi(t) = Pr(vi <= t), which we will use for
the sampling. Consider also a non-empty interval [ai,bi]. Let the
random variable rvi be the restriction of vi to the interval [ai,bi],
then the following result holds [7]:

CDFrvi(t) =
CDFi(max(min(t,bi),ai)−CDFi(ai)

CDFi(bi)−CDFi(ai)
(6)

Furthermore, the cumulative distribution has inverse:

CDF−1
rvi

(u) =CDF−1
i (CDFi(ai)+u · (CDFi(bi)−CDFi(ai)) (7)

where 0 ≤ u ≤ 1. For the most common continuous distributions
both CDF(·) and its inverse CDF−1(·) can be computed efficiently
using off-the-shelf tools or libraries (e.g., [29]).

In the following we show how to use these functions to obtain
samples of any truncated distributions from samples drawn from uni-
form distributions which can be easily obtained from many existing
off-the-shelf libraries.

Example. Recall from Figure 1 that variable goal follows an
Uniform distribution in the interval [−10,10]. According to the
definition above CDFgoal(t) = (t +10)/(20) for −10≤ t ≤ 10, 0
for t <−10, and 1 for t > 10. The reader can refer to [23] for the
definition of CDF for the most popular continuous distributions.

The ability to compute CDFrvi(·) and its inverse CDF−1
rvi

(·) al-
lows us to implement a general sampling strategy for continuous
distributions restricted to intervals of interest. Indeed, to take a
sample from rvi, i.e. variable xi restricted to [ai,bi], it is sufficient
to generate a sample ū from a Uniform distribution over [0,1] (by
using any robust pseudo-random generator) and use this sample ū
to generate the sample ¯rvi =CDF−1

rvi
(ū) from the restricted random

variable rvi. This approach allows to bring distribution-awareness
to ICP-enabled stratified sampling, thus allowing to achieve both
the precision and scalability of distribution-aware sampling and the
improved convergence rate due to stratified sampling.

3.1 Distribution-Aware Sampling versus Dis-
cretization

The analysis from [2, 9, 19] assume that the probability distribu-
tions over the input domain are specified by a usage profile (UP)
defined as:

UP =

 c1 : p1
c2 : p2
.

(8)

where the ci are a partition of the input variables, i.e. ∪ici = D and
ci∩ c j 6= /0 =⇒ i = j, and ∑i pi = 1 (we abuse the notation here by
referring with ci to both a set of inputs and the constraints uniquely
characterizing such set). Each pair ci : pi is called usage scenario.

This formalism for UPs allows to arbitrarily partition the input
domain into a finite set of regions, each with an assigned probability.
The constraints ci can be arbitrarily complex, making the formalism
expressive enough to predicate about non trivial relations among
input variables. However, if the values of an input are distributed
according to a continuous probability distribution, casting this case
into a finite UP requires a discretization procedure, partitioning
the domain of each variable into a finite number of intervals and

assigning to each interval a probability computed from the orig-
inal continuous distribution. Depending on the number and the
size of the intervals, discretization may be an arbitrarily precise
approximation of the continuous distribution.

Nonetheless, the unavoidable loss of precision due to discretiza-
tion may introduce a bias in the analysis results, when the approxi-
mation is not fine enough. On the other hand, a finer discretization
requires to partition variables domain into a larger number of in-
tervals. Assuming v input variables are partitioned into m intervals
each one, the total number of constraints to obtain a discretized
version of the original UP would be vm. Though the complexity of
the analysis is linear in the number of usage scenarios, the latter
grows exponentially with the required precision of discretization,
limiting the scalability of the analysis.

Section 5.2 compares the accuracy and performance of our
distribution-aware sampling procedure with the same analysis based
on the discretization of the usage profiles showing its advantages.

4. ITERATIVE OPTIMAL SAMPLING
The divide-and-conquer procedure reported in Section 2.3 solves

the problem of quantifying the solution space of PCT in terms of
simpler independent sub-problems. It further caches and reuses the
results for the sub-problems to speed up the quantification. The
estimates for the sub-problems are composed according to the dis-
junction and conjunction rules from Equations 4 and 5, respectively.
The variance of such estimators is composed as well, providing an
index of the accuracy of the final results. Although the asymptotic
convergence of the compositional estimators is guaranteed [2], i.e.,
when the number of samples used to obtain the local estimators for
each sub-problem grows to ∞, the convergence rate of the procedure
is hard to quantify and may be slow in practice.

This section introduces an iterative sampling approach to speed-
up the convergence rate of the quantification procedure. At each
iteration, the sampling is focused on the parts of the input space
that are likely to have the largest influence on the variance of the
composed estimator obtained from the previous iteration, with the
goal of minimizing the variance and thus increasing the overall
accuracy of the estimation. We explore three iterative approaches.

The first approach is based on gradient descent optimization [21]
(Section 4.1) which provides a natural solution to the sampling allo-
cation problem. It uses the composition rules from Equations (2) –
(5) to compute the gradient of the global variance with respect to
the number of samples allocated to each local estimator. The impact
of each local estimator, as quantified by the gradient, is then used
to decide how many new samples to allocate for each sub-problem,
aiming at minimizing the global variance.

The second approach overcomes the computational overhead
related to bootstrapping new sampling procedures for multiple sub-
problems. It uses a relaxed form of gradient descent optimization
based on a sensitivity analysis (Section 4.2), where, at each iteration,
new samples are allocated only for the single most influent sub-
problem, as identified by the gradient.

The third approach introduces a simple heuristic sampling allo-
cation that, at each iteration, allocates new samples for the sub-
problem whose estimator has the largest variance (Section 4.3).
This heuristic is computationally cheaper than the other optimiza-
tion methods because it does not require the computation of the
gradient of the global variance with respect to the number of sam-
ples allocated for each sub-problem. However, our experiments
show that this simple heuristic works well in practice.

The three different strategies discussed in the next sections will
be evaluated on several case studies in Section 5.

869

4.1 Gradient-Descent Variance Minimization
Gradient descent is a common optimization method for finding

the minimum of functions for which derivatives can be defined
[21]. The gradient descent method starts with an initial (random)
candidate solution and iteratively discovers new candidates closer
to the optimum. At each step, a new candidate solution is produced
following the direction of the negative gradient of the function. As
a local search method, it can get stuck in local optima. However, in
our context there is a unique minimum, as the variance is guaranteed
to decrease with each new sample.

The dependency of the global variance on the number of samples
allocated for each sub-problem can be computed in analytical form
combining Equations (2) to (5). For the sake of simplicity we will
for now ignore ICP-based stratified sampling, thus assuming each
sub-problem to be quantified by simple hit-or-miss Monte Carlo
(Equation 2). We will bring ICP-based stratified sampling later.

As an example of this computation, consider from Section 2.1 the
PC goal < 0 && flapPosition + actuatorEffect + windEffect

> 15. The quantification problem for this PC can be reduced
to the quantification of the independent constraints c0 : goal <

0 and c4 : flapPosition + windEffect > 10 (where the constant
actuatorEffect has been already evaluated), whose solution
space is quantified by the estimators x̂0 and x̂1, respectively. If
n0 samples are allocated for the estimation of x̂0 and n1 for the
estimation of x̂1, their respective variances would be (Equation 2):

Var[x̂0] =
x̄0 · (1− x̄0)

n0
Var[x̂1] =

x̄1 · (1− x̄1)

n1
(9)

The variance of the estimator for the PC as a function of n0 and n1
can then be computed applying the conjunction composition rule
(Equation 5) as follows.

Var(n0,n1) = x̄2
0 ·

x̄1 · (1− x̄1)

n1
+ x̄2

1 ·
x̄0 · (1− x̄0)

n0
(10)

+
x̄0 · (1− x̄0)

n0
· x̄1 · (1− x̄1)

n1

An analogous procedure can be applied to deal with disjunctive
forms. Our goal is now to minimize the function Var(n0,n1, . . . ,nm),
which denotes the variance of the global estimate as a function of
the number of samples allocated for the estimation of each of the
m+1 independent constraints the quantification problem has been
split in. We want to find a sequence of sample allocations that brings
global variance near 0 quickly. Note that 0 is the unique global
minimum for the variance and it is reachable when the number of
samples grows to infinity.

The initial solution n0 = [n0
0,n

0
1, . . . ,n

0
m] can be computed in a

bootstrap stage where an arbitrary number of samples is allocated
uniformly to each estimation sub-problem. This initial round of
sampling provides also an initial estimate of the expected value and
the variance of each independent constraint, which will be used to
estimate the value of Var(n0) at the initial point.

Given the value of nk at step k, the value of nk+1 is computed
according to the following formula:

nk+1 = nk− γ ·∇Var(nk) (11)

where γ is the step size (we will get back to this later) and
∇Var(n) = [∂Var/∂n0,∂Var/∂n1, . . . ,∂Var/∂nm] is the gradient,
i.e., the vector of the partial derivatives of Var(·) with respect to
the arguments ni. Intuitively, the gradient indicates at each step
“how much” each of the independent constraints can contribute to
minimize Var(·).

Recall that the quantification problem consists in estimating the
probability that an input satisfies any of the path conditions in PCT ,
given a probability distribution on the input space. In other words,
we aim to estimate the probability of satisfying the disjunction of
the PCs in PCT , and each PC is the conjunction of independent
constraints. Exploiting the compositional rules of Section 2.3 the
gradient of the global variance with respect to the number of samples
to be allocated to each independent sub-problem can be computed
compositionally too.

THEOREM 1. Derivative of disjunction compositions. The
derivative of the variance of the estimator x̂c for the disjunction
c = c0 ∨ c1 ∨ . . .ck with respect to the number of samples ni allo-
cated to the estimators x̂i for the constraints ci (i ∈ [0,k]) can be
computed as:

∂Var[x̂c]

∂ni
≤ ∑

i∈[0,k]

∂Var[x̂i]

∂ni
(12)

PROOF. The composition rule in Equation (4) overestimates the
variance of a disjunction as the sum of the variances of the disjuncts.
The proof follows from the linearity of the derivative operator.

THEOREM 2. Derivative of conjunction compositions. The
derivative of the variance of the estimator x̂c for the conjunction
c = c0 ∧ c1 ∧ . . .ck with respect to the number of samples ni allo-
cated to the estimators x̂i for the constraints ci (i ∈ [0,k]) can be
computed, where the constraints ci are independent, according to
the definition introduced in Section 2.3, and the estimators x̂i use
HM-MC, as:

∂Var[x̂c]

∂ni
=−Var[x̂i]

ni
∏

j∈[0,k], j 6=i

(
E[x̂ j]

2 +Var[x̂ j]
)

(13)

PROOF. The proof is omitted for space reasons, the interested
reader can refer to [3] for it.
The gradient descent method terminates when either the target vari-
ance is achieved or when the gradient gets close enough to 0. The
latter indicates the optimum has been reached, usually within a fi-
nite accuracy. Notably, the convergence speed of gradient descent
methods is proportional to the value of the gradient. This implies
that the closer the gradient gets to 0 the slower the convergence
is [21]. Nonetheless, for the problem at hand the improvement on
the convergence rate of the global estimator is still significant, as
will be shown in Section 5.

Notice that the expected values of the estimates obtained by the
composition rules of Section 2 are not affected by the gradient
descent procedure. The estimators keep their unbiasedness and their
consistency, while only the rate of convergence of the variance to 0
is possibly optimized.

Back to our example, assume that, during the initial bootstrap
phase, after allocating 1000 samples for estimating each of the con-
straints c0 : goal<0 and c4 : flapPosition + windEffect >

10, we obtained the estimates x̄0 = 0.489 and x̄1 = 0.088, consid-
ering the weak wind profile. After the first iteration we obtain the
following gradient ∇Var(n0,n1) = [−1.955 ·10−9,−1.921 ·10−8].
Thus, the sampling budget available for the next iteration should be
assigned to x̂0 and x̂1 proportionally to their corresponding deriva-
tives, roughly 9.2% of the samples for c0 and 90.8% for c1.

Choosing the step size. The partial derivatives composing the
gradient are used to decide how the sampling budget for the next
iteration will be distributed among the independent constraints.
This budget is quantified by the step size γ . In general, if γ is
too small, then the algorithm will converge very slowly. On the
other hand, if γ is not chosen small enough, then the algorithm may

870

use sampling time inefficiently. In our case, we have to take into
account the overhead of starting a new sampling procedure for each
independent constraint at each iteration. For a too small budget, the
bootstrapping time for the sampling procedures might overcome
the time for sampling, increasing the computational overhead. An
optimal value for γ depends in general on the specific problem at
hand. Furthermore, instead of fixing the value of γ , we fix the total
number of samples to be allocated for each iteration and compute γ

so to use it all, i.e. γ ·∑∂Var/∂ni has to be equal to the total number
of samples allowed for each iteration. Since only an integer number
of samples can be allocated for each sub-problem, possible decimal
results are rounded up to the smallest larger integer.

For this work we empirically evaluated different values for the
total number of samples to be allocated during each iteration, and in
turn γ (Section 5). Adaptive decisions for γ have been proposed too
(e.g., [21, 24]), and we plan to evaluate them in the future.

ICP-based stratified sampling. ICP-based stratified sampling (see
Section 2.2) can be used to reduce the variance of the estimates
for the single independent sub-problems. ICP is used to partition
the sampling space into a set of disjoint boxes containing all the
solutions for the constraint, pruning out the domain regions contain-
ing no solutions. With the same number of samples, this approach
cannot perform worse than HM-MC, and usually performs better [2].
Therefore the variance obtainable by HM-MC can be seen as an
upper bound of the one of stratified sampling for the same problem.

The gradient descent procedure we defined is based on HM-MC
and decides how many samples to allocate on each sub-problem
during each iteration. Enhancing the local estimators with strati-
fied sampling can only produce better results (which will be also
reflected by the more accurate values for the local estimates used to
evaluate V (·) on the next iteration) but requires an additional deci-
sion about how to distribute the samples allocated on an independent
constraint among the boxes containing its solutions.

Our decision strategy is to distribute 2/3 of the samples propor-
tionally to the product between the variance of the local estimate
within the box and the size of the box, and 1/3 uniformly among
all the boxes. Recalling Equation (3), both the variance and the
size of the box directly affect the variance of the stratified sampling
estimates. With this heuristic we take into account this dependency.
The remaining third of samples is distributed uniformly to speedup
the convergence of the estimators for all the boxes, and thus a better
assessment of their variance for the next iterations. This is especially
relevant when the probability of satisfying the target property within
the box is close to 0; if no samples satisfy the constraint restricted
within the box, the variance is incorrectly estimated as 0 and the box
would receive 0 samples on the next iteration, preventing the local
estimator to assess the actual variance.

4.2 Sensitivity Analysis and Computational
Overhead

Each sampling round requires to start a sampling procedure for
each box of each independent constraint for which we allocate
new samples. This operation introduces a significant overhead,
especially when the number of sub-problems is large and the partial
derivatives in the gradient are mostly in the same order of magnitude.
This implies that the budget will be distributed almost uniformly,
requiring to add only a few samples for each independent sub-
problem at each iteration.

A sub-optimal strategy to trade convergence rate for lower com-
putational overhead consists in a relaxation of the gradient descent
method based on sensitivity analysis. The sensitivity of the global
variance Var(·) with respect to the number of samples ni allocated

Table 1: Characterization of the benchmarks.
Subject Asrt. #Paths #Ands #Ar. Ops. 0-var./Parts.

VolComp subjects [28]

ARTRIAL

1 442 1,484 0 (0) 23/23
2 2,439 1,740 443 (3) 4/27
3 2,260 68,630 19,125 (3) 10/44

CART
4 44 1,209 638 (3) 1/45
5 47 1,296 681 (3) 1/48

CORONARY
6 320 195 62 (3) 8/15
7 274 31 8 (3) 5/8

EGFR EPI
8 45 547 31 (3) 46/46
9 44 422 33 (2) 38/38

EGFR EFI 10 13 163 12 (3) 13/18
SIMPLE 11 14 101 9 (3) 14/14

INVPEND 12 1 54 229 (3) 0/1

PACK

13 1,103 16,414 0 (0) 40/40
14 906 12,080 0 (0) 37/37
15 924 12,293 0 (0) 38/38
16 821 840 0 (0) 38/38
17 954 14,850 6,948 (2) 815/954
18 1,030 16,186 7,578 (2) 935/1030
19 1,132 17,972 8,420 (2) 1132/1132

qCORAL subjects [2]
APOLLO 21 866 10037 249655 (4) 216/253

CONFLICT 22 14 70 693 (4) 8/14
TURN LOGIC 23 73 505 1718 (2) 65/73

to the constraint ci is defined by the partial derivative ∂Var/∂ni.
The single constraint mostly affecting the global variance is the one
having the larger sensitivity, in absolute value (note that all of the
derivatives are negative since adding more samples can only de-
crease the global variance). The strategy thus consists in allocating
the entire sampling budget for the next iteration to the single most
important constraint.

Recalling our example, if ∇Var(n0,n1) = [−1.955 ·
10−9,−1.921 · 10−8], the whole sampling budget for the next
iteration will increase n1 because the corresponding sub-problem
has the highest expected impact on the global variance.

From a mathematical viewpoint, this means that instead of follow-
ing the gradient, we follow its projection on the single dimension
providing the best improvement. This is in general less effective then
using all the information in the gradient, but may produce valuable
results at a lower computational cost (as shown in Section 5).

4.3 Local Heuristic for Sampling Allocation
We also considered a low-overhead sampling heuristic that does

not require to compute the gradient of Var(·). This heuristic pre-
scribes to allocate at each iteration all the samples to the single
estimator having the highest variance.

Back again to our example, where after allocating 1000 samples
for each of the sub-problems c0 : goal<0 and c4 : flapPosition
+ windEffect > 10, we obtained the estimates x̄0 = 0.489 and
x̄1 = 0.088 with variance 2.498 ·10−4 and 8.025 ·10−5, respectively,
this heuristics would require to allocate the entire sampling budget
for the next iteration to increase n0 since the estimator x̂0 is the one
showing the highest variance.

Due to the nature of the problem, this heuristic intuitively guar-
antees the convergence of the estimator, since the allocation of
more samples to an estimator with positive variance always strictly
decreases its variance (Equation 2). This guarantees that all the
estimators with non-zero variance will eventually receive additional
samples, following the convergence of the global estimator as well.

5. EVALUATION
We described distribution-aware sampling and iterative sampling

allocation for improving the convergence rate of a compositional
simulation-based probabilistic symbolic execution. We implemented

871

these techniques in the Java based tool qCORAL and evaluated their
effectiveness in Section 5.2 and 5.3, respectively.

5.1 Experimental Settings
For our evaluation, we used the publicly available benchmarks

of VolComp [30] and qCORAL [26]. The subjects from the
VolComp benchmark only contain linear constraints (that we trans-
lated in the input format for our tool). These subjects are: a
heart fibrillation risk calculator (ARTRIAL), a steering controller
to deal with wind disturbances (CART), a coronary disease risk
calculator (CORONARY), an estimator of chronic kidney’s dis-
ease (EGFR-EPI and EGFR-EPI-SIMPLE), an inverted pendu-
lum (INVPEND), and a model of a robot deciding how to pack goods
of different weights into envelopes with limited capacity (PACK).
The subjects from the qCORAL benchmark contain non-linear con-
straints and more complex mathematical functions (e.g., sinus); they
are a model of the Apollo lunar vehicle autopilot (APOLLO) and two
core modules of an aircraft collision-detection monitor (CONFLICT
and TURN LOGIC). These subjects were implemented in Java and
analyzed using Symbolic PathFinder [25] to compute the PCs (of
paths leading to assert violations).

Table 1 reports a characterization of these subjects. Column “Asrt”
denotes a unique id we used to identify the checked assertions during
the discussion. Column “#Paths” indicates the number of symbolic
paths leading to the violation of the assertion. Columns “#Ands”
and “#Ar. Ops” denote respectively the number of conjuncts and
the number of arithmetic operations. For column “#Ar. Ops”, in
parenthesis the number of different operators (e.g., + or sin()). A
value of 0 in this column means that all the constraints involve only
comparisons (e.g., x < y or x < 5). Finally, “Parts.” indicates the
number of independent sub-problems identified for compositional
analysis and “0-var” indicates the number of sub-problems with
exact solutions after applying ICP. Column “0-var./Parts.” indicates
how many of the sub-problems we obtained variance 0 on an ex-
ecution of qCORAL with 100k samples without iterative sampling
allocation. A sub-problem can obtain 0 variance after sampling
when either ICP returned an exact solution or if all the samples
returned the same truth value (cf. Equation 9).

Baseline. To compare the accuracy of the different approaches, we
solved the quantification problem with the commercial tool Mathe-
matica (version 10). We used the off-the-shelf function NProbability
with default arguments. This procedure is designed to provide solu-
tions to a broad range of problems. In contrast our method is tailored
to probabilistic symbolic execution. This results (in some cases) in
both a slower performance and exceptions, reported by Mathemat-
ica, where NProbability fails to achieve precise results. Different
configurations of NProbability may avoid these exceptions, however
they would require human expertise beyond the off-the-shelf use of
the tool.

Execution environment. We run qCORAL on an Intel Core i7 920
(2.67GHz, 8M cache) machine, with 8GB of RAM. Considering
the higher computational demand for Numerical Integration with
Mathematica, we performed this operation on an r3.large Amazon
EC2 machine, running on an Intel Xeon E5-2670 v2 (2.50 GHz,
25M cache) with 16GB RAM. Both machines run Ubuntu 64 bits.

5.2 Distribution-Aware Sampling
Distribution-aware sampling aims at providing direct support for

input variables characterized by continuous probability distributions.
This section reports on two different experiments we conducted to
evaluate our proposed technique. The first experiment compares
the results of qCORAL and NProbability with respect to precision

and efficiency. The second experiment compares the precision, lack
of bias, and scalability of distribution-aware sampling against the
analysis with discretized usage profiles.

5.2.1 Comparison with NProbability
Table 3 reports the results of analyzing each subject with qCORAL

and NProbability. qCORAL performs a single sampling round with
100k samples, thus no iterative sampling allocation is used for this
experiment. The cells shadowed in grey highlight the cases for
which Mathematica reported an exception and the results might thus
not meet the default prescribed accuracy of at least five decimal
digits. A “-” is used to mark the cases where the analysis failed to
return results within 40 hours of processing.

To evaluate distribution-aware sampling, we experimented with
different continuous input distributions. In the first set of experi-
ments we assigned to each variable a truncated Normal distribution
centered in the middle of the variable domain and with standard
deviation equal to 1/6 of the domain length, and truncated by the
bounds of the domain. We set the standard deviation to 1/6 so that
already the non-truncated distribution has probability 99% to gen-
erate a sample within the domain. Truncation introduces a small
correction to guarantee that all samples fall within the bounds. In the
second set of experiments we assigned to each variable a truncated
Exponential distribution. The rate parameter of the distribution has
been tuned again to make 99% of the samples fall within the orig-
inal variable domain. Since Exponential distributions are defined
over positive domains, we excluded the subjects whose values have
negative domains.

For all the cases where NProbability terminated without excep-
tions the results of qCORAL are consistent, at the reported accuracy
(σ). In several cases the results of qCORAL are exact σ = 0 (up
to Java double accuracy) and match those of NProbability. The
execution time of qCORAL is significantly shorter than the one re-
quired by NProbability for the same subjects, especially on the more
complex ones where the difference is by several orders of magnitude.
qCORAL also produces more robust results compared to NProbability,
completing the analysis for all the subjects without exceptions. This
is due to the intrinsic robustness of simulation-based approaches.

A final note concerns the result of qCORAL for assertion 5 with
Normal usage profile. This result is indeed larger than 1, which is
clearly not a valid probability. This is due to the accumulation of
inaccuracies of the sub-problems estimates, when the result is close
to 1. However, the corresponding σ makes the result compatible
with NProbability. Cutting it to 1 would alter the confidence intervals
computable with the estimate and σ , thus we report the estimate as
is, including accumulated errors.

5.2.2 Comparison with Discretization
This section evaluates the tradeoff between accuracy and scalabil-

ity of distribution-aware sampling with the same analyses performed
on discretized usage profiles. For the experiments reported in Ta-
ble 2 we assigned for each subject a truncated Normal distribution
to two of the input variables, following the same parameterization
procedure described for the previous experiments. All the other
variables have the original Uniform distribution defined in [26, 30].
Only two variables have been assigned a non-uniform profile for
scalability reasons, since the size of discretized usage profiles grows
exponentially in the number of non-uniform variables (cf. Section 3).
This results in a complexity already sufficient for comparing the
approaches.

There are several possibilities for discretizing a continuous dis-
tribution. A simple solution requiring no prior knowledge on the
problem consists in dividing the domain into a certain number of

872

Table 2: Comparison of different discretization methods. Discretization invokes qCORAL [2] once for every region within each
constraint partition. For every subject, two input variables are normally distributed; the others are uniformly distributed.

Subject Asrt. NProbability
Discretization qCORAL [100k]3 intervals 6 intervals

solution time(s) avg. est. time(s) avg. est. time(s) est. time(s)

ARTRIAL

1 0.052928 15.83 0.067016 0.66 0.059714 0.73 0.052928 0.64
2 0.000284 15.05 0.000320 0.74 0.000279 0.83 0.000285 0.71
3 0.927292 648.34 0.923024 2.85 0.917593 2.87 0.924958 2.31

CART
4 0.974609 11.10 0.973542 1.63 0.964577 2.29 0.991601 1.12
5 0.982561 11.87 0.984726 1.57 0.982017 2.28 0.992781 1.15

CORONARY
6 0.000201 1.81 0.000310 0.55 0.000241 0.61 0.000202 0.53
7 0.000033 0.35 0.000033 0.43 0.000059 0.45 0.000033 0.42

EGFR EPI
8 0.130741 5.73 0.128302 0.65 0.128934 0.71 0.130741 0.68
9 0.099552 4.30 0.100637 0.63 0.099036 0.65 0.099553 0.62

EGFR EFI (SIMPLE)
10 0.597568 1.74 0.596731 0.56 0.595728 0.70 0.597526 0.48
11 0.159820 1.05 0.198692 0.50 0.178238 0.56 0.159819 0.43

INVPEND 12 0.051223 24.59 0.051119 13.54 0.051276 50.24 0.051096 2.14

PACK

13 0.984252 186.83 0.964020 1.44 0.990221 1.47 0.984252 1.43
14 0.284253 136.10 0.314348 1.21 0.303445 1.24 0.284253 1.20
15 0.089651 140.28 1.039513 1.23 0.096642 1.27 0.089651 1.22
16 0.000099 10.26 0.000136 0.65 0.000113 0.69 0.000099 0.63
17 0.156305 ≈ 2h 0.201841 6.02 0.200773 10.84 0.186872 3.60
18 0.623169 334.15 0.645441 6.72 0.631922 12.20 0.632369 3.91
19 0.985956 300.59 0.945867 8.89 0.969026 14.08 0.985955 4.41

APOLLO 21 0.600787 ≈ 2h 0.633724 3.15 0.618542 3.61 0.063177 3.51
CONFLICT 22 0.049456 101.09 0.499715 5.77 0.500178 18.10 0.500100 1.87

TURNLOGIC 23 0.370931 443.62 0.731781 1.70 0.725658 3.94 0.727923 1.13

equally large intervals and to assign each interval the probability it
would have according to the original distribution, i.e. the probability
for an interval [a,b] would be CDF(b)−CDF(a), where CDF(·) is
the cumulative distribution function of the original continuous distri-
bution. A deeper knowledge of the constraints to be quantified may
allow more effective discretization where smaller intervals are used
to increase the resolution of the approximate distributions around
the points mostly affecting the satisfaction of the constraints to be
quantified. However, this would require in general human expertise
on the specific problem.

Table 2 reports our experimental results. We keep the result of
NProbability as reference value. Notice that the results in this table
differ from those on Table 3 due to the different usage profiles.
Furthermore, with the simplified usage profile we use for these
experiments NProbability always terminates correctly.

We discretized the domain of the two non-uniform variables in 3
and 6 intervals. The total number of usage scenarios composing the
discretized profile is thus 9 and 36, respectively (cf. Section 3.1). A
too coarse-grained discretization may introduce a bias in the result
due to the loss of information. Finer discretization improves the
precision of the result, but does not scale (due to the exponential
blowup in the number of usage scenarios). This is visible in Table 2,
where the results for a 3 intervals discretization deviate from the
reference value more than those for the 6 intervals. Distribution-
aware sampling prevents the risk of introducing such biases.

Finally, finer discretization requires a higher computation cost.
Though this cost might be reduced leveraging the caching of partial
results for independent sub-problems shared by the different usage
scenarios, the worst case complexity remains exponential. Even
with the relatively coarse-grained discretization we applied on only
two non-uniform variables, the analysis time for the discretized
profiles takes longer than with distribution-aware sampling. The
latter grows instead only linearly with the number of variables, thus
scaling to significantly larger problems.

5.3 Iterative Optimal Sampling Allocation
Iterative sampling allocation aims to improve the convergence

rate of simulation-based quantification by allocating samples to
sub-problems according to their predicted importance. Section 4
described three strategies to decide how to allocate samples to non-

initial iterations of the quantification procedure; we evaluate these
strategies here. The first strategy – gradient – decides how many
samples to allocate to each sub-problem pursuing a gradient descent
minimization of the global variance. The second strategy – sensi-
tivity – performs a gradient-based sensitivity analysis to identify
the single partial sub-problem with highest impact on the global
variance and allocate new samples to improve the estimate. The
third strategy – local – uses a low-overhead heuristic selecting the
sub-problem to improve only based on the variance of its local
estimator, thus not requiring a global impact analysis.

The goal of the three strategies is to increase the convergence
rate of the compositional simulation-based quantification described
previously. We take as baseline the distribution-aware sampling
described and evaluated in the previous sections. We evaluate the
iterative techniques with a sampling budget per iteration of 1k and
10k samples (which determines the step size for the gradient-based
methods). We report the results of our experiments on selected
subjects in Figure 2 and Table 4. Each subject is identified by the
name of the program and the id of the assertion. For the experiments
in this section, we assigned each variable a truncated Normal distri-
bution with mean in the center of the variable domain (defined in
the original papers of the benchmarks) and standard deviation equal
to 1/6 of the domain length, as we did in the previous section.

5.3.1 Convergence Rate
Figure 2 shows the convergence rate of the three approaches

and the baseline through plots having the wall-clock time on the
x-axis and the average standard deviation of the global estimator
(i.e., the square root of its variance) on the y-axis, in logarithmic
scale. All the experiments have been ran for 30 minutes. The initial
bootstrapping has been performed by taking 50k samples uniformly
among all the sub-problems.

Gradient and sensitivity outperformed the baseline for all of the
subjects and both 1k and 10k sampling budget per iteration. When
more samples are allowed, these two approaches performs almost
equally. The best improvement is achieved for APOLLO (21), while
the worst is for ARTRIAL(3). These two subject are the most
complex in terms of number of PCs and number of conjuncts per PC.
However, while in the case of APOLLO only a few sub-problems
have a high impact on the global variance, for ARTRIAL the sub-

873

Table 3: Distribution-aware sampling: comparison of
NProbability and qCORAL.

Subject Asrt. NProbability qCORAL [100k]
solution time(s) estimate avg. σ time(s)

Gaussian distributions

ARTRIAL

1 0.031483 28.14 0.031483 0.00e+00 0.60
2 0.000118 37.08 0.000119 0.000001 0.76
3 0.968101 ≈ 26m 0.964187 0.001159 2.31

CART
4 0.999896 ≈ 12m 0.993029 0.014424 1.23
5 0.997998 ≈ 13m 1.005696 0.014901 1.30

CORONARY
6 0.000005 73.03 0.000005 5.26e-08 0.49
7 0.000000 12.41 0.000000 2.91e-09 0.40

EGFR EPI
8 0.008055 10.35 0.008055 0.00e+00 0.72
9 0.006240 7.97 0.006240 0.00e+00 0.63

EGFR EPI 10 0.592727 3.29 0.592715 0.000229 0.48
SIMPLE 11 0.171350 2.09 0.171350 0.00e+00 0.42

INVPEND 12 0.002235 ≈ 23m 0.002248 0.000030 2.35

PACK

13 0.999788 164.52 0.999788 0.00e+00 1.42
14 0.065674 148.88 0.065674 0.00e+00 1.22
15 0.008084 154.95 0.008084 0.00e+00 1.25
16 0.000000 8.82 0.000000 0.00e+00 0.66
17 0.036888 ≈ 31h 0.036883 0.000077 3.67
18 0.525443 ≈ 32h 0.515872 0.023695 4.01
19 0.986260 ≈ 36h 0.999885 0.00e+00 4.35

APOLLO 21 0.702961 ≈ 4h 0.622393 0.032056 3.02
CONFLICT 22 0.000091 103.93 0.500701 0.000702 1.52

TURN LOGIC 23 0.176554 ≈ 10m 0.717674 0.029120 0.87
Exponential distributions

ARTRIAL

1 0.053505 29.07 0.053505 0.00e+00 0.64
2 0.00e+00 35.51 0.00e+00 0.00e+00 0.70
3 0.995979 ≈ 15m 0.996645 0.000219 2.26

CORONARY
6 0.000047 32.99 0.000050 0.000007 0.48
7 0.00e+00 5.62 0.00e+00 0.00e+00 0.34

EGFR EPI
8 0.731059 0.16 0.078329 0.00e+00 0.61
9 0.116840 15.36 0.116840 0.00e+00 0.59

EGFR EPI 10 0.698996 2.91 0.698996 0.00e+00 0.40
SIMPLE 11 0.032105 2.04 0.032105 0.00e+00 0.37

PACK

13 0.948792 329.84 0.948792 0.00e+00 1.46
14 0.393585 242.62 0.393585 0.00e+00 1.23
15 0.149316 254.56 0.149316 0.00e+00 1.26
16 0.000214 18.77 0.000214 0.00e+00 0.65
17 0.243622 ≈ 1.2h 0.243619 0.000377 3.59
18 0.641769 578.15 0.640926 0.002324 3.86
19 0.952801 303.06 0.952801 0.00e+00 4.21

APOLLO 21 - +40h 0.643080 0.063153 2.68
CONFLICT 22 0.00e+00 36.02 0.024934 0.005130 1.04

TURNLOGIC 23 0.031814 ≈ 2h 0.736356 0.059437 0.77

problems to be analyzed have similar impact on it. In particular, for
APOLLO only a few sub-problems have a large local variance and a
high impact on the global result. This is an optimal condition for all
three allocation strategies, which perform similarly. The baseline
approach is instead unable to exploit this information and allocates
samples on sub-problems already close to convergence or with low
impact on the global result. For ARTRIAL (3), there is not a big
difference in the impact of the different sub-problems, though a few
of them have slightly larger effect on the global result. In this case
the benefit of gradient-based techniques is limited and also local
does not provide a significant improvement.

The local strategy fails to improve the convergence rate, and ac-
tually slows it down, when the sub-problems with highest variance
have a low impact on the global result: ARTRIAL (2), and CORO-
NARY(7). Indeed, the impact of a sub-problem depends not only on
its local variance but also on the estimates and variance of the other
sub-problems that are in conjunction within the PCs under analysis.
In CORONARY (7) it is possible to observe a small spike for the
local strategy. The initial sampling provides indeed only approxi-
mate estimates for the various sub-problems. These estimates are
improved through the subsequent iterations. The greediness of local
makes the method to keep sampling from a single sub-problem until
its variance is reduced enough to move to another one. When more
samples are allocated to a sub-problem, not only the variance of the
corresponding estimator is decreased, but also the approximation of
the global result is improved through the composition rules, possibly

ARTRIAL (2) - 1k

10−7

10−6

10−5

0 1000

ARTRIAL (2) - 10k

10−7

10−6

10−5

0 1000

ARTRIAL (3) - 1k

10−4

10−3

0 1000

ARTRIAL (3) - 10k

10−4

10−3

0 1000

CART (4) - 1k

10−3

10−2

10−1

0 1000

CART (4) - 10k

10−3

10−2

0 1000

CART (5) - 1k

10−3

10−2

0 1000

CART (5) - 10k

10−3

10−2

0 1000

CORONARY (7) - 1k

10−9

10−8

0 1000

CORONARY (7) - 10k

10−9

10−8

0 1000

APOLLO (21) - 1k

10−3

10−2

0 1000

APOLLO (21) - 10k
baseline
gradient
sensitivity
local10−3

10−2

10−1

0 1000

Figure 2: Convergence rate of iterative sampling and the base-
line approach on selected subjects (y-axis in logarithmic scale).

correcting a wrong initial assessment. For this reason it is possible to
obtain small spikes when moving from one sub-problem to another.

5.3.2 Time to Converge
Table 4 reports in tabular form the results of some of the experi-

ments for a deeper investigation. All the runs have been interrupted
after 30 minutes. Target σ represents different target accuracies in
terms of standard deviation of the global result. We reported the
computation time required by the three iterative allocation strategies
and the baseline approach to achieve the target accuracy.

For lower accuracy (larger σ), the gradient-based methods per-
forms better with 1k sampling budget per iteration, while for higher
accuracy 10k performs slightly better. In both cases the convergence
rate gets slower while moving toward higher accuracy. This observa-
tion is consistent with the theory on gradient-descent optimization,
since this optimization approach gets less efficient when the result
approaches its optimum. Nonetheless, the two methods outperform
baseline and local even for higher accuracies, since they are capable
of exploiting more information about the problem. Indeed, though
all the derivatives tend to converge to 0 when approaching the opti-
mum, the small differences among them are still enough to improve
on the uninformed uniform allocation performed by baseline, while
local may waste time sampling from low impact sub-problems hav-
ing high variance. For higher accuracy, when the differences among
the derivatives get smaller, the expected impact of the different sub-
problems tends to become similar. In this case, since there is no

874

Table 4: Time to reach a target accuracy for incremental sam-
pling techniques plus baseline for 1k and 10k sampling budget
per iteration. Initial uniform sampling bootstrap 50k.

Subject Asrt. Prc. Time (s)

10−x Baseline Local Sensitivity Gradient
1k 10k 1k 10k 1k 10k 1k 10k

APOLLO 21
1 3.56 3.40 3.34 3.36 3.35 3.36 3.00 3.05
2 191.49 64.13 5.97 6.11 4.73 5.20 6.13 4.46
3 +30m +30m 253.03 235.47 130.79 124.79 297.78 138.54

CART

4
1 1.48 1.61 1.45 1.58 1.39 1.53 1.44 1.56
2 83.40 28.08 4.10 3.63 3.25 3.29 6.99 4.36
3 +30m +30m 527.37 526.14 217.71 221.28 641.56 310.85

5
1 1.53 1.58 1.47 1.52 1.48 1.55 1.50 1.56
2 86.51 31.00 4.17 3.77 3.35 3.31 7.32 4.49
3 +30m +30m 541.47 525.43 227.99 224.31 686.19 320.69

ARTRIAL

2

4 0.96 1.02 0.95 1.02 0.95 1.01 0.96 1.05
5 7.10 4.44 0.95 1.02 1.11 1.08 1.57 1.46
6 580.69 309.14 +30m +30m 17.25 15.53 40.28 24.03
7 +30m +30m +30m +30m 1603.58 1475.79 +30m +30m

3

1 2.97 3.13 3.14 3.26 3.21 3.28 3.06 3.19
2 4.93 3.72 3.14 3.26 3.21 3.28 3.62 3.36
3 207.40 57.62 13.12 8.93 20.81 11.97 92.26 22.94
4 +30m +30m +30m 1565.44 1730.84 972.12 +30m 1727.74

CORO-

6

5 0.64 0.82 0.58 0.82 0.61 0.83 0.61 0.64

NARY-

6 2.99 2.33 0.58 0.82 0.65 0.84 0.74 0.69
7 167.43 114.38 0.63 0.83 4.55 4.40 6.16 5.64
8 +30m +30m +30m +30m 354.03 346.11 527.16 450.78

7

6 0.53 0.49 0.83 0.57 0.84 0.58 1.10 0.60
7 1.08 0.81 0.83 0.57 0.85 0.58 1.11 0.60
8 30.38 23.13 0.84 0.59 2.31 1.59 3.00 2.05
9 +30m +30m +30m +30m 109.84 100.68 120.60 105.37

significantly better choice, it is more efficient to take more samples
per iteration instead of consuming analysis time for updating the
gradient and taking new decisions frequently. We plan to investigate
in the future dynamic techniques to handle this situation.

According to our experiments, sensitivity overall provides the best
strategy for iterative sampling allocation, combining the effective-
ness of gradient-based impact analysis with a reduced overhead for
decision making, eventually leading to more accurate quantification
results in a shorter time.

6. RELATED WORK
Our work is related to probabilistic program analysis [13], prob-

abilistic abstract interpretation [20], probabilistic model check-
ing [15] and volume computations [8]. We discuss here some of the
most closely related work.

Probabilistic analysis based on symbolic execution has been de-
scribed in e.g. [9, 11, 28]. Geldenhuys et al. [11] considered
uniform distributions for the inputs, linear integer arithmetic con-
straints, and used LattE Machiato [8] to count solutions of path
conditions produced during symbolic execution. Sankaranarayanan
et al. [28] and Filieri et al. [9] proposed similar techniques to
compute probabilities of violating program assertions. Both tech-
niques remove the restriction of uniform distributions, although in
the latter case it is by discretizing the domain into small uniform re-
gions. As with [11] both approaches only consider linear constraints.
Sankaranarayanan et al. developed algorithms for under and over-
approximations of probabilities. They use Linear Programming
(LP) solvers to compute over-approximations and heuristics-based
“ray-shooting” algorithms to compute under-approximations, which
is applicable for convex polyhedra. Filieri et al. used the LattE tool
to compute probabilities. Furthermore the approach in [9] provides
treatment of multi-threading and input data structures (it uses the
Korat tool [5] for counting the input structures). Follow-on work
provides thorough treatment of nondeterminism [19] and describes
alternative statistical exploration of symbolic paths [10].

Another simulation-based approach has been proposed in [22]
for the analysis of probabilistic programs. In that work Markov

Chain Monte Carlo estimation [27] is enhanced with a preliminary
program analysis aiming at generating verification conditions for
all the operations involving probabilistic variables and operators.
A violation of any of these conditions implies the violation of the
program assertions and, since these conditions may be processed
before reaching the assertions, the simulations can terminate earlier
reducing the overall analysis time. The work targets small proba-
bilistic programs which describe complex probability distributions
and the probabilistic analysis is not compositional itself. In turn our
work provides compositional sampling techniques for the analysis
of constraints generated from arbitrary programs, enhanced with it-
erative techniques that focus the sampling on the constraints deemed
the most important.

The technique in [2] proposed a compositional quantification of
the solution space based on Monte Carlo estimation (briefly recalled
in Section 2). This approach can deal with arbitrarily complex nu-
meric constraints over floating-point domains and scales better than
previous approaches, however it is limited to discretized profiles
and, as a simulation-based approach, may suffer from slow conver-
gence rate. We extend that work in two directions: direct handling
of non-uniform distributions and focused, iterative sampling.

Bouissou et al. [4] and Adje et al. [1] handle non-linear con-
straints with a combination of abstraction based on affine and p-box
arithmetic. The approach relies on the use of noise variables to
represent the uncertainty of non-linear computations. They use an
abstraction based approach whereas we use a statistical approach.
We can thus handle a wider set of non-linear constraints such as
complex mathematical functions (sine, cosine, etc.). In future work
we would like to do an empirical comparison between these two
approaches on the examples that both can handle.

Our work is also related to weighted model counting and distri-
bution aware sampling [6], which has many applications beyond
probabilistic symbolic execution, e.g. in machine learning and
constrained random verification. Chakraborty et al. [6] address the
problem in the context of CNF Boolean formulas, while our work is
concerned with arbitrarily complex mathematical constraints.

7. CONCLUSIONS
We presented an iterative distribution-aware sampling technique

for probabilistic symbolic execution. Given a set of complex mathe-
matical constraints representing the path conditions collected with
symbolic execution over a program, we use a statistical technique to
estimate the probability of satisfying them assuming the values of
the constrained inputs follow given continuous probability distribu-
tions. To speed-up the convergence rate of the analysis, we proposed
three strategies for iterative sampling allocation, which focus the
sampling on the constraints that have the largest influence on the
estimated results. Experimental evaluation of the three iterative
allocation strategies show their respective effectiveness.

In the future we plan extend our tool with distribution-aware
sampling from multivariate input distributions (that relate multiple
input variables). In theory our proposed approach works for such
cases, however efficient sampling from multivariate distributions is
an open problem in statistics, often involving more sophisticated
techniques such as Gibbs sampling [18, 27]. We also plan to explore
the automatic tuning of the sampling budget to allocate for each
iteration for reducing the decision overhead by taking into account
the relative gain of each possible decision over the others.

8. ACKNOWLEDGEMENTS
This work is supported by NSF Awards CCF-1329278 and CCF-
1319858 (Păsăreanu). Mateus Borges is supported by FACEPE
fellowship number IBPG-0668-1.03/12.

875

9. REFERENCES
[1] A. Adje, O. Bouissou, J. Goubault-Larrecq, E. Goubault,

and S. Putot. “Static Analysis of Programs with Imprecise
Probabilistic Inputs.” In: Verified Software: Theories, Tools,
Experiments. Vol. 8164. LNCS. Springer, 2014, pp. 22–47.
DOI: 10.1007/978-3-642-54108-7_2.

[2] M. Borges, A. Filieri, M. d’Amorim, C. S. Păsăreanu, and
W. Visser. “Compositional Solution Space Quantification
for Probabilistic Software Analysis.” In: Proceedings of the
35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’14. ACM, 2014, pp. 123–
132. DOI: 10.1145/2594291.2594329.

[3] M. Borges, A. Filieri, M. d’Amorim, and C. S. Păsăre-
anu. Iterative Distribution-Aware Sampling for Probabilis-
tic Symbolic Execution - extended version. http : / /
www.antonio.filieri.name/publications/
preprints/2015-fse-qcoral.pdf. 2015.

[4] O. Bouissou, E. Goubault, J. Goubault-Larrecq, and S. Putot.
“A generalization of p-boxes to affine arithmetic.” In: Comput-
ing 94.2-4 (2012), pp. 189–201. DOI: 10.1007/s00607-
011-0182-8.

[5] C. Boyapati, S. Khurshid, and D. Marinov. “Korat: Auto-
mated Testing Based on Java Predicates.” In: Proceedings of
the 2002 ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis. ISSTA ’02. ACM, 2002, pp. 123–
133. DOI: 10.1145/566172.566191.

[6] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and
M. Y. Vardi. “Distribution-Aware Sampling and Weighted
Model Counting for SAT.” In: AAAI. 2014, pp. 1722–1730.

[7] A. Cohen. Truncated and Censored Samples: Theory and Ap-
plications. Statistics: A Series of Textbooks and Monographs.
Taylor & Francis, 1991.

[8] J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto,
and J. Wu. “Software for Exact Integration of Polynomi-
als over Polyhedra.” In: ACM Commun. Comput. Algebra
45.3/4 (Jan. 2012), pp. 169–172. DOI: 10.1145/2110170.
2110175.

[9] A. Filieri, C. S. Păsăreanu, and W. Visser. “Reliability Anal-
ysis in Symbolic Pathfinder.” In: Proceedings of the 2013
International Conference on Software Engineering. ICSE ’13.
IEEE Press, 2013, pp. 622–631. DOI: 10.1109/ICSE.
2013.6606608.

[10] A. Filieri, C. S. Păsăreanu, W. Visser, and J. Geldenhuys.
“Statistical Symbolic Execution with Informed Sampling.”
In: Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. FSE
’14. ACM, 2014, pp. 437–448. DOI: 10.1145/2635868.
2635899.

[11] J. Geldenhuys, M. B. Dwyer, and W. Visser. “Probabilistic
Symbolic Execution.” In: Proceedings of the 2012 Interna-
tional Symposium on Software Testing and Analysis. ISSTA
’12. ACM, 2012, pp. 166–176. DOI: 10.1145/2338965.
2336773.

[12] C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli. “Mining
Behavior Models from User-intensive Web Applications.” In:
Proceedings of the 36th International Conference on Software
Engineering. ICSE ’14. ACM, 2014, pp. 277–287. DOI: 10.
1145/2568225.2568234.

[13] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Raja-
mani. “Probabilistic Programming.” In: Proceedings of the
on Future of Software Engineering. FOSE ’14. ACM, 2014,
pp. 167–181. DOI: 10.1145/2593882.2593900.

[14] L. Granvilliers and F. Benhamou. “Algorithm 852: RealPaver:
An Interval Solver Using Constraint Satisfaction Techniques.”
In: ACM Trans. Math. Softw. 32.1 (Mar. 2006), pp. 138–156.
DOI: 10.1145/1132973.1132980.

[15] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker.
“PRISM: A Tool for Automatic Verification of Probabilis-
tic Systems.” In: Tools and Algorithms for the Construction
and Analysis of Systems. Vol. 3920. LNCS. Springer, 2006,
pp. 441–444. DOI: 10.1007/11691372_29.

[16] F James. “Monte Carlo theory and practice.” In: Reports on
Progress in Physics 43.9 (1980), p. 1145. DOI: 10.1088/
0034-4885/43/9/002.

[17] J. C. King. “Symbolic Execution and Program Testing.” In:
Commun. ACM 19.7 (July 1976), pp. 385–394. DOI: 10.
1145/360248.360252.

[18] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte
Carlo Methods. Vol. 706. John Wiley & Sons, 2011.

[19] K. Luckow, C. S. Păsăreanu, M. B. Dwyer, A. Filieri, and W.
Visser. “Exact and Approximate Probabilistic Symbolic Exe-
cution for Nondeterministic Programs.” In: Proceedings of
the 29th ACM/IEEE International Conference on Automated
Software Engineering. ASE ’14. ACM, 2014, pp. 575–586.
DOI: 10.1145/2642937.2643011.

[20] D. Monniaux. “An Abstract Monte-Carlo Method for the
Analysis of Probabilistic Programs.” In: Proceedings of the
28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’01. ACM, 2001, pp. 93–
101. DOI: 10.1145/360204.360211.

[21] J. Nocedal and S. Wright. Numerical Optimization. Springer
Series in Operations Research and Financial Engineering.
Springer, 2006.

[22] A. V. Nori, C.-K. Hur, S. K. Rajamani, and S. Samuel. “R2:
An Efficient MCMC Sampler for Probabilistic Programs.” In:
AAAI Conference on Artificial Intelligence (AAAI). AAAI,
2014.

[23] W. Pestman. Mathematical Statistics. De Gruyter, 2009.

[24] W. Press. Numerical Recipes 3rd Edition: The Art of Scientific
Computing. Cambridge University Press, 2007.

[25] C. S. Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P.
Mehlitz, and N. Rungta. “Symbolic PathFinder: integrating
symbolic execution with model checking for Java bytecode
analysis.” In: Automated Software Engineering 20.3 (2013),
pp. 391–425. DOI: 10.1007/s10515-013-0122-2.

[26] qCORAL. pan.cin.ufpe.br/qcoral. 2014.

[27] C. P. Robert and G. Casella. Monte Carlo Statistical Methods.
Springer-Verlag New York, Inc., 2005.

[28] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. “Static
Analysis for Probabilistic Programs: Inferring Whole Pro-
gram Properties from Finitely Many Paths.” In: Proceedings
of the 34th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’13. ACM, 2013,
pp. 447–458. DOI: 10.1145/2491956.2462179.

876

http://dx.doi.org/10.1007/978-3-642-54108-7_2
http://dx.doi.org/10.1145/2594291.2594329
http://www.antonio.filieri.name/publications/preprints/2015-fse-qcoral.pdf
http://www.antonio.filieri.name/publications/preprints/2015-fse-qcoral.pdf
http://www.antonio.filieri.name/publications/preprints/2015-fse-qcoral.pdf
http://dx.doi.org/10.1007/s00607-011-0182-8
http://dx.doi.org/10.1007/s00607-011-0182-8
http://dx.doi.org/10.1145/566172.566191
http://dx.doi.org/10.1145/2110170.2110175
http://dx.doi.org/10.1145/2110170.2110175
http://dx.doi.org/10.1109/ICSE.2013.6606608
http://dx.doi.org/10.1109/ICSE.2013.6606608
http://dx.doi.org/10.1145/2635868.2635899
http://dx.doi.org/10.1145/2635868.2635899
http://dx.doi.org/10.1145/2338965.2336773
http://dx.doi.org/10.1145/2338965.2336773
http://dx.doi.org/10.1145/2568225.2568234
http://dx.doi.org/10.1145/2568225.2568234
http://dx.doi.org/10.1145/2593882.2593900
http://dx.doi.org/10.1145/1132973.1132980
http://dx.doi.org/10.1007/11691372_29
http://dx.doi.org/10.1088/0034-4885/43/9/002
http://dx.doi.org/10.1088/0034-4885/43/9/002
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/2642937.2643011
http://dx.doi.org/10.1145/360204.360211
http://dx.doi.org/10.1007/s10515-013-0122-2
pan.cin.ufpe.br/qcoral
http://dx.doi.org/10.1145/2491956.2462179

[29] The Apache Software Foundation. Commons Math. http:
/ / commons . apache . org / proper / commons -
math/. Accessed: 2014-12-16.

[30] VolComp. http://systems.cs.colorado.edu/
research / cyberphysical / probabilistic -
program-analysis/. 2013.

877

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
http://systems.cs.colorado.edu/research/cyberphysical/probabilistic-program-analysis/
http://systems.cs.colorado.edu/research/cyberphysical/probabilistic-program-analysis/
http://systems.cs.colorado.edu/research/cyberphysical/probabilistic-program-analysis/

	Introduction
	Example

	Background
	Probabilistic Symbolic Execution
	Monte Carlo Estimation
	Compositional Quantification
	Handling Disjunction
	Handling Conjunction

	Distribution-Aware Sampling
	Distribution-Aware Sampling versus Discretization

	Iterative Optimal Sampling
	Gradient-Descent Variance Minimization
	Sensitivity Analysis and Computational Overhead
	Local Heuristic for Sampling Allocation

	Evaluation
	Experimental Settings
	Distribution-Aware Sampling
	Comparison with NProbability
	Comparison with Discretization

	Iterative Optimal Sampling Allocation
	Convergence Rate
	Time to Converge

	Related Work
	Conclusions
	Acknowledgements
	References

