
Assertion Guided Symbolic Execution
of Multithreaded Programs

Shengjian Guo
Virginia Tech

Blacksburg, VA, USA

Markus Kusano
Virginia Tech

Blacksburg, VA, USA

Chao Wang
Virginia Tech

Blacksburg, VA, USA

Zijiang Yang
Western Michigan University

Kalamazoo, MI, USA

Aarti Gupta
Princeton University
Princeton, NJ, USA

ABSTRACT

Symbolic execution is a powerful technique for systematic testing
of sequential and multithreaded programs. However, its application
is limited by the high cost of covering all feasible intra-thread paths
and inter-thread interleavings. We propose a new assertion guided
pruning framework that identifies executions guaranteed not to lead
to an error and removes them during symbolic execution. By sum-
marizing the reasons why previously explored executions cannot
reach an error and using the information to prune redundant execu-
tions in the future, we can soundly reduce the search space. We also
use static concurrent program slicing and heuristic minimization of
symbolic constraints to further reduce the computational overhead.
We have implemented our method in the Cloud9 symbolic execu-
tion tool and evaluated it on a large set of multithreaded C/C++
programs. Our experiments show that the new method can reduce
the overall computational cost significantly.

Categories and Subject Descriptors

F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs; D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords

Symbolic execution, test generation, concurrency, partial order re-
duction, weakest precondition

1. INTRODUCTION
The past decade has seen exciting developments on symbolic

execution of both sequential [19, 42, 48, 8] and concurrent pro-
grams [41, 38, 14, 5]. However, existing methods are still limited
in their capability of mitigating the state space explosion. That is,
the number of paths in each thread may be exponential to the num-
ber of branch conditions, and the number of thread interleavings
may be exponential to the number of concurrent operations. Many
techniques have been proposed to address this problem, including
the use of function summaries [18], interpolation [34, 23, 61], static

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ESEC-FSE’15, August 31–September 4, Bergamo, Italy.
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Summary Executions
Computing Pruning

no no

yesyes

Symbolic
Execution

(in, sch′) (in′, sch)

(in, sch)

Flip b-PP? EndFlip i-PP?

Initial
Slicing
Static

Test Input

Figure 1: Our assertion guided pruning framework.

analysis [7], and coverage metrics [14]. In this paper, we propose
a new and complementary method, which is designed specifically
for pruning redundant executions in multithreaded programs where
the properties under verification are expressed as assertions.
Our assertion guided symbolic execution framework focuses on

identifying and eliminating executions that are guaranteed to be re-
dundant for checking assertions. Assertions can be used to model
a wide variety of interesting properties, ranging from logic and nu-
merical errors, to memory safety and concurrency errors, and has
been the focus of many software verification projects. When seman-
tic errors of the program are modeled as simple code reachability,
i.e., the reachability of a bad state guarded by the assertion condi-
tion, we can concentrate on exploring potentially failure-inducing
executions as opposed to all feasible executions of the program.
This is particularly attractive in the presence of concurrency, since
it becomes possible to uniformly handle the exploration of both
intra-thread execution paths and inter-thread interleavings leading
to a simple but more powerful analysis algorithm.
The overall flow of our new method is illustrated in Figure 1:

the shaded block represents our addition and the remainder illus-
trates the classic symbolic execution procedure for multithreaded
programs [41]. Specifically, given a program P and some symbolic
input variables, the procedure explores the feasible executions of
the program systematically, e.g., in a depth-first search order.
Starting with an initial test (in, sch) consisting of inputs and

thread schedule, the method first produces a concrete execution fol-
lowed by a symbolic execution. Then, it tries to generate a new
test by flipping a prior decision at either an interleaving pivot point
(i-PP) or a local branch pivot point (b-PP). The new test is denoted
by either (in, sch ′) or (in ′, sch), depending on whether changes
are made to the thread schedule (sch ′) or data input (in ′), respec-
tively. The iterative procedure terminates when no new test can be
generated. State explosion occurs because it has to explore the com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786841

854

bined space of inputs and thread schedules where each individual
execution may be unique, i.e., it leads to a different program state.
We extend the baseline algorithm by adding a constraint-based

pruning block shown in Figure 1, which centers around the idea of
summarizing the reasons why the bad state is unreachable via pre-
viously explored executions, and leveraging such information to
avoid similarly futile executions. Specifically, at each global con-
trol location n, we use a predicate summary (PS) constraint to cap-
ture the weakest preconditions [13] of the assertion condition along
all explored executions starting from n. Therefore, PS[n] captures
the reason why prior executions are not able to violate the asser-
tion. Whenever symbolic state n is reached again through another
execution path, we check if the new path condition is subsumed by
PS[n]. If so, we can safely backtrack from n since extending the
execution beyond n would never lead to a bad state.
Our method for pruning redundant executions can be viewed as

a way of systematically exploring an abstract search space defined
by a set of predicates [4] which, in this case, are extracted from
the assertion. Although the concrete search space may be arbitrar-
ily large, the abstract search space can be significantly smaller. In
this sense, our method is similar to predicate abstraction [21] in
model checking except that the latter requires constructing a pri-

ori a finite-state model from the actual software code whereas our
method directly works on the software code while leveraging the
predicates to eliminate redundant executions.
Our method complements partial order reduction (POR) tech-

niques in that it relies on property-specific information to reduce
the state space. But, POR techniques typically do not target partic-
ular states. We will show through experiments that our new method
can indeed eliminate a different class of redundant executions from
those eliminated by state-of-the-art POR techniques, such as dy-
namic partial order reduction (DPOR) [16]. Toward this end, since
DPOR is an elegant but delicate algorithm that can easily be made
unsound without taking great care in the implementation [59], a
main technical challenge in our work is to make sure our new prun-
ing method does not interfere with DPOR or make it less effective.
Our method differs from prior works by Wachter et al. [51], and

Chu and Jaffar [9], which extended the framework of lazy abstrac-
tion with interpolants [34] to multithreaded programs. One main
difference is that our computation of predicate summaries is signif-
icantly more general than existing methods, especially at the thread
interleaving pivot points, where we merge summaries from multi-
ple execution paths to form a combined summary. Another main
difference is in the integration of property specific pruning with
partial order reduction. Both existing methods implemented a vari-
ant of the symbolic partial order reduction algorithm by Kahlon et
al. [26] whereas we integrate our predicate summary-based pruning
method with the more scalable DPOR algorithm.
We have implemented our method in Cloud9 [11], a state-of-the-

art symbolic execution tool for multithreaded C/C++ programs. We
have implemented an inter-procedural static program slicing algo-
rithm [22], executed prior to symbolic execution, to further reduce
the search space. We have also implemented heuristic based min-
imizations of predicate summary constraints during symbolic ex-
ecution to reduce the computational overhead. In both cases, the
main technical challenge is to ensure the overall algorithm remains
sound in the presence of such optimizations. We have conducted
experiments on a set of standard multithreaded C/C++ applications.
Our results show that the new method can reduce the number of
explored executions as well as the overall run time significantly.
To sum up, this paper makes the following contributions:

• We propose an assertion guided symbolic execution method
for eliminating redundant executions in multithreaded pro-
grams to reduce the overall computational cost.

• We implement our method in a state-of-the-art symbolic exe-
cution tool while ensuring it does not interfere with the pop-
ular DPOR algorithm or make it less effective.

• We demonstrate through experiments that our new method
can indeed achieve a significant performance improvement
on public benchmarks.

The remainder of this paper is organized as follows. First, we
illustrate our new method through examples in Section 2, then es-
tablish the notation and review the baseline symbolic execution al-
gorithm in Section 3. We present our method for summarizing ex-
plored executions in Section 4 and pruning redundant executions
in Section 5. We present optimization techniques in Section 6 and
experimental results in Section 7. We review related work in Sec-
tion 8 and finally give our conclusions in Section 9.

2. MOTIVATING EXAMPLES
In this section, we illustrate the high-level ideas in our method

using examples. Consider the example in Figure 2, which has two
threads T1 and T2, a global variable x, and two local variables a
and b. The initial value of x is a symbolic input which can be any
integer value. We want to check if the assertion fails and, if so,
compute a failure-inducing test input.

x = symbolic(V);
if(x>10) return;

----[T1]-----------------------------[T2]----
x = 10; a = x;
x = 20; b = x;

assert(a<=b)

(x ≤ 10)

a = x;

a = x;

n1

n2

n4

n7

n5

n3

n6

n8

n9

a = x;

x = 20;

x = 10;

x = 10;

x = 20;b = x;

b = x;

b = x;

x = 10;

x = 20;

run#1

run#2

run#3

run#4

run#6

(a ≤ b)

Run 1: if(x<=10)x=10;x=20;a=x;b=x; leads to (a=20,b=20).
Run 2: if(x<=10)x=10;a=x;x=20;b=x; leads to (a=10,b=20).
Run 3: if(x<=10)x=10;a=x;b=x;x=20; leads to (a=10,b=10).
Run 4: if(x<=10)a=x;x=10;x=20;b=x; leads to (a=V ,b=20).
Run 5: if(x<=10)a=x;x=10;b=x;x=20; leads to (a=V ,b=10).
Run 6: if(x<=10)a=x;b=x;x=10;x=20; leads to (a=V ,b=V).

a = x;n1

n2

n4

n3

n6

b = x;

x = 10;

x = 20;

n5

n7 n7 n7 n8 n8

x = 10;

n8

x = 10;

n5

a = x;

a = x;

b = x;
b = x;x = 20;

b = x;b = x;

x = 20;

(x ≤ 10)

x = 20;
b = x;

x = 20; x = 20;

n9

(a ≤ b)

n9 n9 n9 n9 n9

(a ≤ b) (a ≤ b) (a ≤ b) (a ≤ b) (a ≤ b)

Figure 2: Our method has to explore one full run and four par-

tial runs, as opposed to all six runs by existing methods.

855

The program has six distinct executions, each leading to a differ-
ent final state defined by the values of a and b. According to the
theory of partial order reduction [16], they belong to six different
equivalence classes [32], as each has a different final state. How-
ever, exploring all six executions is not necessary for the purpose
of checking the assertion, since some of these executions share the
same reason why they cannot reach the bad state. Our new method
can reduce the exploration from six executions to one full execu-
tion together with four partial executions, as illustrated by the red
dotted lines in Figure 2.
Our method first extracts a set of predicates by computing the

weakest preconditions of the assertion condition along the explored
executions. These predicates are then combined at the merge points
(in the graph) to form a succinct summary that captures the reason
why the bad state has not been reached via executions starting from
these merge points. During subsequent symbolic execution itera-
tions, our method needs to explore only those executions that have
not be covered by these predicates, thereby leading to a sound re-
duction of the search space.
Now, we explain how our method works on this example:

• Run 1 is the first and only execution fully explored, which
goes through nodes n1, n2, n4, n7 in the graph in Figure 2
before executing b=x;if(a<=b). Since it does not violation
the assertion, we summarize the reason at n9 and n7, respec-
tively, as follows: PS[n9] = (a ≤ b) and PS[n7] = (a ≤ x).
That is, as long as (a ≤ x) holds at node n7, it would be
impossible for the execution to reach the bad state.

• Run 2 goes through n1, n2, n5 before reaching n7, where
its path condition is pcon [n7] = (V ≤ 10) and symbolic
memory is M =(a=10,x=20). Since pcon[n7] → PS[n7]
under M, meaning the set of reachable states falls inside
PS[n7], continuing the execution from n7 would not lead to a
bad state. Therefore, we skip the remainder of this execution.

• Run 3 goes through nodes n1, n2, n5, n8 before reaching
n9, where its path condition again falls within PS[n9]. We
skip the remainder of this execution and update the summary
at n8 and n5 as follows: PS[n8] = (a ≤ b) and PS[n5] =
wp[n7] ∧ wp[n8] = (a ≤ 20) ∧ (a ≤ x). By conjoining
the weakest preconditions along both interleavings n5 → n7

and n5 → n8, we capture the summary common to both
interleavings.

• Run 4 goes through nodes n1, n3 before reaching n5, with
the new path condition pcon [n5] = (V ≤ 10) and symbolic
memory M =(a=V,x=10). Since pcon [n5] → PS[n5] un-
derM, we skip the remainder of this execution, which would
have led to Run 4 and Run 5 if it is allowed to continue.

• Run 6 goes through nodes n1, n3, n6 before reaching n8,
where the new path condition falls within PS[n8]. Therefore,
we skip the remainder of this execution.

• At this moment, our method has completed the exploration.

Note that we conjoin weakest preconditions from different inter-
leavings at i-PP nodes such as n5, but union them from different
thread-local paths at b-PP nodes (see Section 4.) Also note that the
amount of reduction achieved by our method depends on the pro-
gram structure as well as the location of the assertion. For example,
if we change if(x>10) to if(x>11), our method would have to
explore Run 5 instead of skipping it because pcon [n5] = (V ≤ 11)
would no longer be subsumed by PS[n5] = (V ≤ 10).
This example demonstrates that our method differs from par-

tial order reduction techniques such as DPOR [16] which could
not prune away any of the six interleavings. Furthermore, our
method also differs from the stateful state space exploration tech-
niques commonly used in model checking, which record the for-
ward reachable states explicitly during exploration to prevent vis-

x = y = z = 1;

---[T1]--------------[T2]---
a = x; x = 10;

assert(a>0)

---[T1]-------------[T3]----
b = y; y = 10;

assert(b>0)

---[T1]-------------[T4]----
c = z; z = 10;

assert(c>0)

x = y = z = 1;

(b > 0)

(a > 0)

(c > 0)

* Run 1: a=x;x=10;if(a>0);b=y;y=10;if(b>0);c=z;z=10;if(c>0).
* Run 2: a=x;x=10;if(a>0);b=y;y=10;if(b>0);z=10;c=z;if(c>0).
Run 3: a=x;x=10;if(a>0);y=10;b=y;if(b>0);c=z;z=10;if(c>0).

* Run 4: a=x;x=10;if(a>0);y=10;b=y;if(b>0);z=10;c=z;if(c>0).
* Run 5: x=10;a=x;if(a>0);b=y;y=10;if(b>0);c=z;z=10;if(c>0).
Run 6: x=10;a=x;if(a>0);b=y;y=10;if(b>0);z=10;c=z;if(c>0).
Run 7: x=10;a=x;if(a>0);y=10;b=y;if(b>0);c=z;z=10;if(c>0).
Run 8: x=10;a=x;if(a>0);y=10;b=y;if(b>0);z=10;c=z;if(c>0).

Figure 3: Our method can reduce the number of executions

from 2k down to (k + 1).

iting them again. Such methods would not be effective for the ex-
ample in Figure 2 either because each of the six executions leads
to a distinct state. In contrast, our new method can achieve a sig-
nificant reduction due to its use of property specific information
as guidance. In this sense, our new method is a property directed

reduction, whereas the POR techniques are property agnostic.
However, it can be tricky to combine our pruning method with

the state-of-the-art DPOR algorithm. The main advantage of DPOR
over static POR lies in its dynamic update of backtrack sets, which
uses runtime information to compute the dependency relation be-
tween shared accesses. Without taking any additional measure,
pruning redundant executions may interfere with the dynamic up-
date of backtrack sets in DPOR. Consider run 4 in Figure 2 as an
example. If the execution is allowed to complete, when b=x is ex-
ecuted, thread T2 will be added to the backtrack set of node n3.
However, if run 4 is terminated pre-maturely at node n5 due to our
predicate summary-based pruning, thread T2 would not be added
to the backtrack set of node n3 since b=x has been skipped. As
a result, the DPOR algorithm would not explore run 6. Therefore,
integrating DPOR with property specific pruning is a challenging
task. We present our solution to this problem in Section 5.2.
Our computation of predicate summaries at the thread interleav-

ing merge point n5 in Figure 2 shows that it is different from the
prior work by Wachter et al. [51], and Chu and Jaffar [9]. Specifi-
cally, we combine the summaries from all outgoing edges by con-
joining them, whereas existing methods do not merge interpolants
at these i-PP nodes. Furthermore, these existing methods imple-
mented symbolic POR whereas our method is integrated with the
more scalable DPOR.
Now, we use the example in Figure 3 to demonstrate that our

new method has the potential to achieve an exponential reduction.
In this contrived example, the interleaving of instructions in {a=x,
x=10} is completely independent from {b=y, y=10} and {c=z,

z=10}. Exploring all feasible executions results in 23 runs, each
of which leads to a different final state. However, based on the ab-
stract search space induced by the assertions, our new method can
reduce the exploration of eight runs down to one full run together
with three partial runs, as marked by the ‘*’ symbol in Figure 3.
To further generalize the example, a program with k independent
code segments would have 2k distinct interleavings, which can be
reduced by our method to (k + 1) executions.

856

3. PRELIMINARIES
We establish the notation and review the baseline symbolic exe-

cution algorithm for multithreaded programs in this section.

3.1 Multithreaded Programs
For ease of presentation, we consider a simple imperative lan-

guage with integer variables, assignments, and if-else statements
only. We elide the details for handling of complex language fea-
tures such as pointers, recursion, and system calls in symbolic ex-
ecution since these are orthogonal issues addressed previously by
many symbolic execution tools [8, 11]. A multithreaded program
P consists of a set of threads {T1 . . . Tm}, where each thread, Ti,
is a sequential program. Threads share a set of global variables.
Each thread also has a set of local variables.
Let st be an instruction in a thread with the thread index tid.

Let event e = 〈tid, l, st, l′〉 be an execution instance of st, where
l and l′ are locations in the thread before and after executing the
instance of st. If the same instruction is executed more than once,
e.g., when it is in a loop or a recursive function call, we make copies
of l, st, l′ to make them unique for each event. Conceptually, this
corresponds to unrolling loops and recursive calls. A global control

state of the multithreaded program is a tuple s = 〈l1, . . . , lm〉,
where each li is a location in Ti. We regard a global control state
as an abstract state implicitly containing all concrete states that
have the same thread locations but potentially different values of
the local and global variables.
Without loss of generality, we assume that every assertion of the

form assert(c) is transformed to if(!c)abort. We use a spe-
cial event abort to denote faulty program termination and halt to
denote normal program termination. Let vl denote a local variable,
vg denote a global variable, cond l denote a local condition, and
expl denote an local expression. In addition to abort and halt, each
instruction st in an event may have one of the following types:

• α-operation, which is a local assignment vl := expl;
• β-operation, which is a local branch assume(cond l);
• γ-operation, which is a global operation defined as follows:

– γ-I is a global write vg := expl or read vl := vg ;
– γ-II is a thread synchronization operations.

For each if(c)-else statement, we use assume(c) to denote

the execution of then-branch, and assume(¬c) to denote the exe-

cution of else-branch. Without loss of generality, we assume that

all if-else conditions use only local variables or local copies of

global variables [17]. For thread synchronizations, we focus on

mutex locks and condition variables since they are frequently used

in mainstream multithreaded programming environments such as

C, C++, and Java. Specifically, we consider the following types of

γ-II operations: thread creation, thread join, lock, unlock, signal,

and wait. If other thread synchronizations or blocking operations

are used they can be modeled similarly as γ-II events.
During the program execution, γ-operations are thread interleav-

ing points whereas β-operations are thread-local branching points.
Both contribute to the path/interleaving explosion. In contrast, α-
operations are local and thus invisible to other threads; they do not

contribute directly to the path/interleaving explosion.

A concrete execution of the multithreaded program is charac-

terized by π = (in, sch), where in is the data input and sch

is the thread schedule corresponding to the total order of events

e1 . . . en. The corresponding symbolic execution is denoted by

(∗, sch), where the ∗ indicates the data input is kept symbolic and
thus may take any value. Each execution of the program P can be

represented by a finite word {α, β, γ}∗{halt, abort}. If the execu-
tion ends with halt it is a normal execution. If the execution ends

with abort it is a faulty execution.

a1: a=x++;
a2: if(a==0) A1;

else A1;
a3: a=y++;
a4: if(a==0) A2;

else A2;
a5:
--- [T1] ---

b1: b=x++;
b2: if(b==0) B1;

else B1;
b3: b=y++;
b4: if(b==0) B2;

else B2;
b5:
--- [T2] ---

{a3, b4}

{a3, b5}

{a1, b1}

{a3, b1}

{a5, b1}

{a1, b3}

{a3, b3} {a1, b5}

{a5, b3}

{a5, b5}

A1A2
B1

A1

B1

B1

B1

B2

B1

B1

B1

A1

A1

A1

A2

A2

A2

A2

A1

{a2, b1}

{a4, b1}

B1

B2

run-iirun-i run-iii

A2

{a5, b2}

{a5, b4}

B1

B1

{a1, b2}

{a1, b4}

{a2, b5}

{a4, b5}

{a3, b2}

{a4, b3}

Figure 4: A two-threaded program and its generalized inter-

leaving graph (GIG). Black edges represent events from thread

T1 and blue edges represent events from thread T2.

3.2 Generalized Interleaving Graph (GIG)
The set of all possible executions of a multithreaded program

can be captured by a generalized interleaving graph (GIG), where

nodes are global control states and edges are events. The root node

corresponds to the initial state. Leaf nodes correspond to normal or

faulty ends of the execution. Each internal node may have:

• one outgoing edge corresponding to an α-operation;
• two outgoing edges corresponding to a β-operation; or
• k outgoing edges where k ≥ 2 is the number of enabled

γ-operations from different threads.

We call a node with more than one outgoing edge a pivot point.

• If the pivot point corresponds to β-operations we call it a
branching pivot point (b-PP).

• If the pivot point corresponds to γ-operations we call it a

thread interleaving pivot point (i-PP).

Figure 4 shows a program and its GIG. For simplicity, we assume

a=x++ is atomic. The root node (a1, b1) corresponds to the starting
points of the two threads. The terminal node (a5, b5) corresponds
to the end of the two threads. Nodes such as (a1, b1) are i-PP nodes,
where we can execute either thread 1 which leads to (a2, b1), or
thread 2 which leads to (a1, b2). In contrast, nodes such as (a2, b1)
are b-PP nodes, where we can take either the assume(a = 0)

branch, leading to the code segment A1, or the assume(a 6= 0)

branch, leading to the code segment A1.

Note that the GIG does not have loop-back edges since the GIG

paths represent unrolled executions. Furthermore, pointers, alias-

ing, and function calls have been resolved as well during execution.

However, a GIG may have branches, which makes it significantly

857

different from the typical thread interleaving graph used in the par-

tial order reduction literature.

As is typical in symbolic execution algorithms, we focus on only

a finite set of executions and assume that each execution has a fi-

nite length. Typically, the user of a symbolic execution tool needs

to construct a proper testing environment that satisfies the above

assumption. In KLEE [8] and Cloud9 [11], for example, the user

may achieve this by bounding the size of the symbolic input thereby

restricting the execution to a fixed number of paths of finite lengths.

3.3 Symbolic Execution
We present the baseline symbolic execution procedure for mul-

tithreaded programs in Algorithm 1 following Sen et al. [41]. The

recursive procedure EXPLORE is invoked with the symbolic initial

state s0. Inside the procedure, we differentiate among three scenar-
ios based on whether s, the current state, is an i-PP node, a b-PP

node, or a non-branching node.

If s is an i-PP node where multiple γ-operations are enabled, we
recursively explore the next γ event from each thread. If s is a

b-PP node where multiple sequential branches are feasible, we re-

cursively explore each branch. If s is a non-branching node, we

explore the unique next event. The current execution ends if s
is a leaf node (normal_end_state, faulty_end_state) or an infeasi-

ble_state, at which point we return from EXPLORE(s) by popping
the state s from the stack S.

Algorithm 1 Baseline Symbolic Execution.

Initially: Stack S = {s0}; run EXPLORE(s0) with the symbolic initial state s0 .

1: EXPLORE(s)
2: S.push(s);
3: if (s is an i-PP node)
4: while (∃t ∈ (s.enabled \ s.done))

5: s′ ← NEXTSTATE(s, t);
6: EXPLORE(s′);
7: s.done← s.done ∪ {t};

8: else if (s is a b-PP node) {
9: while (∃t ∈ (s.branch \ s.done))

10: s′ ← NEXTSTATE(s, t);
11: EXPLORE(s′);
12: s.done← s.done ∪ {t};

13: else if (s is an internal node)
14: t← s.next;
15: s′ ← NEXTSTATE(s, t);
16: EXPLORE(s′);
17: S.pop();
18: NEXTSTATE(s, t)
19: let s = 〈pcon,M, enabled, branch, done〉;

20: if (t is halt)
21: s′← normal_end_state;
22: else if (t is abort)
23: s′← faulty_end_state;
24: else if (t is assume(c))

25: if (s.pcon is unsatisfiable underM)
26: s′← infeasible_state;
27: else

28: s′← 〈pcon ∧ c,M〉;

29: else if (t is assignment v := exp)
30: s′← 〈pcon,M[exp/v]〉;

31: return s′;

Each state s ∈ S is a tuple 〈pcon ,M, enabled , branch , done〉,
where pcon is the path condition for the execution to reach s from
s0, M is the symbolic memory map, s.enabled is the set of γ-
events when s is an i-PP node, s.branch is the set of β-events when
s is a b-PP node, and s.done is the set of α or β events already

explored from s by the recursive procedure. Initially, s0 is set to

〈true ,Minit 〉, where true means the state is always reachable and
Minit represents the initial content of the memory. The execution

of each instruction t is carried out by NEXTSTATE(s,t) as follows:

• If t is halt, the execution ends normally.

• If t is abort, and s.pcon is satisfiable under the current mem-

ory map s.M, we have found an error.

• If t is v:=exp, we need to update the current memory map

M by changing the content of v to exp .
• If t is assume(c), we change the path condition to (pcon ∧c).

At each pivot point (i-PP or b-PP), we try to flip a decision made

previously to compute a new execution. Let (in, sch) denote the
current execution. By flipping the decision made previously at an

i-PP node, we compute a new execution (in, sch ′), where sch ′ is a

permutation of the original thread schedule. In contrast, by flipping

the decision made previously at a b-PP node, we compute a new

execution (in ′, sch), where in′ is a new data input. Note that in

both cases, the newly computed execution will be the same as the

original execution up to the flipped pivot point. After the flipping,

the rest of the execution will be a free run.

As an example, consider the GIG in Figure 4, where the current

execution is represented by the dotted line run-i. Flipping at the

b-PP node (a4, b3) would lead to the new execution labeled run-ii,

whereas flipping at the i-PP node (a3, b3) would lead to the new
execution run-iii.

4. SUMMARIZING THE EXPLORED EXE-

CUTIONS
We first present our method for symbolically summarizing the

reason why explored executions cannot reach the bad state. In the

next section, we will leverage the information to prune away redun-

dant executions.

Our method for summarizing the explored executions is based

on the weakest precondition computation [13]. We differentiate

the following two scenarios, depending on whether the execution

encounters the assert statement or not.

• For each execution that encounters assert(c) and satisfies

the condition c, we compute the weakest precondition of the
predicate c along this execution.

• For each execution that does not encounter the assert state-

ment at all, we compute the weakest precondition of the pred-

icate true along this execution.

Since the weakest precondition is a form of Craig’s interpolant [34],

it provides a succinct explanation as to why the explored execution

cannot reach the bad state guarded by ¬c.

DEFINITION 1. The weakest precondition of the predicate φ
with respect to a sequence of instructions is defined as follows:

• For t: v:=exp, WP (t, φ) = φ[exp/v];
• For t: assume(c) ,WP (t, φ) = φ ∧ c; and
• For sequence t1;t2, WP (t1; t2, φ) = WP (t1,WP (t2, φ)).

In the above definition, φ[exp/v] denotes the substitution of vari-
able v in φwith exp . As an example, consider the execution path in
the following table, which consists of three branch conditions and

three assignments. Column 1 shows the control locations along the

current path. Column 2 shows the sequence of instructions exe-

cuted. Column 3 shows the weakest preconditions computed back-

wardly starting at l6. Column 4 shows the rules applied during the
computation.

Loc. Instruction WP Computed Rule Applied

l0 if(a ≤ 0) (a ≤ 0) ∧ (b ≤ 0) ∧ (c ≤ 0) wp ∧ c
l1 res := res + 1 (b ≤ 0) ∧ (c ≤ 0) wp[exp/v]
l2 if(b ≤ 0) (b ≤ 0) ∧ (c ≤ 0) wp ∧ c
l3 res := res + 2 (c ≤ 0) wp[exp/v]
l4 if(c ≤ 0) (c ≤ 0) wp ∧ c
l5 res := res + 3 true wp[exp/v]
l6 true terminal

858

4.1 Predicate Summaries at b-PP Nodes
Assume that the baseline symbolic execution procedure traverses

the GIG in a depth-first search (DFS) order, meaning that it back-

tracks s, a branching pivot point (b-PP), only after exploring both

outgoing edges s
assume(c)
−→ s′ and s

assume(¬c)
−→ s′′. This also in-

cludes the entire execution trees starting from these two edges. Let

wp[s′] and wp[s′′] be the weakest preconditions computed from

the two outgoing executions, respectively.

Following the classic definition of weakest precondition [13], we

compute them at the b-PP node s as follows:

wp[s] := (c ∧ wp[s′]) ∨ (¬c ∧ wp[s′′]) .

Then, we use wp[s] computed from these outgoing edges to update

the global predicate summary.

The predicate summary, PS[s], defined for each global control

state s, is the union of all weakest preconditions along the outgoing
edges. Recall that each node s may be visited by EXPLORE mul-

tiple times, presumably from different execution paths (from s0 to
s). Therefore, we maintain a global map PS and update each pred-

icate summary entry PS[s] incrementally. Initially PS[s] = false

for every GIG node s. Then, we merge the newly computed wp[s]
to PS[s] every time EXPLORE backtracks from s.
The detailed method for updating the predicate summary is high-

lighted in blue in Algorithm 2, which follows the overall flow of

Algorithm 1, except for the following two additions:

• We computewp[s] before the procedure backtracks from state
s. At this moment, wp[s] captures the set of all explored ex-
ecutions from s as a continuation of the current execution.

• We update the summary as follows: PS[s] = PS[s] ∨ wp[s].
Here, PS[s] captures the set of execution trees as a continua-
tion of all explored executions from s0 to s, including wp[s],
which represents the newly explored execution tree.

4.2 Predicate Summaries at i-PP Nodes
In contrast to the straightforward computation of weakest precon-

dition at the sequential merge point, the situation at the interleaving

merge point is trickier. In fact, to the best of our knowledge, there

does not exist a definition of weakest precondition in the literature

for thread interleaving points.

A naive extension of Dijkstra’s original definition would be in-

efficient since it leads to the explicit enumeration of all possible

interleavings. For example, assume that an i-PP node has two out-

going edges s
γ1−→ s′ and s

γ2−→ s′′, one may attempt to define the
weakest precondition at node s as follows:

(

(γ1 <hb γ2) ∧ wp[s′]
)

∨
(

(γ2 <hb γ1) ∧ wp[s′′]
)

,

where (γ1 <hb γ2) means that we choose to execute γ1 before

γ2, (γ2 <hb γ1) means that we choose to execute γ2 before γ1,
and wp[s′] and wp[s′′] are the weakest preconditions along the two
interleavings, respectively.

Although the above definition serves the purpose of summariz-

ing the weakest preconditions along all explored executions from

s, it has a drawback: the size of wp[s] computed in this way can

quickly explode when there are a large number of threads. Recall

that in a multithreaded program the number of outgoing edges at an

i-PP node equals the number of enabled threads and the number of

interleavings of k concurrent threads can be k! in the worst case.
However, for the purpose of pruning redundant executions, the

weakest precondition computation does not have to be precise to

be effective. To mitigate the aforementioned interleaving explosion

problem, we resort to the following definition, which can be viewed

as an under-approximation of the naive definition:

wp[s] :=
∧

1≤i≤k

wp[sk] ,

where each wp[si] is the weakest precondition computed along one

of the k outgoing edges of the form s
γi−→ si, such that 1 ≤ i ≤

k. Consider Figure 2 as an example. We compute the weakest

precondition at node n5 by conjoining weakest preconditions at the

two successor nodes n7 and n8. That is, wp[n5] = wp[n7] ∧
wp[n8] = (a ≤ 20) ∧ (a ≤ x).

Algorithm 2 Assertion Guided Symbolic Execution.

Initially: summary PS[n] = false for all node n; stack S = {s0}; run EX-
PLORE(s0) with initial state s0 .

1: EXPLORE(s)
2: S.push(s);
3: if (s is an i-PP node)
4: wp[s] := true;

5: while (∃t ∈ (s.enabled \ s.done))

6: s′ ← NEXTSTATE(s, t);
7: EXPLORE(s′);
8: wp[s]← wp[s]∧ COMPUTEWP (s, t, s′);

9: s.done← s.done ∪ {t};

10: else if (s is a b-PP node)
11: wp[s] := false;

12: while (∃t ∈ (s.branch \ s.done))

13: s′ ← NEXTSTATE(s, t);
14: EXPLORE(s′);
15: wp[s]← wp[s]∨ COMPUTEWP (s, t, s′);

16: s.done← s.done ∪ {t};

17: else if (s is an internal node)
18: t← s.next;
19: s′ ← NEXTSTATE(s, t);
20: EXPLORE(s′);
21: wp[s]← COMPUTEWP (s, t, s′);

22: else // end state
23: wp[s]← true;

24: PS[s] := PS[s] ∨ wp[s];

25: S.pop();
26: COMPUTEWP(s, t, s′)
27: if (t is assume(c))

28: return (wp[s′] ∧ c);

29: else if (t is assignment v := exp)
30: return substitute(wp[s′], v, exp);

31: else

32: return wp[s′];

33: NEXTSTATE(s, t)
34: let s be tuple 〈pcon,M, enabled, branch, done〉;

35: if (t is halt)
36: s′← normal_end_state;
37: else if (t is abort)
38: s′← faulty_end_state;
39: else if (t is assume(c))

40: if (s.pcon is unsatisfiable underM)
41: s′← infeasible_state;
42: else if (pcon → PS[s])

43: s′← early_termination_state;
44: else

45: s′← 〈pcon ∧ c,M〉;

46: else if (t is assignment v := exp)
47: s′← 〈pcon,M[exp/v]〉;

48: return s′;

For pruning redundant executions, conjoining weakest precondi-

tions from different interleavings at i-PP nodes is a sound approx-

imation. Although it may not capture all the explored executions

and thus fail to prune certain redundant executions, all the pruned

executions are guaranteed to be redundant.

5. PRUNING REDUNDANT EXECUTIONS
We present our method for leveraging the predicate summaries

to prune away redundant executions in this section.

859

5.1 Assertion Guided Pruning
To decide if we can skip executions starting from a global control

state s, where s has been visited by EXPLORE through some exe-

cutions from s0 to s but is reached again through a new execution,

we check whether the current path condition s.pcon is subsumed

by PS[s] under the current memory map s.M. Intuitively, the path

condition s.pcon represents the set of states reachable along the

current execution from s0 to s, whereas PS[s] represents the set of
states from which it is impossible to reach the bad state.

Within the NEXTSTATE procedure in Algorithm 2, we check for

the pruning condition as follow:

• If s.pcon → PS[s] holds under s.M, extending the current

execution beyond s would not lead to a bad state. Therefore,
we backtrack immediately by setting s′ as an early termina-

tion state.

• Otherwise, there may exist an extension of the current execu-

tion beyond s to reach the bad state. In this case, we need to
continue the forward symbolic execution as usual.

The validity of s.pcon → PS[s] can be decided by checking the

satisfiability of (s.pcon ∧ ¬PS[s]) using an SMT solver. That is,

s.pcon → PS[s] holds if and only if (s.pcon ∧ ¬PS[s]) is unsatis-
fiable.

Our new pruning method is complementary to partial order re-

duction techniques. POR is a generic reduction that relies solely

on commutativity between concurrent operations. Therefore, two
executions are considered equivalent as long as they result in the

same program state. Our new method, in contrast, uses assertions

to guide the pruning. Therefore, even executions that result in dif-

ferent program states may still be regarded as equivalent.

Consider the GIG in Figure 4, which has 54 feasible executions.

To make the presentation simple, we have assumed that x++ is

atomic in this example. However, note that a1:a= x++ and b1:b=

x++ do not commute, because from a state where x=0, for instance,
executing a1;b1 leads to a=0,b=1,x=2, but executing b1;a1 leads
to a=1,b=0,x=2. As shown in Table 1, without applying any reduc-
tion technique, the program has a total of 54 distinct runs. Partial

order reduction (POR) alone can reduce the 54 runs down to 34

runs. Our new predicate summary-based pruning method alone can

reduce the 54 runs down to the 18 runs. Finally, applying both our

method and POR can reduce the 54 runs down to 13 runs.

Table 1: Applying various reduction techniques to Figure 4.

Reduction Technique Number of Paths

None 54
Partial order reduction (POR) 34

Our predicate summary-based pruning method 18
Both POR and our new pruning method 13

5.2 Interaction with DPOR
However, there is a caveat in combining our predicate summary-

based pruning method with dynamic partial order reduction [16],

because DPOR is a delicate algorithm that relies on the dynamic

computation of the backtrack sets. Without taking precautions,

naively pruning away redundant executions, even if they do not lead

to the bad state, may deprive DPOR the opportunity to properly up-

date its backtrack sets, thereby leading to unsound reduction.

As we have shown in Section 2, when the current execution is run

4 in Figure 2, by the time node n5 is reached DPOR has not had

the opportunity to update its backtrack set at n3. Ideally, thread T2

should be put into the backtrack set of n3, that is, after EXPLORE

backtracks to n3, it should proceed to explore run 6.

However, since n5.pcon → PS[n5] along run 4, our pruning

method would force EXPLORE to backtrack from n5, thereby skip-

ping the remainder of run 4 and run 5. Here, the technical challenge

is how to properly update the backtrack set at node n3 before EX-

PLORE backtracks from n5.

Fortunately, similar problems were encountered during the devel-

opment of stateful DPOR algorithms [59]. In this work, we follow

the solution by Yang et al. [59]. We maintain two global tables,

RVar [s] and WVar [s], for each global control state s. The RVar
table stores the set of global variables that have been read by some

thread during previously explored executions starting from s. Sim-
ilarly, the WVar table stores the set of global variables that have

been written to by some thread during previously explored execu-

tions starting from s. These two tables are updated at the same time
the global PS table is updated.

For the example in Figure 2, after exploring run 1, run 2, and run

3, we would have WVar [n5] = {(x, T1)} representing that x=20
has previously been executed by thread T1 at some point after n5.

Similarly, we have RVar [n5] = {(x, T2)} representing that b=x

has previously been executed by thread T2 at some point after n5.

Whenever EXPLORE decides to skip the execution tree from a

node s, we can leverage the information stored in WVar [s] and
RVar [s] to properly update the backtrack sets for DPOR. For ex-

ample, the original DPOR algorithm waits until assignment b=x is

executed by thread T2 before it can update the backtrack set of n3.

Now, using the entry (x, T2) ∈ RV ar[n5], it can put thread T2

into the backtrack set of n3, as if b=x has been executed by thread

T2 at some point after n5.

The correctness of this solution follows Yang et al. [59] in the

context of stateful DPOR, which ensure that DPOR remains sound

in the presence of assertion guided pruning. For more information

on the dynamic update of backtrack sets, please refer to the original

description of DPOR [16].

5.3 Proof of Correctness
Now, we state and prove the correctness of our overall algorithm.

Let SEorig be the baseline symbolic execution procedure described

in Algorithm 1, and SEnew be our new symbolic execution proce-

dure with predicate summary-based pruning, as described in Algo-

rithm 2. We say that SEnew is a sound reduction of SEorig if it

always reaches the same set of error states as SEorig .

THEOREM 1. Given a program P and an error locationE. Our

new symbolic execution procedure SEnew reaches E if and only if

the original symbolic execution procedure SEorig reaches E.

Proof: We divide the proof into two steps. First, we prove that

if SEnew reaches E, then SEorig also reaches E. This is straight-
forward because SEnew explores a subset of the execution paths

explored by SEorig , as shown by a comparison of the two versions

of NEXTSTATE in Algorithms 1 and 2.

Second, we prove that if SEorig reaches E, then SEnew reaches

E. We do this by contradiction. Assume SEorig can reach E along

π but SEnew cannot. Since Lines 42–43 in Algorithm 2 are the

only places where SEnew can skip a path, there must exist an event

〈s, t, s′〉 in π such that s.pcon → PS[s] holds under s.M.

• Since path π is feasible, the subpath of π from s′ to E must

also be feasible. To skip π in SEnew , the subpath must have

been explored and then summarized in PS[s′], presumably
when SEnew first explored the subpath.

• But if PS[s′] already includes this common subpath from s′

toE, by definition, SEnew must have reached the error block

E. This contradicts our assumption that the new symbolic

execution procedure SEnew cannot reach the error block E.

Therefore, our assumption is incorrect. The theorem holds.

860

6. OPTIMIZATIONS
In our new method, the size of the summary table as well as

the size of the logical constraint in each entry may become an per-

formance bottleneck. Since large logic formulas are expensive to

compute and store, we would like to reduce the associated compu-

tational cost without affecting soundness of the overall procedure.

Toward this end, we propose two optimizations.

6.1 Leveraging Static Program Slicing
Our first optimization is to combine our assertion guided pruning

with static program slicing to achieve a more significant state space

reduction. Given an assertion statement st, we define the slice of st
as the set of all statements in the program that may affect the result

of st. The slice is computed based on two dependency relations:

the control dependency relation and the data dependency relation.

Intuitively, a statement st′ is a control dependency of a statement

st if the execution of st′ determines whether st can be executed.

Whereas a statement st′′ is a data dependency of st if the execution
of st′′ may affect the data used in st.

1 if (p)
2 y = v;
3 z = w * 5;
4 if (q)
5 x = z * 2;
6 assert(x);

Figure 5: Example for static

program slicing.

Slice

A

B

assert(c)

s0

Figure 6: Using Type A and

B nodes outside the slice.

Consider the example in Figure 5. The write to x at Line 5 has

a control dependency at Line 4, and a data dependency at Line 3.

The slice of Line 5 is defined as the transitive closure of its control

and data dependencies, which consists of Lines 3–5. In contrast,

the branching statement at Line 1 and the write to y at Line 2 are

irrelevant since their execution will not affect the value written to
x at Line 5 nor the reachability of Line 5. Therefore, for checking

the assertion at Line 6, which is related to the value of x at Line 5,

we can simply ignore Lines 1–2. In other words, the slice of Line 5

(and Line 6) defines a sub-program producing an equivalent result

as the full program as far as assertion checking is concerned.

We implemented the inter-procedural slicing method of Horwitz

et al. [22, 39] together with an Andersen [3] style flow-insensitive

alias analysis to compute the program slice statically. We imple-

mented the method in LLVM using the Datalog engine inside the

Z3 SMT solver [12]. The overall method is flow-insensitive, and

safe for handling multithreaded program with sequentially consis-

tent memory. Due to the lack of space, we do not go over the details

here. Readers can refer to [27, 22, 15, 3] for more details.

We combine static program slicing with symbolic execution as

follows. First, we compute the static program slice prior to the start

of symbolic execution. Then, inside the symbolic execution pro-

cedure as described in Algorithm 2, for each to-be-executed b-PP

or i-PP node s, we check if the corresponding branch condition or
global operation belongs to the static slice of the assertion state-

ment. If the answer is no, we handle a pivot point s (which can be
an i-PP or a b-PP) in one of the following ways depending on the

node type as illustrated in Figure 6.

• Type A: If s is not on any path from s0 to the assertion state-
ment, we treat each outgoing edge from s as if it is halt. In
other words, we stop the current execution and backtrack

from s immediately. Note that backtracking will automati-

cally trigger the computation of weakest precondition.

• Type B: If s is on some GIG path from s0 to the assertion
statement, we cannot simply treat s as the end of the program
since outgoing paths from s may still lead to the assertion

failure. As shown in Figure 6, we have to symbolically exe-

cute at least one of the outgoing edges from the Type B node,

while skipping the other outgoing edges.

The correctness of this approach directly follows from the def-

inition of slicing. For both Type A and Type B nodes outside

the program slice, which outgoing edge to execute does not affect

the reachability of the bad state. Due to the relative efficiency of

static slicing, the overhead of computing the slice is small com-

pared to the subsequent symbolic execution. However, we will

show through experiments that, by leveraging static slicing, we can

significantly decrease of the number of executions to be explored,

thus decreasing the complexity of the overall analysis.

6.2 Approximating the Summary Constraints
Following Theorem 1, we can prove that in general, any kind

of underapproximation of PS[s] may be used in Algorithm 2 to re-

place PS[s], while maintaining the soundness of our pruning method.
Our optimization is to heuristically reduce the computational cost

associated with predicate summaries. Toward this end, we propose

the following two underapproximations.

First, we use a global hash table with a fixed numberN of entries

to limit the storage cost for PS; that is, two global control locations

s and s′ may be hashed to the same entry. Whenever this happens,

instead of storing both in a linked list, we drop one of them. That

is, when key(s) = key(s′), we heuristically remove one entry,

effectively setting the corresponding predicate summary false.

Second, we use a fixed threshold to bound the size of each in-

dividual logical constraint for PS[s]. In other words, when the

predicate summary becomes too large, we will stop adding new

weakest-preconditions to it, thereby dropping all subsequently ex-

plored subpaths. That is,

if (size(PS[s]) < bnd) PS[s]:=PS[s] ∨ wp[s] .

This is again an underapproximation of PS[s].
A main advantage of this on-demand constraint minimization

framework is that it allows various forms of underapproximations

to be plugged into it without affecting the soundness proof of the

overall algorithm. With underapproximations, it is possible that we

may no longer be able to prune away all redundant executions, how-

ever, we can guarantee that all pruned executions are truly redun-

dant. In particular, the baseline symbolic execution in Algorithm 1

(no pruning) can be viewed as an extreme form of underapproxi-

mation, where PS[s] is underapproximated to false for all global

control locations.

7. EXPERIMENTS
We have implemented our method in Cloud9 [11], which in turn

builds upon the LLVM compiler [2] and the KLEE symbolic vir-

tual machine [8]. Note that KLEE does not by itself support mul-

tithreading, and although Cloud9 has extended KLEE to support

a limited number of POSIX thread routines, it does not attempt

to cover all feasible thread interleavings. Indeed, Cloud9 allows

for context switches only before certain POSIX thread synchro-

nizations but not before shared variable reads/writes. Furthermore,

Cloud9 does not support partial order reduction. Instead, it forks a

new execution every time a POSIX synchronization is encountered,

which can cause the number of executions to explode quickly.

We have extended Cloud9 to implement the baseline symbolic

execution in Algorithm 1, which systematically explores both intra-

thread paths and thread interleavings. Then, we implemented the

861

DPOR algorithm [16]. Based on these extensions, we have imple-

mented our new assertion guided pruning (Algorithm 2) with the

optimizations presented in Section 6.

Table 2: Summary of our experimental results.

Cloud9 +DPOR +DPOR+AG

Name LOC Threads Runs Time (s) Runs Time (s) Runs Time (s)

fibbenchfalse1 44 2 924 61.4 48 2.0 15 1.8

fibbenchfalse2 44 2 − >1800 628 36.2 34 3.9

fibbenchfalse3 44 2 − >1800 8704 503.8 378 13.7

indexertrue 85 2 − >1800 81 2.8 24 6.0

lazy01false 51 3 11 0.5 3 0.3 3 1.1

reorder2false1a 85 2 7 0.3 3 0.3 3 1.2

reorder2false1b 85 3 91 1.4 26 0.6 9 1.2

reorder2false1c 85 4 2421 89.1 205 3.2 39 1.6

reorder2false2a 85 2 23 0.6 14 0.5 14 1.5

reorder2false2b 85 3 479 8.9 233 5.0 64 2.2

sigmafalse1 49 2 12 0.4 6 0.3 2 1.2

sigmafalse2 49 3 180 3.2 50 1.0 2 1.2

sigmafalse3 49 4 4830 222.4 862 18.6 2 1.2

singletonfalse 57 4 60 1.1 24 0.6 19 1.1

stackfalse 120 2 527 8.6 236 3.9 49 2.8

stateful01true 55 2 6 0.4 6 0.4 5 1.2

twostage3false 129 3 4862 302.1 88 1.1 34 2.2

dekkertrue 55 2 − >1800 280 3.6 6 1.5

petersontrue1 43 2 − >1800 1052 22.7 64 2.7

petersontrue2 43 2 − >1800 2566 86.6 85 8.1

readwritelktrue1 52 2 24 0.6 4 0.3 4 1.1
readwritelktrue2 52 4 − >1800 − >1800 436 14.9

timevarmutextrue 55 2 41 0.8 4 0.3 2 1.0

szymanskitrue 55 2 − >1800 − >1800 6 1.8

unveriftrue 40 2 − >1800 221 2.9 27 1.7

bluetoothbad 88 2 − >1800 1789 25.1 95 4.0

art-example 71 2 450 11.5 146 3.1 9 1.5

fsbenchbad 86 8 − >1800 256 9.2 9 20.9

tickettrue 76 2 1062 19.6 274 4.8 44 1.9

accountbad 60 3 8 0.4 8 0.4 8 1.0

circularbufbad1 109 2 118 1.7 118 1.9 58 3.8

circularbufbad2 109 2 358 5.5 358 5.5 132 6.4

readreadwrite 50 3 96 1.4 19 0.5 3 1.1

queuefalse 167 2 252 3.9 252 3.8 26 3.9

nbds-slU1a 1942 2 − >1800 133 8.9 5 7.8

nbds-slU1b 1942 2 − >1800 − >1800 76 16.2

nbds-slU1c 1942 2 − >1800 − >1800 202 35.2

nbds-slU2a 1942 2 − >1800 241 25.3 29 12.8

nbds-slU2b 1942 2 − >1800 − >1800 118 24.5

nbds-slU2c 1942 2 − >1800 − >1800 717 164.8

nbds-skiplist 1994 3 − >1800 − >1800 1 25.1

nbds-hashw1a 2322 2 − >1800 1339 167.4 123 177.8

nbds-hashw1b 2322 2 − >1800 6501 1568.9 675 222.8

nbds-hashw1c 2322 2 − >1800 − >1800 2399 476.9

nbds-hashw2a 2234 2 − >1800 5852 674.1 369 155.3

nbds-hashw2b 2234 2 − >1800 − >1800 1735 257.4

nbds-hashw2c 2234 2 − >1800 − >1800 4017 528.4

nbds-hash 2375 2 − >1800 − >1800 2283 333.8

nbds-list 1887 3 − >1800 10274 1130.7 1 5.9

nedmalloc 6303 4 − >1800 − >1800 1 12.0

Average 986.9 518.5 51.6

We have conducted experiments on two sets of benchmarks. The

first set consists of multithreaded C programs from the 2014 Soft-

ware Verification Competition (SV-COMP) benchmark [47] and

programs from [14, 29]. The second set consists of two real mul-

tithreaded applications: nbds [35], a collection of lock-free data

structures, and nedmalloc [36], a thread-safe malloc implementa-

tion. Each of these programs has between 40 to 6,500 lines of code,

with a combined total of 40,291 lines of code. Each benchmark pro-

gram is first transformed into LLVM bitcode using Clang/LLVM,

before given to the symbolic execution tool with a set of user anno-

tated variables as symbolic input.

Table 2 summarizes the results of our experimental evaluation.

Columns 1–3 show the name, lines of code, and the number of

100 101 102 103
100

101

102

103

Runs Cloud9

R
u
n
s
+
D
P
O
R
+
A
G

100 101 102 103
100

101

102

103

Time (s) Cloud9

T
im
e
(s
)
+
D
P
O
R
+
A
G

Figure 7: Scatter plots comparing our method with Cloud9.

threads for each program. Columns 4–9 compare the performance

of three different methods in terms of the number of explored runs

and the total run time in seconds. Cloud9 denotes the baseline sym-

bolic execution algorithm in Algorithm 1, +DPOR denotes the base-

line algorithm with dynamic partial order reduction, and +DPOR +

AG denotes our new method, which augments the baseline algo-
rithm with DPOR and assertion guided pruning. The runtime of

+DPOR + AG includes the time to compute the slice. For all tests,

we used a maximum time of 30 minutes.

In the remainder of this section, we analyze the experimental

results in more details, to answer the following research questions:

1. How effective is our proposed pruning technique? Is it more

effective than DPOR alone?

2. How scalable is our technique? Is it practical in handling

realistic C/C++ programs?

First, we show the comparison of Cloud9 and +DPOR + AG in

two scatter plots in Figure 7, where the x-axis in each scatter plot
represents the number of runs (or time) of the baseline algorithm

(Cloud9), and the y-axis represents the number of runs (or time)
of our method (+DPOR + AG). Each benchmark program is repre-

sented by a dot in the scatter plots; dots below the diagonal lines

are winning cases for our method. The results show that our new

method can significantly reduce the number of runs explored by

symbolic execution as well as the overall execution time. In many

cases, the baseline algorithm timed out after 30 minutes while our

new method finished in a few seconds.

Next, we show the comparison of +DPOR and +DPOR + AG in

the scatter plots in Figure 8. Our goal is to quantify how much

of the performance improvement comes from our new assertion

guided pruning as opposed to DPOR. Again, dots below the di-

agonal lines are winning cases for our method (+DPOR + AG)

over DPOR. For most of the benchmark programs, our new method

demonstrated a significant performance improvement over DPOR.

But for some benchmark programs, +DPOR + AG was slightly

slower than +DPOR despite that it executed the same, or a smaller,

number of runs. This is due to the additional overhead of run-

ning the supplementary static slicing algorithm, as well as predi-

cate summary-based pruning, which did not provide sufficient per-

formance boost to offset their overhead.

However, it is worth noting that, where our combined optimiza-

tion of slicing and pruning is able to bring a performance improve-

ment, it often leads to a drastic reduction in the execution time com-

pared to DPOR alone. For example, in nedmalloc (Table 2), our

new method was able to identify that the property does not depend

on any shared variables. In such cases, it can safely skip exploring

the entire interleaved state space and finish in just one run.

We also evaluated the growth trends of the three methods when

the complexity of the benchmark program increase. Figure 9 shows

the results of comparing the three methods on a parameterized pro-

gram named reorder2false. In these two figures, the x-axis repre-

862

100 101 102 103
100

101

102

103

Runs +DPOR

R
u
n
s
+
D
P
O
R
+
A
G

100 101 102 103
100

101

102

103

Time (s) +DPOR

T
im
e
(s
)
+
D
P
O
R
+
A
G

Figure 8: Scatter plots comparing our method with DPOR.

2 4 6

102

104

Number of Threads

R
u
n
s

Cloud9
+DPOR

+DPOR + AG

2 4 6

100

102

Number of Threads

T
im
e
(s
)

Cloud9
+DPOR

+DPOR + AG

Figure 9: Parameterized results for reorder2false experiment.

sents the number of threads created in the parameterized program,

and the y-axis represents, in logarithmic scale, the number of runs
explored and the execution time in seconds. As shown by these

two figures, the computational overhead of all three methods in-

creases as the complexity of the program increases. However, our
new method increases at a significantly reduced rate compared to

the two existing methods.

8. RELATED WORK
As we have mentioned earlier, for sequential programs, there is

a large body of work on mitigating path explosion in symbolic ex-

ecution using function summaries [18], may-must abstraction [20],

demand-driven refinement [31], state matching [50], state merg-

ing [30], and structural coverage [37]. McMillan proposed lazy ab-

straction with interpolants [33, 34], which has been shown to be ef-

fective in model checking sequential software [6]. Jaffar et al. [10]

used a similar method in the context of constraint programming to

compute resource-constrained shortest paths and worst-case execu-

tion time. However, a direct extension of such methods to multi-

threaded programs would be inefficient since they lead to the naive

exploration of all thread interleavings.

Wachter et al. [51] extended McMillan’s lazy abstraction with in-

terpolants [34] to multithreaded programs while combining it with

a symbolic implementation of the monotonic partial order reduc-

tion algorithm [26, 58]. The idea is to apply interpolant-based

reduction to each interleaved execution while applying symbolic

POR to reduce the number of interleavings. Chu and Jaffar [9] pro-

posed a similar method, where they improved the symbolic POR by

considering not only the standard independence relation but also a

new semi-commutativity relation. However, these existing meth-

ods [51, 9] differ from our method significantly.

First, we merge predicate summaries at interleaving pivot points

whereas the existing methods [51, 9] do not. Second, we lever-

age static program slicing and heuristic minimization of summary

constraints during symbolic execution to further reduce the search

space. Finally, our pruning method is designed to work seamlessly

with the more scalable DPOR algorithm [16] whereas the exist-

ing methods implemented symbolic POR. Neither of these previ-

ous methods demonstrated handling C/C++ code with more than a

thousand lines of code as in our work.

Kusano and Wang [29] introduced a notion of predicate depen-

dence in the context of dynamic partial order reduction. Wang et

al. [57, 52] proposed similar property-driven pruning methods for

dynamic model checking. However, all these prior methods were

geared toward stateless model checking, which can be viewed as a

form of systematic testing with fixed data input, as opposed to sym-

bolic data inputs. Furthermore, these methods relied on control

and data dependency relations as opposed to symbolic constraints

generated from weakest precondition computation, and therefore

were unable to merge non-failing executions reaching different fi-

nal states. In this sense, our newmethod is a more general and more

accurate version of the prior works. Furthermore, it is orthogonal

and complementary to the symmetry-reduction method proposed

by Yang et al. [60].

Our sound method for pruning executions differs significantly

from various heuristic reduction techniques in concurrency testing

that do not guarantee the soundness. For example, Farzan et al. [14]

and Razavi et al. [38] proposed heuristic methods for quickly ex-

ploring certain subsets of thread interleaving scenarios in symbolic

execution of concurrent programs. This type of selective interleav-

ing exploration techniques were also used by Wang et al. [56] to

quickly cover certain pairs of dependent operations captured by a

history aware predecessor set. Further along this line, there are pre-

dictive bug detection methods based on the use of SMT solvers [54,

28, 55, 45, 46, 24, 25, 40, 44, 43, 53], which differ from our method

in that they explore only the thread interleavings under fixed pro-

gram inputs.

The GREEN tool by Visser et al. [49] provides a wrapper around

constraint satisfiability solvers to check if the results are already

available from prior invocations, and reuse the results if available.

As such, they can achieve significant reuse among multiple calls to

the same solvers during the symbolic execution of different paths.

GREEN achieves this by distilling constraints into their essential

parts and then representing them in a canonical form. The reuse

achieved by GREEN is at a much lower level, and therefore is com-

plementary to our new pruning method.

Finally, we assume sequential consistency, although our method

can be integrated with dynamic partial order reduction methods for

relaxed memory models [62, 1]; we leave this for future work.

9. CONCLUSIONS
We have presented a predicate summary-based pruning method

for improving symbolic execution of multithreaded program. Our

method is designed to work with the popular DPOR algorithm, and

has the potential of achieving exponential reduction. We have im-

plemented the method in Cloud9 and demonstrated its effectiveness

through experiments on multithreaded C/C++ benchmarks. For fu-

ture work, we plan to conduct more experiments to identify the

sweet spots in using heuristic minimizations of summary constraints

to exploit the trade-off between increasing the pruning power and

decreasing the computational overhead.

10. ACKNOWLEDGMENTS
This work was primarily supported by the NSF under grants

CCF-1149454, CCF-1405697, and CCF-1500024. Partial support

was provided by the ONR under grant N00014-13-1-0527. Any

opinions, findings, and conclusions expressed in this material are

those of the authors and do not necessarily reflect the views of the

funding agencies.

863

11. REFERENCES

[1] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson,

C. Leonardsson, and K. F. Sagonas. Stateless model

checking for TSO and PSO. In International Conference on

Tools and Algorithms for Construction and Analysis of

Systems, pages 353–367, 2015.

[2] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke.

LLVM: A low-level virtual instruction set architecture. In

ACM/IEEE international symposium on Microarchitecture,

San Diego, California, Dec 2003.

[3] L. O. Andersen. Program analysis and specialization for the

c programming language. Technical report, University of

Copenhagen, 1994.

[4] T. Ball. A theory of predicate-complete test coverage and

generation. In Formal Methods for Components and Objects,

Third International Symposium, Leiden, The Netherlands,

pages 1–22, 2004.

[5] T. Bergan, D. Grossman, and L. Ceze. Symbolic execution of

multithreaded programs from arbitrary program contexts. In

ACM SIGPLAN Conference on Object Oriented

Programming, Systems, Languages, and Applications, pages

491–506, 2014.

[6] D. Beyer and P. Wendler. Algorithms for software model

checking: Predicate abstraction vs. impact. In International

Conference on Formal Methods in Computer-Aided Design,

pages 106–113, 2012.

[7] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset:

Attacking path explosion in constraint-based test generation.

In International Conference on Tools and Algorithms for

Construction and Analysis of Systems, pages 351–366, 2008.

[8] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted

and automatic generation of high-coverage tests for complex

systems programs. In USENIX Symposium on Operating

Systems Design and Implementation, pages 209–224, 2008.

[9] D. Chu and J. Jaffar. A framework to synergize partial order

reduction with state interpolation. In International Haifa

Verification Conference, pages 171–187, 2014.

[10] D.-H. Chu and J. Jaffar. A complete method for symmetry

reduction in safety verification. In International Conference

on Computer Aided Verification, pages 616–633, 2012.

[11] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and

G. Candea. Cloud9: a software testing service. Operating

Systems Review, 43(4):5–10, 2009.

[12] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver.

In International Conference on Tools and Algorithms for

Construction and Analysis of Systems, pages 337–340, 2008.

[13] E. Dijkstra. A Discipline of Programming. Prentice Hall, NJ,

1976.

[14] A. Farzan, A. Holzer, N. Razavi, and H. Veith. Con2colic

testing. In ACM SIGSOFT Symposium on Foundations of

Software Engineering, pages 37–47, 2013.

[15] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program

dependence graph and its use in optimization. ACM Trans.

Program. Lang. Syst., 9(3):319–349, July 1987.

[16] C. Flanagan and P. Godefroid. Dynamic partial-order

reduction for model checking software. In ACM

SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pages 110–121, 2005.

[17] P. Godefroid. Partial-Order Methods for the Verification of

Concurrent Systems - An Approach to the State-Explosion

Problem. Springer, 1996.

[18] P. Godefroid. Compositional dynamic test generation. In

ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pages 47–54, 2007.

[19] P. Godefroid, N. Klarlund, and K. Sen. DART: directed

automated random testing. In Programming Language

Design and Implementation, pages 213–223, June 2005.

[20] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali.

Compositional may-must program analysis: unleashing the

power of alternation. In ACM SIGACT-SIGPLAN Symposium

on Principles of Programming Languages, pages 43–56,

2010.

[21] S. Graf and H. Saïdi. Construction of abstract state graphs

with PVS. In International Conference on Computer Aided

Verification, pages 72–83. Springer, 1997. LNCS 1254.

[22] S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural

slicing using dependence graphs. In ACM SIGPLAN

Conference on Programming Language Design and

Implementation, pages 35–46, 1988.

[23] J. Jaffar, V. Murali, and J. A. Navas. Boosting concolic

testing via interpolation. In ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 48–58, 2013.

[24] V. Kahlon and C. Wang. Universal Causality Graphs: A

precise happens-before model for detecting bugs in

concurrent programs. In International Conference on

Computer Aided Verification, pages 434–449, 2010.

[25] V. Kahlon and C. Wang. Lock removal for concurrent trace

programs. In International Conference on Computer Aided

Verification, pages 227–242, 2012.

[26] V. Kahlon, C. Wang, and A. Gupta. Monotonic partial order

reduction: An optimal symbolic partial order reduction

technique. In International Conference on Computer Aided

Verification, pages 398–413, 2009.

[27] K. Kennedy and J. R. Allen. Optimizing Compilers for

Modern Architectures: A Dependence-based Approach.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

2002.

[28] S. Kundu, M. K. Ganai, and C. Wang. CONTESSA:

Concurrency testing augmented with symbolic analysis. In

International Conference on Computer Aided Verification,

pages 127–131, 2010.

[29] M. Kusano and C. Wang. Assertion guided abstraction: a

cooperative optimization for dynamic partial order reduction.

In IEEE/ACM International Conference On Automated

Software Engineering, pages 175–186, 2014.

[30] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient

state merging in symbolic execution. In ACM SIGPLAN

Conference on Programming Language Design and

Implementation, pages 193–204, 2012.

[31] R. Majumdar and K. Sen. Hybrid concolic testing. In

International Conference on Software Engineering, pages

416–426, 2007.

[32] A. W. Mazurkiewicz. Trace theory. In Advances in Petri Nets,

pages 279–324. Springer, 1986.

[33] K. L. McMillan. Lazy abstraction with interpolants. In

International Conference on Computer Aided Verification,

pages 123–136. Springer, 2006. LNCS 4144.

[34] K. L. McMillan. Lazy annotation for program testing and

verification. In International Conference on Computer Aided

Verification, pages 104–118, 2010.

[35] Non-blocking data structures. URL:

https://code.google.com/p/nbds/.

[36] ned productions: nedmalloc URL:

http://www.nedprod.com/programs/portable/nedmalloc/.

864

[37] R. Pandita, T. Xie, N. Tillmann, and J. de Halleux. Guided

test generation for coverage criteria. In IEEE International

Conference on Software Maintenance, pages 1–10, 2010.

[38] N. Razavi, F. Ivancic, V. Kahlon, and A. Gupta. Concurrent

test generation using concolic multi-trace analysis. In Asian

Symposium on Programming Languages and Systems, pages

239–255, 2012.

[39] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural

dataflow analysis via graph reachability. In ACM

SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pages 49–61, New York, NY,

USA, 1995. ACM.

[40] M. Said, C. Wang, Z. Yang, and K. Sakallah. Generating data

race witnesses by an SMT-based analysis. In NASA Formal

Methods, pages 313–327, 2011.

[41] K. Sen. Scalable Automated Methods for Dynamic Program

Analysis. PhD thesis, UIUC, 2006.

[42] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit

testing engine for C. In ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 263–272, 2005.

[43] A. Sinha, S. Malik, C. Wang, and A. Gupta. Predicting

serializability violations: SMT-based search vs.

DPOR-based search. In Haifa Verification Conference, pages

95–114, 2011.

[44] A. Sinha, S. Malik, C. Wang, and A. Gupta. Predictive

analysis for detecting serializability violations through trace

segmentation. In ACM-IEEE International Conference on

Formal Methods and Models for System Design, pages

99–108, 2011.

[45] N. Sinha and C. Wang. Staged concurrent program analysis.

In ACM SIGSOFT Symposium on Foundations of Software

Engineering, pages 47–56, 2010.

[46] N. Sinha and C. Wang. On interference abstractions. In ACM

SIGACT-SIGPLAN Symposium on Principles of

Programming Languages, pages 423–434, 2011.

[47] SV-COMP. 2014 software verification competition. URL:

http://sv-comp.sosy-lab.org/2014/, 2014.

[48] N. Tillmann and J. de Halleux. PEX – white box test

generation for .NET. In International Conference on Tests

and Proofs, pages 134–153, 2008.

[49] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: reducing,

reusing and recycling constraints in program analysis. In

ACM SIGSOFT Symposium on Foundations of Software

Engineering, page 58, 2012.

[50] W. Visser, C. S. Pasareanu, and R. Pelánek. Test input

generation for java containers using state matching. In

International Symposium on Software Testing and Analysis,

pages 37–48, 2006.

[51] B. Wachter, D. Kroening, and J. Ouaknine. Verifying

multi-threaded software with Impact. In International

Conference on Formal Methods in Computer-Aided Design,

pages 210–217, 2013.

[52] C. Wang, S. Chaudhuri, A. Gupta, and Y. Yang. Symbolic

pruning of concurrent program executions. In ACM

SIGSOFT Symposium on Foundations of Software

Engineering, pages 23–32, 2009.

[53] C. Wang and M. Ganai. Predicting concurrency failures in

generalized traces of x86 executables. In International

Conference on Runtime Verification, pages 4–18, Sept. 2011.

[54] C. Wang, S. Kundu, M. Ganai, and A. Gupta. Symbolic

predictive analysis for concurrent programs. In International

Symposium on Formal Methods, pages 256–272, 2009.

[55] C. Wang, R. Limaye, M. Ganai, and A. Gupta. Trace-based

symbolic analysis for atomicity violations. In International

Conference on Tools and Algorithms for Construction and

Analysis of Systems, pages 328–342, 2010.

[56] C. Wang, M. Said, and A. Gupta. Coverage guided

systematic concurrency testing. In International Conference

on Software Engineering, pages 221–230, 2011.

[57] C. Wang, Y. Yang, A. Gupta, and G. Gopalakrishnan.

Dynamic model checking with property driven pruning to

detect race conditions. In International Symposium on

Automated Technology for Verification and Analysis, pages

126–140, 2008.

[58] C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole partial

order reduction. In International Conference on Tools and

Algorithms for Construction and Analysis of Systems, pages

382–396, 2008.

[59] Y. Yang, X. Chen, G. Gopalakrishnan, and R. Kirby. Efficient

stateful dynamic partial order reduction. In SPIN Workshop

on Model Checking Software, pages 288–305, 2008.

[60] Y. Yang, X. Chen, G. Gopalakrishnan, and C. Wang.

Automatic discovery of transition symmetry in multithreaded

programs using dynamic analysis. In International SPIN

workshop on Model Checking Software, pages 279–295,

2009.

[61] Q. Yi, Z. Yang, S. Guo, C. Wang, J. Liu, and C. Zhao.

Postconditioned symbolic execution. In IEEE International

Conference on Software Testing, Verification and Validation,

pages 1–10, 2015.

[62] N. Zhang, M. Kusano, and C. Wang. Dynamic partial order

reduction for relaxed memory models. In ACM SIGPLAN

Conference on Programming Language Design and

Implementation, pages 250–259, 2015.

865

