
Guided Differential Testing of Certificate Validation in
SSL/TLS Implementations

Yuting Chen
Department of Computer Science and Engineering

Shanghai Jiao Tong University, China
chenyt@cs.sjtu.edu.cn

Zhendong Su
Department of Computer Science

University of California, Davis, USA
su@cs.ucdavis.edu

ABSTRACT
Certificate validation in SSL/TLS implementations is critical for
Internet security. There is recent strong effort, namely frankencert,
in automatically synthesizing certificates for stress-testing certificate
validation. Despite its early promise, it remains a significant chal-
lenge to generate effective test certificates as they are structurally
complex with intricate syntactic and semantic constraints.

This paper tackles this challenge by introducing mucert, a novel,
guided technique to much more effectively test real-world certificate
validation code. Our core insight is to (1) leverage easily accessible
Internet certificates as seed certificates, and (2) diversify them by
adapting Markov Chain Monte Carlo (MCMC) sampling. The diver-
sified certificates are then used to reveal discrepancies, thus potential
flaws, among different certificate validation implementations.

We have implemented mucert and extensively evaluated it against
frankencert. Our experimental results show that mucert is signifi-
cantly more cost-effective than frankencert. Indeed, 1K mucerts
(i.e., mucert-mutated certificates) yield three times as many distinct
discrepancies as 8M frankencerts (i.e., frankencert-synthesized cer-
tificates), and 200 mucerts can achieve higher code coverage than
100, 000 frankencerts. This improvement is significant as it incurs
much cost to test each generated certificate. We have analyzed and
reported 20+ latent discrepancies (presumably missed by franken-
cert), and reported an additional 357 discrepancy-triggering certifi-
cates to SSL/TLS developers, who have already confirmed some of
our reported issues and are investigating causes of all the reported
discrepancies. In particular, our reports have led to bug fixes, active
discussions in the community, and proposed changes to relevant
IETF’s RFCs. We believe that mucert is practical and effective for
helping improve the robustness of SSL/TLS implementations.

More information on mucert and our results can be found at
http://stap.sjtu.edu.cn/~chenyt/mucert.html.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools (e.g., data generators, coverage testing)

General Terms
Algorithms

Keywords
Differential testing, mutation, certificate validation

1. INTRODUCTION
Secure Sockets Layer (SSL) [27] and Transport Layer Secu-

rity (TLS) [24] are cryptographic protocols for security protec-
tion over the Internet. Various implementations and libraries (e.g.,
OpenSSL [1] and NSS [2]) exist to support the protocols; they fa-
cilitate the incorporation of SSL/TLS in user applications. All web
browsers also support users in establishing SSL/TLS connections.

X.509 certificates provide the principal medium for websites
and Internet users to authenticate each other and establish secure
SSL/TLS connections. For example, when a web browser requests
an https connection to a website, it will retrieve the site’s X.509
certificate and validate it. If the certificate fails in validation, the
browser will display a warning message to the user, who may then
refuse this connection. But similar to any real-world software,
SSL/TLS implementations or libraries may contain defects, and
in particular may not validate X.509 certificates correctly, making
certification validation the most dangerous code in the world [28].
Indeed, certificate validation has been completely broken in many
security-critical applications and libraries [28, 31]; defects can be
embedded into certificate validation code, making SSL/TLS connec-
tions completely vulnerable or insecure.

Certificate validation mainly checks, given a server certificate,
whether it is well formed, whether it has not expired, and whether
it is issued by a trusted certificate authority (CA). However, all
SSL/TLS implementations validate X.509 certificates by following
a complicated, ad-hoc process described in several RFCs (including
RFC 2246, 2527, 2818, 4346, 5246, 5280, 6101, 6125) [19, 21–24,
27, 40, 41]. Developers must define their respective validation poli-
cies for handling ambiguous descriptions (e.g., “the serial number
MUST be a positive integer assigned by the CA to each certificate
... non-conforming CAs may issue certificates with serial numbers
that are negative or zero. Certificate users SHOULD be prepared to
gracefully handle such certificates” [21]). Developers can also make
minor mistakes, such as misunderstanding the SSL/TLS application
program interfaces (APIs), using insecure middleware or libraries,
and breaking/disabling certificate validation [28].

Furthermore, existing SSL/TLS implementations are not ade-
quately tested before being released, as test certificates have to be
designed elaborately and mainly manually. One main reason is that
X.509 certificates are themselves structurally complex data: each
certificate is composed of several fields for identifying itself and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786835

793

a sequence of extensions, each field can encompass semantic and
syntactic constraints, and certificates must be carefully organized
into certificate chains. Thus, any test certificate must be constructed
to conform to or deliberately violate the constraints, which makes
manual testing inevitably inadequate.

Brubaker et al. [13] propose the first automated technique, called
frankencert, to randomly combine parts of real certificates for differ-
entially testing various SSL/TLS implementations. This is a strong
effort, but the “blind” nature of frankencert makes it cost-ineffective:
an enormous number of frankencerts are generated and tested, so it
is very resource-intensive, but most of the frankencerts do not trigger
any discrepancies. In particular, 8,127,600 frankencerts could only
yield 208 discrepancies, which further reduce to only 9 distinct ones,
among the many SSL/TLS implementations [13].

Inspired by Brubaker et al.’s work and recognizing its limitation,
we aim to generate effective test certificates, and in particular our
goal is to generate “diverse” certificates for testing. By diverse, we
mean, for example, that some certificates should pass validation and
some should not, the certificates take different control-flow paths,
and they enforce various validation policies or lead to different types
of exceptions. We cast effective test certificate generation as an
optimization problem: Given certificates Cert = {cert0, cert1,
..., certn}, construct Cert ′ = {cert′0, cert′1, ..., cert′n} whose
certificates are as diverse as possible.

To this end, we introduce mucert, a novel, guided approach to
differential testing of certificate validation. In particular, mucert
adapts Markov Chain Monte Carlo (MCMC) sampling to diversify
certificates. MCMC methods are a class of algorithms for sampling
from a probability distribution by constructing a Markov chain that
converges to the desired distribution [18, 36]. For many intractable
problems without exact optimization algorithms, MCMC sampling
provides a general solution [42]. Section 2 discusses detailed design
and technical challenges that we tackle to realize mucert, such as
choosing the acceptance condition and mutation operations.

This paper makes the following main contributions:

• Problem formulation. We cast the difficult problem of cer-
tificate generation as an optimization problem, which allows
us to leverage the many easily accessable Internet certificates
and transform them to effectively test certificate validation
logic. This high-level view is general and may be applicable
in other settings with structurally complex test inputs.
• MCMC-guided certificate mutation. We adapt MCMC sam-

pling to effectively diversify certificates. In particular, we
use code coverage to guide the sampling process to accept
and retain representative certificates in the test suite. To our
knowledge, this work is the first to utilize MCMC sampling
for generating diverse test inputs in differential testing.
• Implementation and evaluation. We have implemented mucert

and compared it against frankencert and two other mutation
algorithms on 9 real-world SSL/TLS implementations. Our
results show that mucert significantly outperforms frankencert
and the other techniques. Most notably, 1K mucerts lead
to 3× as many distinct discrepancies as 8M frankencerts,
demonstrating that mucert effectively diversifies certificates.
• Community feedback and impact. We have also reported 20+

issues and an additional 357 discrepancy-triggering certifi-
cates, and have already received confirmations and positive
feedback from the SSL/TLS developers. For example, as a re-
sult of our reports, ARM mbed TLS-1.3.10 (formerly known
as PolarSSL) started to forbid repeated extensions in X.509
certificates, and active discussions on the reported certificates
have led to proposed changes to IETF’s relevant RFCs.

The rest of the paper is structured as follows. Section 2 presents
the details of our guided technique, including basic background
on certificate validation, MCMC-guided certificate diversification,
and the differential testing process. We next describe our extensive
evaluation of mucert against frankencert and two other certificate
mutation algorithms to demonstrate mucert’s effectiveness (Sec-
tion 3). Section 4 surveys related work, and Section 5 concludes.

2. APPROACH
This section presents the technical details of our approach. We

discuss necessary background on certification validation, introduce
our MCMC-guided certificate mutation algorithm, and describe our
differential testing process.

2.1 Background: X.509 Certificate Validation
An input to certificate validation is a chain of X.509 certificates.

Each certificate consists of a sequence of three required fields [21]:

• Certificate, which contains a subject and an issuer, a public
key associated with the subject, a validity period, and other
information. An X.509 v3 certificate also has extensions that
can convey such data as additional subject identification infor-
mation, policy information, and certification path constraints;
• Certificate Signature Algorithm, the identifier for the signature

algorithm used by a certificate authority (CA) to sign this
certificate; and
• Certificate Signature, a digital signature for the certificate.

In a public key infrastructure (PKI), a certificate does not exist in
isolation, but is recursively organized, together with its issuers, into a
certificate chain. A certificate chain usually starts with an end-entity
certificate followed by a list of certificates and the CA certificates.
Figure 1 illustrates a typical certificate chain, where the issuer of
each certificate is the subject of the next certificate, each certificate is
signed by the next certificate, and the last certificate is a self-signed
trust anchor. Given a certificate, an SSL/TLS implementation mainly
validates whether it can be chained to a “trusted root” certificate and
whether each certificate on the chain is valid at the current time [21].

2.2 Guided Certificate Optimization
Intuitively, one may collect X.509 certificates from the Internet

to test SSL/TLS implementations, although these real certificates
unlikely expose flaws in validation code. On the other extreme is
frankencert [13], which randomly combines pieces of real certifi-
cates to construct fake ones, most of which are invalid and useless
for testing. Instead, we strive to find a sweet spot between the two
extremes by systematically and continuously mutating a set of real
certificates to make them diverse (i.e., following different program
paths, triggering different validation policies, or triggering different
error handlers) for testing certificate validation logic.

2.2.1 MCMC Sampling and Fitness Function
For our purpose, we adapt MCMC sampling to optimize a test

suite with a fixed number of test certificates. We utilize code cover-
age as the fitness function to balance our optimization goal and the
easiness of measurement. Another reason for using code coverage
as the fitness function is that code coverage is shown to strongly cor-
relate with the output uniqueness of a test suite, one manifestation
of its diversity [10].

Let Cov(Cert) be defined for computing the code coverage
of a test suite Cert w.r.t. a given SSL/TLS implementation (e.g.,
OpenSSL):

Cov(Cert) = Cov(cert0)⊕ · · · ⊕ Cov(certn),

794

�����

��������	
�

��	��������

������

�����

������

������

��������	
�

��	��

�����

���

����	

������

����	�

��������	
�

��	��
���

�������

������

��������

��������	
�

��	��

�����

���������	
��
��������	
��

Figure 2: MCMC-guided certificate optimization.

Certificate Certificate Certificate

Version Version Version

Serial Number Serial Number Serial Number

Algorithm ID Algorithm ID Algorithm ID

Issuer Issuer Issuer

Validity (Not Before/After) Validity (Not Before/After) Validity (Not Before/After)

Subject Subject Subject

Subject Public Key Info Subject Public Key Info Subject Public Key Info

Public Key Algorithm Public Key Algorithm Public Key Algorithm

Subject Public Key Subject Public Key Subject Public Key

Issuer Unique Identifier Issuer Unique Identifier Issuer Unique Identifier

Subject Unique Identifier Subject Unique Identifier Subject Unique Identifier

Extensions Extensions Extensions

...

Certificate Signature

Algorithm

Certificate Signature

Algorithm

Certificate Signature

Algorithm

Certificate Signature Certificate Signature Certificate Signature

Leaf cert Enterprise CA cert Root CA cert

Figure 1: A typical certificate chain.

where Cov(cert) denotes the coverage achieved by an individual
certificate cert, and ⊕ allows the coverage to be computed cumula-
tively.

In our setting, code coverage helps make the test suite accept
“fresh” test certificates. Let cert in Cert be mutated to cert′ in
Cert′ (see Section 2.2.3). Let Cov(Cert) < Cov(Cert′). The
certificate cert′ is obviously distinct from cert or any other certifi-
cates inCert′, as it exploits some new validation code (or branches).
Therefore, code coverage provides the first means to approach the
optimization goal, that is, given the test suite Cert, how can it be
mutated continuously to OptimizedCert such that

Cov(Cert)� Cov(OptimizedCert) ≤ >,

whereCov(Cert)� Cov(OptimizedCert) denotes that the cov-
erage should be increased as much as possible, and > is an upper
bound of coverage that can be achieved by any test suite.

MCMC sampling provides another opportunity, even if the cover-
age of a test suite cannot get increased, to stochastically diversify the
test certificates inside. MCMC advocates the idea of sampling from
a probability distribution by constructing a Markov chain which
converges to the desired distribution. When applied to optimization,
MCMC sampling can work as an intelligent hill climbing method,
and thus creates sufficient samples most of which will be taken from
the optimal values of the adopted fitness function. In our setting,
each sample corresponds to a test suite.

2.2.2 Sampling Process

Algorithm 1 MCMC-guided algorithm to optimize certificates
Input: certificate corpus CertStore, n, k
Output: test suite of n certificates
1: Select n random certificates from CertStore and add to Cert
2: highest_cov ← Cov(Cert)
3: OptimizedCerts← {Cert}
4: repeat
5: cert← random.choice(Cert)
6: mutator ← random.choice(Mutator)
7: cert′ ← apply(mutator, cert)
8: Cert′ ← (Cert\{cert}) ∪ {cert′}
9: if highest_cov < Cov(Cert′) then

10: highest_cov ← Cov(Cert′)
11: OptimizedCerts← {Cert′}
12: else if highest_cov == Cov(Cert′) then
13: OptimizedCerts← OptimizedCerts ∪ {Cert′}
14: Accept Certs′ according to A(Cert→ Cert′)
15: if accepted then
16: Cert← Cert′

17: until highest_cov has not been increased for k steps
18: OptimizedCert← random.choice(OptimizedCerts)
19: return OptimizedCert

For MCMC sampling, mucert at first transforms the fitness func-
tion into a probability density function, by following a commonly
used approach [42]:

P (Cert) =
1

Z
exp(−β(Cov(Cert)− ⊥)),

where β is a constant, Z a partition function that normalizes the
distribution, and ⊥ a lower bound of coverage that can be achieved
by a test suite.

Mucert then adopts the Metropolis-Hastings algorithm [36] for
generating Markov chains. The Metropolis-Hastings algorithm is an
MCMC method for obtaining random samples from a probability
distribution. It works by generating a sequence of samples whose
distribution closely approximates the desired distribution; samples
are produced iteratively, with the distribution of the next sample (say
s′) being dependent only on the current one (say s). As Figure 2
shows, in the burn-in phase, the coverage of the samples increases
rapidly, while in the sampling phase, all samples hold high coverage
values, but their diversities stochastically vary. We use Metropolis
choice A(s→ s′) for sampling acceptance or rejection:

A(s→ s′) = min(1,
P (s′)

P (s)
· g(s

′ → s)

g(s→ s′)
)

795

+

+ +

+ +

Cov(cert4) Cov(cert5)

Cov(cert1) Cov(cert2) Cov(cert3)Cov(cert1')

Figure 3: An example of coverage information tree. When one
leaf node (Cov(cert1)) is updated, the tree is updated in a bot-
tom up style. All updated nodes are colored in brown.

where g(s→ s′) is the proposal distribution describing the condi-
tional probability of proposing a new sample s′ given s.

The proposal distribution in our setting is symmetric, thus the
acceptance probability is reduced to

A(Cert→ Cert′) = min(1,
P (Cert′)

P (Cert)
)

= min(1, exp(β(cov1 − cov2))),

where cov1 = Cov(Cert) and cov2 = Cov(Cert′). The ac-
ceptance probability can be directly computed from the coverage
function Cov(·).

Let β be a negative constant in (−1.0, 0). The importance of
A(Cert→ Cert′) is: if Cov(Cert) ≤ Cov(Cert′), the proposal
is always accepted; otherwise the proposal is accepted with a certain
(small) probability (namely exp(−β(Cov(Cert′)−Cov(Cert)))).
Further, the smaller Cov(Cert′) − Cov(Cert) is, the less the
acceptance probability will be. For example, let β be −0.033,
Cov(Cert) be 7200 (SLOC); let Cov(Cert1) and Cov(Cert2)
be 7180 (SLOC) and 7170 (SLOC), respectively. Cert1 is easier to
accept than Cert2 because

A(Cert→ Certs1) = 0.517, and
A(Cert→ Certs2) = 0.371.

Algorithm 1 shows the mucert algorithm for certificate optimiza-
tion. It first selects a test suite of n certificates (certificate chains
more rigorously). It then performs a number of iterations. During
each iteration, exactly one certificate is chosen and mutated. The al-
gorithm chooses one sample with the highest coverage as an optimal
solution (theoretically any sample can be chosen for testing). Notice
that mucert mutates an X.509 certificate (or a certificate chain) by
rewriting the certificate (or rewriting one certificate in the chain),
which we will explain in Section 2.2.3.

2.2.3 Certificate Mutation
We define 37 mutators (mutation operations) for supporting cer-

tificate mutation. Mucert randomly picks a certificate (or a chain)
and mutates it, expecting that the mutant can exploit some new
validation policies in the validation code. As Table 1 shows, these
mutators are classified into two categories:

1. Chain mutator. A chain mutator is used to update a certificate
chain, e.g., inserting one certificate into the chain or deleting
one from the chain. A chain mutator is usually performed
together with an updating of the issuers of the certificates on
the chain, so that each certificate is issued by the subsequent
one.

2. Certificate mutator. A certificate mutator is used to update a
single certificate, e.g., rewriting the expiration date or adding

Table 1: Sample mutation operations used.

Category Operations
(1) Insert a certificate at a given position of a chain

Chain (2) Append a certificate to a chain
mutator (3) Delete a certificate from a chain

(4) Replace one certificate in a chain with another
(5) Rewrite a certificate field (e.g., notAfter, notBe-
fore, serial number, subject, extensions)
(6) Rewrite a subject field of a certificate (e.g.,
countryname, stateOrProvinceName, stateOrProvin-
ceName, localityName, organizationname, organi-
zationalUnitName, commonName, emailAddress,
name, title)

Certificate (7) Append a set of extensions to the certificate
mutator (8) Append one extension to the certificate

(9) Rewrite the criticality of one extension
(10) Rewrite one extension
(11) Delete a certificate field or a subject filed

an extension to the certificate. Nevertheless, when the subject
of a certificate is updated, the issuer of the preceding certifi-
cate may be updated. When its issuer is updated, the subject
of the subsequent certificate may be updated. Further, we can
mutate a certificate by deleting one of its fields in order to
check whether the mutant can trigger some parsing errors or
validation problems.

We prefer a grafting strategy when rewriting a certificate or its
field. Given a certificate chain, we can replace one certificate with
an “invader” certificate that is randomly chosen from the certificate
corpus. Similarly, we can insert the invader into the chain, or use
its field to update the corresponding field of a certificate in the
chain. We can also choose one or more extensions of the invader
certificate and add them into a certificate. Such a strategy helps
produce syntactically correct mutants that otherwise might have
been rejected early during validation due to trivial parsing errors.

2.3 Differential Testing
We have implemented a testing framework in Python to realize

and utilize mucert. Figure 4 illustrates the framework, which con-
tains two key components: (1) test certificate optimization, and (2)
differential testing:

• Certificate optimization. Mucert selects a set of n certificates
at random and then performs an MCMC sampling process.
One sample with the highest coverage is chosen for testing.
• Differential testing. Differential testing is a mature testing

technology for large software systems [30, 35]: a test case
is randomly generated, and output is compared for a variety
of systems. In our work, we employ the generated mucerts
to test commonly used SSL/TLS implementations (including
OpenSSL [1], PolarSSL [3], Gnutls [4], NSS [2], CyaSSL [5],
and MatrixSSL [6]) and web browsers (including Google’s
Chrome [7], Mozilla’s Firefox [8], and Microsoft’s Internet
Explorer [9]) and then compare the validation results. Any
behavior discrepancies among these implementations become
oracles for finding flaws in their certificate validation code.

2.3.1 Certificate Validation in Testing
An SSL/TLS implementation can validate an X.509 certificate

(or a certificate chain) in either a file mode or a client-server (C-S)
mode, or both. The file mode provides a rather simple validation

796

Step 1: Certificate Mutation

Step 2: Differential Testing

OpenSSL

PolarSSL

CyaSSL

Chrome

...

cert1

cert2

cert3

...

...

cert2

cert3
...

Certificate

validation code

Certificate

mutants

Validation

results

Certs with

disprecencies

Defect report

cert1

cert2

cert3

...

Cert

C ho o se

M
u t
a t e

cert1

cert2

cert3

...

Cert’

cov

Compute coverage

cov’
Compute

coverage

Accept or

reject?
Reject

AcceptCert: = Cert����

Accept

Complete

Testing

Cert DB

Figure 4: Guided differential testing of certificate validation.

style, allowing the implementation to load and validate a PEM
file containing one or more certificates. The C-S mode provides a
typical, but slightly more complicated validation solution, requiring
a client to retrieve a server certificate and then validate it. Table 2
shows the supportability of the SSL/TLS tools and browsers to the
two validation modes.

Note that CyaSSL and MatrixSSL do not provide released utilities
for validating certificate files. Although the C-S validation mode is
supported by all of the implementations, it is still difficult to validate
a large number of certificates since each website is usually secured
by only one certificate. A browser mainly validates a certificate
when it connects to a server, while up to now, we do not have any
tools that can forge a web browser when it connects to a spoofed do-
main name (matching to the domain name appearing in a certificate).
Thus mucert adopts both modes to test SSL/TLS implementations:

1. Test OpenSSL, PolarSSL, Gnutls, and NSS in file mode;
2. Test Cyassl and MatrixSSL in C-S mode. We use the server in

Brubaker et al. [13] to warp and send the mutated certificates,
and use the clients released in CyaSSL/MatrixSSL to retrieve
and validate the certificates. Each client takes three arguments
(host, port, path to the file with trusted root certificates) and
makes an SSL 3.0 connection to the host/port. The client
records the validation results, including error codes if any;

3. Import the certificates into the certificate databases used by
the web browsers (Chrome, Firefox, and Internet Explorer).
We assume that a validation is performed when a certificate is
imported1. We also use the browsers to connect a localhost

1In fact, a certificate manager does not validate the trusted certifi-
cates (see Section 3.4).

Table 2: Supported validation modes by SSL/TLS implementa-
tions.

SSL/TLS tools File mode (with standalone validation C-S
or libraries utility or certificate manager) mode

OpenSSL 1.0.1j Y (openssl) Y
PolarSSL 1.3.9 Y (cert_app) Y
Gnutls 3.3.10 Y (certtool) Y
NSS 3.17.3 Y (certutil) Y
CyaSSL 3.3.0 / Y
MatrixSSL 3.7-1 / Y
Chrome 39.0.2171.95 Y (an OS-level certificate manager) Y
Mozilla’s Firefox 34.0 Y (PSM/NSS) Y
Internet Explorer 11.0.14 Y (Microsoft Management Console) Y

OpenSSL PolarSSL Gnutls NSS Cyassl MatrixSSL Chrome

(Ubuntu)

Firefox

(Ubuntu)

IE

(Windows)

cert 0 1 1 0 X X 1 0 1

0: rejected 1: accepted X: skipped

Figure 5: Result encoding example.

server on which fake certificates with the common name
“localhost” are deployed and check whether the browsers
can be forged in SSL/TLS connections.

2.3.2 Discrepancy Representation
The validation results among the SSL/TLS implementations can

be discrepant, indicating that a certificate can be accepted by some
implementations, but rejected by the others. In this work, we encode
the validation results for facilitating computation of the diversity of
a test suite and identification of the subtle discrepancies and their
root causes. Let each validation result be simplified to “rejected”
(0) or “accepted” (1). As Figure 5 illustrates, the validation results
for a certificate can be encoded into a sequence of bits, representing
that the certificate is accepted by PolarSSL/GNUtls/Chrome/IE, but
rejected by OpenSSL/NSS/Firefox. In cases where the validation
is skipped (e.g., due to a server connection error), we mark the
corresponding bit as “X”. Therefore, a behavior discrepancy can
appear if a sequence is not all zeros or all ones (“X” is omitted); two
discrepancies can be classified into one category if their encoded
results are equal (again “X” is omitted). Theoretically, a sequence
of k bits has at most 2k possible values. In our setting, the results
can be reduced to at most 510 (= 29 − 2) distinct discrepancies.

3. EMPIRICAL EVALUATION
We have conducted an extensive evaluation to compare mucert

with frankencert and two other mutation algorithms. Our results
show that mucert is significantly more cost-effective than the other
algorithms. In particular, 200 mucerts can achieve higher code
coverage than 100, 000 frankencerts. More importantly, mucert di-
versifies a test suite even if its coverage is not increased, making 1K
mucerts yield 2.2 times as many distinct discrepancies as 100, 000
frankencerts in the experiment and 3 times as many as those reported
by Brubaker et al. [13].

We have reported 20+ latent discrepancies and an additional 357
discrepancy-triggering certificates to SSL/TLS developers, who
have been investigating causes of the reported discrepancies and
identifying flaws in their implementations. Our reported certificates
have also led to active discussions in the community and even pro-
posed changes to IETF’s RFCs. The rest of the section presents our
detailed results and analysis.

797

3.1 Setup
Our empirical evaluation of mucert is designed to answer the

following research questions:

• Coverage: What coverage can be achieved by mucerts when
used for testing of SSL/TLS implementations?
• Precision: How precise are the mucerts for uncovering dis-

crepancies among certificate validation code?
• Diversity: Are the mucerts diverse?
• Flaws: Can the discrepancies pinpoint any real flaws in cer-

tificate validation code?

3.1.1 Preparation
Mucert optimizes a set of certificates iteratively, guided by achieved

code coverage w.r.t. a specific SSL/TLS implementation. For the
initial seed certifates, we use a collection of 1,006 certificates pro-
vided by frankencert [13]. These certificates were gathered using
ZMap [25] by scanning the Internet and attempting SSL connections
to hosts listening on port 443. If a connection was successful, the
certificate presented by the server was added to the collection.

As for the reference SSL/TLS implementation, we use OpenSSL-
1.0.1j, and the objective is to optimize mucerts to cover the source
code of OpenSSL as much as possible. We consider both statement-
and branch-coverage optimized search heuristics (which we call
SOSH and BOSH repsectively) to direct certificate mutations. We
use the mature, widely adopted coverage tool GCOV + LCOV to
collect coverage statistics.

Our evaluation was conducted on a 64-bit Ubuntu 14.04 LTS
desktop (with an Intel Core i7-4770 CPU and 16GB RAM). We
performed differential testing on nine SSL tools and browsers, in-
cluding OpenSSL 1.0.1j, PolarSSL 1.3.9, Gnutls 3.3.10, NSS 3.17.3,
CyaSSL-3.3.0, MatrixSSL 3.7-1, Google’s Chrome 39.0.2171.95,
Mozilla’s Firefox 34.0, and Microsoft’s Internet Explorer 11.0.14.
Except Internet Explorer, all these tools and browsers were tested
on the 64bit Ubuntu 14.04 LTS machine. Internet Explorer was
tested on a 32-bit Windows 7 Enterprise desktop (with an Intel Core
i5-2430M CPU and 4GB RAM).

3.1.2 Evaluated Methods and Metrics
We evaluated mucert against three other methods:

• frankencert: Frankencert produces a number of fake certifi-
cates that are randomly synthesized from parts of real cer-
tificates. Thus frankencerts include unusual combinations of
extensions and constraints;
• randmut: It is a random mutation algorithm that we designed

to compare against mucert. It performs random mutation
operations on the certificates in a test suite; and
• greedymut: It is a greedy mutation algorithm that we designed

also for the purpose of demonstrating mucert’s capability. It is
similar to mucert, and computes the coverage w.r.t. a sample.
It differs from mucert in that it will accept a proposed sam-
ple if the sample leads to increased coverage, and otherwise
rejects the sample.

We record several metrics during the evaluation. We report the
covered statements and branches by the test suites. The more pro-
gram statements/branches are covered, the more validation policies
can be triggered by the corresponding test suites. We also normalize
the coverage Cov using the following formula

NormCov =
Cov− ⊥
>− ⊥ × 100%,

where ⊥ and > are respectively the lower and the upper bounds of
the coverage values. We do not use the absolute coverage rates, as

OpenSSL supports a rich set of functions, while many (e.g., gen-
eration of self-signed certificates and private keys) do not concern
certificate validation. For the same reason, we can only approximate
the lower and the upper bounds, but not their actual values, which
suffice for guiding certificate mutation.

We record any discovered validation discrepancies and compute
the precision of a test suite Cert as follows

Precision =
|DCert|
|Cert| ,

where |Cert| denotes the number of certificates in the test suite, and
DCert a subset of the certificates that trigger discrepancies. The
more discrepancies discovered by a test suite with a fixed number
of certificates, the more precise the test suite is.

We compute the diversity of a test suite using the formula

Diversity =
|DDCert|+ δ

|Cert| × 100%,

where |DDCert| denotes the number of distinct discrepancies,
and the numerator |DDCert| + δ denotes the number of distinct
encoded results (δ ∈ {0, 1, 2} to count for the all zeros and all
ones if they exist). The more distinct discrepancies found, the more
diverse are the certificates in the test suite.

In practice, neither discrepancies nor diversity can be conveniently
computed during certificate generation, due to the very different
validation styles of SSL/TLS implementations. In our evaluation,
we will show that MCMC sampling does indeed help diversify a test
suite, besides increasing coverage (see Section 3.3).

3.2 Results on Certificate Generation
Mucert, randmut, and greedymut all require an initial set of n cer-

tificates, but take their respective strategies to optimize the set. In the
evaluation, we include in the initial set all 1, 006 certificate chains in
the corpus (n = 1, 006). When using randmut, we perform 5, 000
mutation operations, while for greedymut and mucert, we continue
to mutate the certificates until the coverage does not increase for k
(k = 500/8, 000) iterations. For a straightforward, direct compari-
son of various methods, we produce 100, 000 frankencerts.

Table 3 and Figure 6 show the code coverage of the test suites on
OpenSSL, which has 77,264 SLOC and 58,897 branches in total.
We use the minimal values, 5,461 SLOC and 2,364 branches, in
Table 3 to approximate the lower bound⊥, and the maximum values
7,714 SLOC and 3,783 branches, for the upper bound >. The last
column shows the normalized coverage achieved.

Finding 1: 1K mucerts achieve up to 25% higher normalized cov-
erage than 1K frankencerts; 200 mucerts achieve higher coverage
than 100K frankencerts.

Both mucert and greedymut achieve high coverage — 7,701-
7,714 lines and 3,762-3,783 branches — regardless of the values
of k and β. In contrast, frankencert and randmut achieve as low
coverage as the initial set,2 indicating that the validation code is in-
adequately tested by their certificates. In particular, 200 mucerts can
achieve higher coverage than 100K frankencerts, demonstrating
that mucerts are more effective in testing than frankencerts. Al-
though mucerts and greedymut certificates achieve similar coverage
values, mucerts are more diverse than the greedymut certificates, as
the coverage of the former increases more rapidly than the latter.

2The certificates in the initial corpus cannot pass validation be-
cause they are validated against a special CA certificate, but not the
certificates of their issuers.

798

Table 3: Coverage achieved by the test suites (w.r.t. OpenSSL). Greedymut-1/2 and mucert-1/2 use SOSH, while greedymut-3/4 and
mucert-3/4 use BOSH. The arguments for greedymut and mucert are: (1) greedymut-1/3: k = 500; (2) greedymut-2/4: k = 8, 000;
(3) mucert-1: β = −0.03, k = 500; (4) mucert-2: β = −0.03, k = 8, 000; (5) mucert-3: β = −0.3, k = 500; (6) mucert-4: β = −0.3,
k = 8, 000.

Certification generation |Cert| NormCov
approaches Cov. 1 200 400 600 800 1006 10000 100000 (|Cert| = 1006 ∼ 100000)

initial test suite stmt. 5862 7041 7050 7078 7114 7117 / 0.735
branch 2629 3356 3368 3382 3405 3408 / 0.736

frankencert stmt. 5518 7085 7107 7120 7146 7149 7164 7208 0.749 ∼ 0.775
branch 2409 3419 3440 3451 3467 3471 3487 3520 0.780 ∼ 0.815

randmut stmt. 5513 7099 7103 7114 7114 7122 / 0.737
branch 2405 3414 3419 3431 3432 3438 / 0.756

greedymut-1 stmt. 5858 7184 7639 7670 7684 7701 / 0.994
branch 2627 3442 3725 3740 3748 3762 / 0.985

Stmt. greedymut-2 stmt. 5858 7199 7204 7700 7713 7714 (>) / 1
Cov. branch 2627 3454 3464 3766 3772 3774 / 0.993

Optimized mucert-1 stmt. 5862 7627 7641 7669 7678 7704 / 0.995
Search branch 2629 3713 3732 3747 3755 3774 / 0.993

(SOSH) mucert-2 stmt. 6803 7663 7666 7694 7694 7702 / 0.994
branch 3172 3736 3743 3763 3763 3770 / 0.990

greedymut-3 stmt. 5507 7607 7610 7638 7699 7707 / 0.996
branch 2402 3704 3714 3729 3767 3776 / 0.995

Branch greedymut-4 stmt. 5503 7595 7645 7699 7710 7712 / 0.999
Cov. branch 2392 3687 3737 3771 3779 3783 (>) / 1

Optimized mucert-3 stmt. 5461 (⊥) 7657 7674 7703 7707 7710 / 0.998
Search branch 2364 (⊥) 3736 3751 3770 3771 3776 / 0.995

(BOSH) mucert-4 stmt. 5465 7624 7645 7696 7698 7702 / 0.994
branch 2372 3698 3719 3760 3763 3767 / 0.988

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
,0
0
6

1
0
,0
0
0

1
0
0
,0
0
0

�� ��

initial set

frankencert

randmut

greedymut-1

mucert-1

Test certificates executed

KLOC

(a) Statement coverage.

2.75

2.95

3.15

3.35

3.55

3.75

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
,0
0
6

1
0
,0
0
0

1
0
0
,0
0
0

initial set

frankencert

randmut

greedymut-1

mucert-1

Test certificates executed

����1000 Branches

(b) Branch coverage.

Figure 6: Coverage achieved by the test suites. The X-axis
shows the numbers of executed certificates. For brevity, we
omit greedymut-2/3/4 and mucert-2/3/4.

Finding 2: Compared with the simpler SOSH, BOSH does not
lead to improved coverage.

Mucert-1/2 and Mucert-3/4 achieve similar statement and branch
coverage values, which shows that even the simpler SOSH can help
achieve high code coverage when the test suite has been sufficiently
mutated and diversified.

Finding 3: Greedymut/mucert generate certificates more slowly.

Table 4 compares the time spent by different approaches on gen-
erating certificates. As the table shows, frankencert generates cer-
tificates quickly, since it adopts the simple synthesis strategy for
test certificate generation. Greedymut and mucert spend much more

Table 4: Time spent on generating certificates, and iterations.
The time budget is 4 days (i.e., 345,600 seconds).

#iterations time (seconds)
frankencert 100,000 369

randmut 5,300 823
greedymut-1 1,263 12,846
greedymut-2 9,236 96,247
greedymut-3 2,297 98,780
greedymut-4 11,792 timeout

mucert-1 1,179 7,327
mucert-2 8,883 105,950
mucert-3 2,299 81,088
mucert-4 9,116 timeout

time on generating certificates, since they need to compute the cover-
age of each sample for guiding the acceptance/rejection of the next
sample. Greedymut-3/4 and mucert-3/4 spend on average 3.16×
more time than greedymut-1/2 and mucert-1/2 at each iteration, be-
cause when BOSH is employed, LCOV needs to generate and merge
large tracing files containing branch coverage information.

Both greedymut and mucert reach a steady state (when the cov-
erage does not increase) after 679~3,792 (i.e., #iterations − k)
iterations. When using SOSH, greedymut and mucert reach their
steady states in up to 3.58 (= 9,236−8,000

9,236
× 96,247

3,600
) hours, while

when using BOSH, they reach their steady states in more than 17.6
(= 2,299−500

2,299
× 81,088

3,600
) hours.

3.3 Results on Discrepancy Analysis
Table 5 shows the discrepancies found in testing. The last two

columns list the precisions and diversities of different approaches.

799

Table 5: Discrepancies discovered by the respective test certificates.

200 400 600 800 1,006 10K 100K #all_accepted #all_rejected |DDCert| Precision Diversity
(111111111) (000000000) (%) (%)

initial set 0 0 0 0 0 / / 0 1,006 0 0 0.10
frankencert 4 7 11 19 20 264 2,747 0 986 ∼ 97,253 5 ∼ 13 1.9 ∼ 2.7 0.01 ∼ 0.60

randmut 53 97 140 190 235 / / 0 766 4 23.4 0.50
greedymut-1 0 1 3 5 5 / / 0 1,001 4 0.5 0.50
greedymut-2 1 1 3 5 5 / / 0 1,001 4 0.5 0.50
greedymut-3 1 1 2 4 5 / / 0 1,002 3 0.5 0.40
greedymut-4 1 4 4 5 5 / / 0 1,002 3 0.5 0.40

mucert-1 26 59 94 119 153 / / 0 853 27 15.2 2.78
mucert-2 50 115 180 234 289 / / 0 717 26 28.7 2.68
mucert-3 42 96 151 206 252 / / 1 753 28 25.0 2.98
mucert-4 26 50 69 92 108 / / 0 898 17 10.7 1.79

�

��

���

���

���

���

���

���

��� ��� ��� ��� ����

	
���
��������
�
�
���
�

��������
�

�����
��
��

�������

��

�������

��

�������

��

�������

��

�������

���
����

���
����

���
����

���
����

�������

(a) Discrepancies.

�

�
� � �

� �

��
��

��

	�

�

�

	�

	�

��

��

��

��������

��

(b) Distinct discrepancies.

� ����

�����

��� ��� ��� ���

�����

�	�
�

�����

���
�

�

�

��

��

��

��

��

��

�

����

(c) Precision.

���

��� ��� ��� ��� ��� ���

���	 ���	

��
	

���

�

���

�

���

�

���

�

���

�

(d) Diversity.

Figure 7: Discrepancy analysis. The columns in orange hold the values for frankencerts when |Cert| = 100, 000.

����

����

����

����

����

����

����

�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
	

�
�
�
�

�
�
�
�

�
�
�

�
�

�

�
�
�
�

�
�
�

	
�
�

	
�

�

	
	
�
�

�
�
�
	

�

	
�

�
�
�
�

�

�

�
�
�
�

�
�
	
�

���������

���������

	
�����

	
�����

����������

	
�

(a) Coverage

�

��

���

���

���

���

���

�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
	
�
�

�
�
�
�

�

�
�

�
�
�
�

�
�

�

�
	
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�

�

�
	
�

�
�
�
�

�

�
�

���������

���������

���	
���

���	
��

����������

	
����
|DCert|

(b) Discrepancy

�

�

�

�

�

�

�

�

	

��

�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
	
�
�

�
�
�
�

�

�
�

�
�
�
�

�
�

�

�
	
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�

�

�
	
�

�
�
�
�

�

�
�

���������

���������

�������

�������

����������

	

����|DDCert|

(c) Distinct Discrepancies

Figure 8: Correlation between coverage and discrepancies. The X-axis stands for the numbers of iterations.

Table 6: Validation results of the 357 mucerts. A certificate is accepted by Firefox, Chrome, or IE if it can be imported into the
certificate manager without any warning messages. Any parsing error reported by browsers is taken as a rejection.

OpenSSL PolarSSL Gnutls NSS CyaSSL MatrixSSL Firefox Chrome IE
Accepted 120 344 10 9 262 299 308 2 109
Not parsable / 12 12 38 / 23 / / /
Rejected 237 1 335 310 95 35 49 355 248

800

Figures 7(a) and (b) compare the discrepancies and distinct ones
found by the different approaches, respectively; (c) and (d) compare
their precisions and diversities, respectively.

Finding 4: 1K mucerts trigger up to 14.5× as many discrepan-
cies and 5.6× as many distinct discrepancies as 1K frankencerts;
1K mucerts trigger up to 2.2× as many distinct discrepancies as
100K frankencerts.

Randmut and mucert trigger the most number of discrepancies
when |Cert| = 1, 006. On average, 20% of mucerts can trigger
discrepancies, and each mucert-mutated test suite can help identify
about 25 distinct discrepancies. In comparison, 2.8% of 100K
frankencerts can only trigger 13 distinct discrepancies, as most
frankencerts are rejected due to trivial parsing errors. In particular,
1K mucert-2 certificates can trigger 14.5× as many discrepancies
as 1K frankencerts; 1K mucert-3 certificates can trigger 5.6× and
2.2× as many distinct discrepancies as 1K and 100K frankencerts,
respectively. Many discrepancies have also been discovered by
the randmut certificates, but they are reduced to only four distinct
discrepancies. This shows that most discrepancies found by randmut
certificates are redundant.

Finding 5: Mucerts achieve 28.7% precision and 3.0% diver-
sity; all distinct discrepancies found by frankencerts and rand-
mut/greedymut certificates are also found by mucerts.

Up to 28.7% of mucerts reveal discrepancies, so do 2.7% franken-
certs, 23.4% randmut certificates and 0.5% greedymut certificates.
Mxucerts achieve up to 3.0% diversity, while the others achieve
only less than 0.6%. These results show that mucert is much more
cost-effective than frankencert and greedymut. In addition, we have
observed that each distinct discrepancy found by frankencerts and
randmut/greedymut certificates is also discovered by mucerts.

Finding 6: Mucert can stochastically diversify a test suite even
when it does not further increase test coverage.

We have investigated the samples generated by mucert-2/4, and
observed how the coverage and discrepancies vary w.r.t. the number
of iterations. To make the analysis feasible, we selected one sample
every five iterations, and only ran these test suites on OpenSSL,
PolarSSL, Gnutls, and NSS and identified validation discrepancies.

Figure 8(a) shows that a test suite can approach a peak coverage
value after about 400 iterations. Nevertheless, MCMC sampling
continues to diversify the test suite: Figures 8(b) and (c) show that
more (distinct) discrepancies can be triggered by the samples even
if their coverage does not increase (or even decrease).

In addition, we observe that most discrepancies (and distinct ones)
are discovered by the samples between 1,200 and 2,500 iterations,
but the numbers decrease slowly in subsequent iterations. One main
reason for this is that the proposed distribution of MCMC sampling
is in fact not symmetric: mucert needs to parse a certificate and
then mutate it, so a valid certificate can be mutated to a mutant with
parsing errors, but the opposite direction is usually infeasible. For
example, 1K mucert-2 certificates can contain 159 (15.8%) certifi-
cates with parsing errors (w.r.t. OpenSSL) after 8,000 iterations.

3.4 Bug Reports and Developer Feedback
We have reported 20+ distinct discrepancies and an additional 357

discrepancy-triggering mucerts to SSL/TLS developers/maintainers.
These certificates illustrate prevalent validation discrepancies among
the different implementations. As Table 6 shows, OpenSSL does
not report any parsing errors during validation, as the certificates
were created by OpenSSL. PolarSSL tends to accept more certificate
chains having self-signed certificates than OpenSSL, Gnutls, and

NSS. 234 certificates are accepted by both MatrixSSL and CyaSSL,
and 30 rejected by both, while the remaining 93 are accepted by one
and rejected by the other. Browsers also behave differently when
certificates are imported, 49 (14%) and 248 (69%) certificates can
be imported into Firefox and IE’s certificate managers without trig-
gering any warning messages, respectively, while Chrome accepts
nearly all certificates except one expired and another failed to parse.

Finding 7: Certificate validation discrepancies are prevalent.

However, this does not necessarily indicate that SSL/TLS con-
nections are insecure, because the discrepancies more likely exhibit
compatibility issues among SSL/TLS implementations. For exam-
ple, certificates in the test suite are issued by an issuer with a valid
private key, and thus the certificate chains can pass validation if
they are well-formed and have not expired. But some SSL/TLS
implementations also validate malformed certificate chains. To date,
we have yet to find any real exploits that maliciously use the discrep-
ancies we have found, although it has been reported that parsing
differences between CA software and browser certificate validation
code can be exploited as man-in-the-middle attacks [32].

We have also made some fake certificates issued by a valid CA
certificate with a fake private key, and checked whether they could
trigger any discrepancies. They are similar to some real man-in-the-
middle attacks.

Finding 8: Developers do have many doubts and concerns when
implementing certificate validation code.

OpenSSL security team admitted that there are a lot of certificates
that can violate RFCs, but they cannot reject all of them unless they
are certainly security related.

PolarSSL developers have confirmed a parsing error: one certifi-
cate has RelativeDistinguishedName that contains more
than one AttributeTypeAndValue. They explained that they
were unsure if such structured names were actually used, and thus
they were hesitant to increase code complexity in order to cover that
case. They have fixed the naming problem in their internal develop-
ment branch and the patch will be included in the next release.

OpenSSL, GNUTLS, PolarSSL, and MatrixSSL behave differ-
ently when a certificate has two instances of the SubjectKey-
Identifier. This finding has triggered an open question on
IETF PKIX,3 which further requires the IETF PKIX/TLS working
groups to investigate the necessity of matching AKI/SKI certificate
extensions during certificate validation and inconsistencies among
RFCs 4158, 5280 and 6125. ARM mbed TLS developers also started
to forbid repeated extensions in X.509 certificates4 because RFC
5280 states that “a certificate MUST NOT include more than one
instance of a particular extension.” Gnutls developers replied that
although the certificate could be accepted in certificate verification,
a user would receive warning messages when printing it out.

PolarSSL accepts certificate chains of the format [cert0, cert1,
cert2] even if cert1 has the same subject as cert2, but the others
(e.g., OpenSSL/Gnutls/CyaSSL) reject such chains and issue dif-
ferent warning messages (e.g., unable to get local issuer certificate,
ASN signature error, or the certificate issuer is unknown). PolarSSL
developers have explained that PolarSSL accepts these certificate
chains since they have complete and valid key chains; they may
reject these chains in future development.
3“Suggested replacement text for RFC5280, section 4.2.1.1,”
http://www.ietf.org/mail-archive/web/pkix/
current/msg33248.html
4https://tls.mbed.org/tech-updates/releases/
mbedtls-1.3.10-released

801

OpenSSL, PolarSSL, and Gnutls accept a certificate chain if
the first certificate is a trusted self-signed CA certificate, but omit
verifying the subsequent certificates. It does not strictly conform
to the validation policy “when the trust anchor is provided in the
form of a self-signed certificate, this self-signed certificate is not
included as part of the prospective certification path” [21]. The
developers have explained that it is useful to accept it because
many misinformed users include the trust anchor in the chain they
provide, even though the RFCs recommend not to do it. More
importantly, accepting such chains allows users to trust self-signed
non-CA certificates if they choose to.

All the SSL/TLS implementations and browsers but NSS strictly
reject the invalid certificates issued by a valid CA with a fake private
key. We have reported to the NSS developers that certutil
incidentally skips signature checking when it validates a certificate
in a certificate database. The developers have responded to us that
in PKI, existence as trusted is sufficient for validity. On the other
hand, other developers have claimed that this behavior confuses
many users and even security engineers.

The Chrome security team has explained that importing an invalid
certificate into the certificate manager is intentional and confers trust.
When an end user attempts to manually import an untrusted certifi-
cate into the certificate manager, certificate validation is skipped.

4. RELATED WORK
We discuss four strands of related work: (1) testing certificate

validation code, (2) random and symbolic execution, (3) feedback-
directed test generation, and (4) MCMC sampling for testing.

Testing Certificate Validation Code SSL/TLS tools and libraries
are vulnerable. Marlinspike [33, 34] has shown several vulnerabil-
ities in certificate validation code in browsers and SSL libraries.
Kaminsky et al. [32] have shown that a CA can issue a certificate
that can be used for man-in-the-middle attacks due to parsing differ-
ences between CA software and browser certificate validation code.
Georgiev et al. have used both white- and black-box techniques to
uncover vulnerabilities in validation logic [28], and have identified
several vulnerabilities. In contrast, mucert does not require deep
security knowledge, but rather employs a set of test certificates to
test the certificate validation code and find flaws inside. Thus the
mucert approach can be easily adapted in practice for verifying
SSL/TLS tools and libraries.

Bates et al. [12] present CertShim, a mechanism that improves
SSL security by interposing on SSL APIs and retrofitting legacy
software to support SSL trust enhancements. They also show how
to poll results of several verification methods to improve security.
Mucert also leverages results of multiple certificate verification han-
dlers, but focus on generating test certificates to trigger discrepancies
among these handlers.

The most closely related work to ours is frankencert [13], the
first systematic technique for synthesizing test certificates for testing
SSL/TLS implementations. Due to its completely random and thus
“blind” nature, most of frankencerts are invalid or redundant, and
do not trigger new validation policies. Compared with frankencert,
mucert allows the tester to much more effectively explore the input
space and select diverse certificates for testing.

Random and Symbolic Execution Random testing has been a
very common testing technique, which requires testers to select tests
from an input domain at random. Random testing is usually not
cost effective, especially for settings with structurally complex input
domains. Adaptive Random Testing (ART) is a controversial idea
that tries to spread out the selected values over the input domain [15–
17, 20]. Many ART algorithms mainly select tests based on the

locations of successful tests, and use distances to measure whether
the next test case is sufficiently far away from all successful tests.
Meanwhile, ART is not applicable in our adversarial testing, as
the input space of X.509 certificate is high dimensional, while it
has been reported that ART often does not work well even in one-
dimension domains [11].

Symbolic execution has been used for generating test cases for
complex programs. KLEE [14] automatically generates test cases
by running programs symbolically and generating path constraints,
attempting to hit every line of executable code and detect danger-
ous operations. Dynamic symbolic execution techniques, such as
DART [29], CUTE [43], and Pex [44], improve the effectiveness
of symbolic execution and random testing by dynamically analyz-
ing the program behaviors under random testing and automatically
generating new test inputs to direct the execution along alternative
program paths. However, so far these symbolic execution tools have
not been used for generating certificates, as the modern constraint
solvers are not able to solve the intricate syntactical and semantic
constraints on the certificates. In contrast, mucert proposes coverage
optimized search heuristics to mutate certificates, but does not rely
on any constraint solver to generate certificates.

Feedback-directed Test Generation Another emerging direction
is to employ the previously constructed tests to design new tests.
Pacheco et al. present a feedback-directed random test generation
technique [37–39]. The feedback-directed technique builds inputs
incrementally by randomly selecting a method call to apply and
finding arguments from among previously constructed inputs. Once
an input is built, it is executed, and the result determines whether
the input should be rejected or accepted for generating more inputs.
Inspired by the idea of feedback-directed testing, we leverage the
code coverage to measure and optimize a test suite.

Fraser and Arcuri introduce a technique called whole test suite
generation that can evolve all the test cases in a test suite simulta-
neously [26]. The technique starts with an initial set of randomly
generated test suites, and then uses a genetic algorithm to optimize
toward satisfying a chosen coverage criterion, while keeping the
total size of the test suite as small as possible. Mucert also em-
ploys coverage to measure a test suite, but uses MCMC sampling to
stochastically diversify a test suite, as the diversities of test suites
cannot be rapidly obtained during the sampling phase.

MCMC Sampling for Testing Zhou et al. propose a Markov chain
Monte Carlo Random Testing (MCMCRT) approach to random test-
ing [45]. On the basis of the Bayes approach to parametric models
for software testing, MCMCRT can utilize the prior knowledge and
the information on preceding test outcomes for their parameter esti-
mation. The MCMC sampler is also used to enhance performance
of random testing [47] and test case prioritization [46]. However,
MCMCRT mainly generates test inputs for numerical programs. To
our knowledge, our work is the first that effectively uses MCMC
sampling for creating structured test inputs.

5. CONCLUSION
We have introduced mucert, a guided differential testing of cer-

tificate validation, by adopting MCMC sampling to mutate X.509
certificates and produce diverse certificates for testing SSL/TLS im-
plementations. Our experimental results have clearly demonstrated
mucert’s strengths over frankencert — more detected discrepancies
and improved code coverage with orders of magnitude fewer test
certificates. We believe that developers can use mucert routinely to
identify latent flaws in SSL/TLS implementations to improve the
security and robustness of the Internet infrastructure.

802

6. REPLICATION PACKAGE
The mucert package has been successfully evaluated by the Repli-

cation Packages Evaluation Committee and found to meet expecta-
tions. The mucert package is composed of three key components:

1. Certificate mutation engine that consumes a set of Internet
certificates and produces another set of diversified test certifi-
cates. Five certificate optimization algorithms are supported
in the mutation engine: the MCMC-guided certificate muta-
tion algorithm proposed in this paper, and two random and
two greedy mutation algorithms that we designed to compare
against mucert;

2. Scripts for supporting differential testing and analysis; and
3. Seeding certificates and a sample CA certificate; for compari-

son reasons, we used the same seeding certificates provided
by frankencert [13].

A typical certificate generation process includes two phases:

1. Preparation: Mucert generates a coverage trace file for each
certificate (w.r.t. OpenSSL) and constructs a coverage infor-
mation tree for the corpus of seeding certificates; and

2. Mutation: Mucert takes one optimization algorithm to mutate
the seeding certificates. The mutants can be either accepted
for further mutations or discarded, and the coverage informa-
tion tree is updated along with the mutations.

After a number of iterations, the resulting certificates are used
to differentially test the SSL/TLS implementations. Most of the
state-of-the-art SSL/TLS implementations and web browsers can be
tested in C-S mode (e.g., OpenSSL, PolarSSL/mbed TLS, GnuTLS,
CyaSSL, NSS, MatrixSSL, Google’s Chrome, and Mozilla’s Fire-
fox). Some SSL/TLS implementations (e.g., OpenSSL, PolarSSL,
and GnuTLS) can also validate these certificate files via the com-
mand line. Some basic commands for validating certificates are
shown next, where $ca_file is a CA certificate and $cert a
mutated certificate to be validated:

• OpenSSL: openssl verify -CAfile $ca_file
$cert

• PolarSSL/mbed TLS: cert_app mode=’file’
filename=$cert ca_file=$ca_file

• GnuTLS: certtool --verify
--load-ca-certificate=$ca_file < $cert

The validation results are recorded and compared within a spread-
sheet. Each cell records the validation result (accept or reject) of a
certificate w.r.t. an SSL/TLS implementation. When a certificate is
accepted by one SSL/TLS implementation but rejected by another,
a discrepancy is found and reported.

A corpus of 357 discrepancy-triggering certificates are also con-
tained in the replication package such that other researchers and
developers can use them to further investigate the causes of discrep-
ancies among SSL/TLS implementations.

7. ACKNOWLEDGEMENTS
We thank the anonymous reviewers and the Replication Packages

Evaluation Committee members for their constructive feedback. We
also thank Baishakhi Ray for her invaluable guidance and sugges-
tions on certificate validation. This research was sponsored in part by
973 Program in China (Grant No. 2015CB352203), the National Na-
ture Science Foundation of China (Grant No. 91118004, 61272102,
61472242, and 61100051), and United States NSF Grants (Grant
No. 1117603, 1319187, and 1349528). Yuting Chen is also partially
supported by the China Scholarship Council (CSC).

8. REFERENCES
[1] https://www.openssl.org/.
[2] https://developer.mozilla.org/en-US/

docs/Mozilla/Projects/NSS.
[3] https://polarssl.org/.
[4] http://www.gnutls.org/.
[5] http://www.yassl.com/yaSSL/

Products-cyassl.html.
[6] http://www.matrixssl.org/.
[7] http://www.google.com/chrome/.
[8] https://www.mozilla.org/en-US/firefox.
[9] http://windows.microsoft.com/en-us/

internet-explorer.
[10] N. Alshahwan and M. Harman. Coverage and fault detection

of the output-uniqueness test selection criteria. In
International Symposium on Software Testing and Analysis
(ISSTA), pages 181–192, 2014.

[11] A. Arcuri and L. C. Briand. Adaptive random testing: an
illusion of effectiveness? In International Symposium on
Software Testing and Analysis (ISSTA), pages 265–275, 2011.

[12] A. M. Bates, J. Pletcher, T. Nichols, B. Hollembaek, D. Tian,
K. R. B. Butler, and A. Alkhelaifi. Securing SSL certificate
verification through dynamic linking. In ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pages 394–405, 2014.

[13] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov.
Using frankencerts for automated adversarial testing of
certificate validation in SSL/TLS implementations. In IEEE
Symposium on Security and Privacy, pages 114–129, 2014.

[14] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex
systems programs. In Symposium on Operating Systems
Design and Implementation (OSDI), pages 209–224, 2008.

[15] K. P. Chan, T. Y. Chen, and D. Towey. Restricted random
testing: Adaptive random testing by exclusion. International
Journal of Software Engineering and Knowledge Engineering,
16(4):553–584, 2006.

[16] T. Y. Chen. Adaptive random testing. In International
Conference on Quality Software (QSIC), page 443, 2008.

[17] T. Y. Chen, D. Huang, F. Kuo, R. G. Merkel, and J. Mayer.
Enhanced lattice-based adaptive random testing. In ACM
Symposium on Applied Computing, pages 422–429, 2009.

[18] S. Chib and E. Greenberg. Understanding the
Metropolis-Hastings algorithm. The American Statistician,
49(4):327–335, Nov. 1995.

[19] S. Chokhani and W. Ford. Internet X.509 public key
infrastructure certificate policy and certification practices
framework.
http://www.ietf.org/rfc/rfc2527.txt.

[20] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO:
adaptive random testing for object-oriented software. In
International Conference on Software Engineering (ICSE),
pages 71–80, 2008.

[21] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley,
and W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. RFC
5280 (Proposed Standard), May 2008.

803

[22] T. Dierks and C. Allen. The TLS Protocol Version 1.0,
January 1999. Available from
http://www.ietf.org/rfc/rfc2246.

[23] T. Dierks and E. Rescorla. The TLS Protocol Version 1.1,
April 2006. Available from
http://www.ietf.org/rfc/rfc4346.

[24] T. Dierks and E. Rescorla. The TLS Protocol Version 1.2,
August 2008. Available from
http://www.ietf.org/rfc/rfc5246.

[25] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast
Internet-wide scanning and its security applications. In
USENIX Security Symposium, pages 605–620, 2013.

[26] G. Fraser and A. Arcuri. Whole test suite generation. IEEE
Trans. Software Eng., 39(2):276–291, 2013.

[27] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer
(SSL) Protocol Version 3.0, August 2011. Available from
http://www.ietf.org/rfc/rfc6101.

[28] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world:
validating SSL certificates in non-browser software. In ACM
Conference on Computer and Communications Security
(CCS), pages 38–49, 2012.

[29] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 213–223, 2005.

[30] A. Groce, G. J. Holzmann, and R. Joshi. Randomized
differential testing as a prelude to formal verification. In
International Conference on Software Engineering (ICSE),
pages 621–631, 2007.

[31] N. Gruschka, L. L. Iacono, and C. Sorge. Analysis of the
current state in website certificate validation. Security and
Communication Networks, 7(5):865–877, 2014.

[32] D. Kaminsky, M. L. Patterson, and L. Sassaman. PKI layer
cake: New collision attacks against the global X.509
infrastructure. In International Conference on Financial
Cryptography and Data Security (FC), pages 289–303, 2010.

[33] M. Marlinspike. IE SSL vulnerability, 2002. Available from
http:
//www.thoughtcrime.org/ie-ssl-chain.txt.

[34] M. Marlinspike. Null prefix attacks against SSL/TLS
certificates, 2009. Available from
http://www.thoughtcrime.org/papers/
null-prefix-attacks.pdf.

[35] W. M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100–107, 1998.

[36] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller. Equation of state calculations by fast
computing machines. Journal of Chemical Physics,
21:1087–1092, 1953.

[37] C. Pacheco and M. D. Ernst. Randoop: feedback-directed
random testing for Java. In Companion to the Annual ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages
815–816, 2007.

[38] C. Pacheco, S. K. Lahiri, and T. Ball. Finding errors in .NET
with feedback-directed random testing. In ACM/SIGSOFT
International Symposium on Software Testing and Analysis
(ISSTA), pages 87–96, 2008.

[39] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In International
Conference on Software Engineering (ICSE), pages 75–84,
2007.

[40] E. Rescola. HTTP over TLS, May 2000. Available from
http://www.ietf.org/rfc/rfc2818.

[41] P. Saint-Andre and J. Hodges. Representation and Verification
of Domain-Based Application Service Identity within Internet
Public Key Infrastructure Using X.509 (PKIX) Certificates in
the Context of Transport Layer Security (TLS), March 2011.
Available from
https://tools.ietf.org/html/rfc6125.

[42] E. Schkufza, R. Sharma, and A. Aiken. Stochastic
superoptimization. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 305–316,
2013.

[43] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing
and explicit path model-checking tools. In International
Conference on Computer Aided Verification (CAV), pages
419–423, 2006.

[44] N. Tillmann and J. de Halleux. Pex: White box test generation
for .NET. In International Conference on Tests and Proofs
(TAP), pages 134–153, 2008.

[45] B. Zhou, H. Okamura, and T. Dohi. Markov Chain Monte
Carlo random testing. In Advances in Computer Science and
Information Technology, pages 447–456, 2010.

[46] B. Zhou, H. Okamura, and T. Dohi. Application of Markov
Chain Monte Carlo random testing to test case prioritization
in regression testing. IEICE Transactions,
95-D(9):2219–2226, 2012.

[47] B. Zhou, H. Okamura, and T. Dohi. Enhancing performance
of random testing through Markov Chain Monte Carlo
methods. IEEE Trans. Computers, 62(1):186–192, 2013.

804

