
Systematic Testing of Asynchronous Reactive Systems

Ankush Desai
University of California,

Berkeley, USA.

Shaz Qadeer
Microsoft Research,

Redmond, USA.

Sanjit Seshia
University of California,

Berkeley, USA.

ABSTRACT
We introduce the concept of a delaying explorer with the
goal of performing prioritized exploration of the behaviors
of an asynchronous reactive program. A delaying explorer
stratifies the search space using a custom strategy, and a de-
lay operation that allows deviation from that strategy. We
show that prioritized search with a delaying explorer per-
forms significantly better than existing prioritization tech-
niques. We also demonstrate empirically the need for writ-
ing different delaying explorers for scalable systematic test-
ing and hence, present a flexible delaying explorer interface.
We introduce two new techniques to improve the scalability
of search based on delaying explorers. First, we present an
algorithm for stratified exhaustive search and use efficient
state caching to avoid redundant exploration of schedules.
We provide soundness and termination guarantees for our
algorithm. Second, for the cases where the state of the sys-
tem cannot be captured or there are resource constraints,
we present an algorithm to randomly sample any execution
from the stratified search space. This algorithm guarantees
that any such execution that requires d delay operations is
sampled with probability at least 1/Ld, where L is the max-
imum number of program steps. We have implemented our
algorithms and evaluated them on a collection of real-world
fault-tolerant distributed protocols.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Algorithms, Reliability, Verification

Keywords
Systematic testing, model checking, asynchronous programs,
distributed systems, random sampling

1. INTRODUCTION
Asynchronous reactive systems are ubiquitous across do-
mains like distributed systems, device drivers, web appli-
cations, and operating systems. Processes in these systems
communicate by exchanging messages asynchronously and
react to environment input continuously. The system relia-
bility depends critically on correct handling of asynchrony
and reactivity using stateful protocols. Testing and debug-
ging of these systems is notoriously difficult due to the non-
deterministic nature of their computation; an error could re-
sult from a combination of some choice of inputs and some
interleaving of event handlers. This paper is concerned with
the problem of systematic testing of such such systems by
automatically enumerating all sources of nondeterminism,
both from environment input and from scheduling of con-
current processes.

The main challenge in scaling systematic testing to real-
world programs is the large number of behaviors that ex-
plode exponentially with the number of steps in the pro-
gram. Techniques such as state caching [11] and partial-
order reduction [9] have been developed to combat this ex-
plosion, yet their worst-case complexity remains exponen-
tial. In practice, the search often takes too long and has to be
terminated because of a time bound, thereby giving no infor-
mation to the programmer. Therefore, researchers have been
motivated to investigate prioritized search techniques, both
deterministic [12, 8] and randomized [3], to provide partial
coverage information. However, all of these techniques have
been developed for shared-memory multithreaded programs.
In asynchronous reactive programs, the primary mechanism
for communication among concurrent processes is message-
passing rather than shared-memory. We have discovered em-
pirically (Section 6) that prioritization techniques developed
for multithreaded programs are not effective when applied
to message-passing programs.

In this paper, we introduce a new technique for systematic
testing of asynchronous reactive programs. Our technique is
inspired by the notion of a delaying scheduler [8] for multi-
threaded programs. A delaying scheduler is a deterministic
thread scheduler equipped with a delay operation whose in-
vocation changes the default scheduling strategy. For asyn-
chronous reactive programs, we generalize this notion to a
delaying explorer of all nondeterministic choices (Section 2),
both from input and from the interleaving of event handlers.
The key observation that makes a delaying explorer suit-
able for systematic testing is that every execution can be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786861

73

db = 1

db = 2

db = 3 db = 4
db = 5

db = 1
db = 2

D1 D2

Figure 1: Stratification using delaying explorers

produced by introducing a finite number of delays in the
default deterministic execution prescribed by the explorer.
We show that appropriately designed delaying explorers are
significantly better than existing prioritization techniques in
searching for errors in executions of asynchronous message-
passing systems.

A delaying explorer induces stratification in the search space
of all executions. A stratum is the set of executions that re-
quire the same number of delays. Figure 1 represents the
stratification pictorially; db = 1 is the set of executions
with one delay, db = 2 is the set of executions with two
delays, and so on. A delaying explorer specifies a prioritized
search that explores these strata in order. Since the num-
ber of possible executions increases exponentially with the
delay budget, exploration for high budget values becomes
prohibitively expensive. Therefore, a delaying explorer is ef-
fective only if bugs are uncovered at low values of the delay
budget. Figure 1 shows the stratification induced by two
different delaying explorers. The explorer D2 is more effec-
tive than D1 at discovering a particular bug if that bug lies
in a lower stratum for D2 than for D1.

The difference in stratification induced by different delaying
explorers has practical consequences. We have observed em-
pirically that there is considerable variance in the speed of
detecting errors across different delaying explorers for differ-
ent test problems1. Motivated by this observation, we have
designed a general delaying explorer interface that helps pro-
grammers quickly write custom search strategies in a small
amount of code, typically less than 50 LOC. Delaying explor-
ers also provides developers and testers with a simple and
elegant mechanism to express domain-specific knowledge re-
garding parts of the search space to prioritize. We have writ-
ten several delaying explorers using our framework and used
them to find bugs in implementations of distributed proto-
cols that could not be discovered using any other method.
We describe a particular case study in Section 6.

Given a delaying explorer, we need techniques for effectively
exploring the strata induced by the explorer. In this pa-
per, we also present two algorithms —Stratified Exhaustive
Search (SES) and Stratified Sampling (SS)— for solving this
problem. SES performs stratified search by iteratively in-
crementing the delay budget and exhaustively enumerating
all schedules that can be explored with a given delay budget.

1A test problem is the combination of a program and a spec-
ification.

Inspired by model checking techniques, we incorporate state
caching to avoid redundant exploration of schedules. By
caching the states visited along an execution, we can prune
the search if an execution generated subsequently leads to a
state in the cache. Incorporating state caching in delaying
exploration is nontrivial because search is performed over
executions of the composition of the program and the delay-
ing explorer, both reading and updating their private state
in each step of the execution. The naive strategy of caching
the product of the program and the explorer state does not
work because the delaying explorer can be an arbitrary pro-
gram with a huge state space of its own. Instead, our al-
gorithm caches only the program state yet guarantees that
in the limit of increasing delay budgets, all executions of
the program are covered. Our evaluation shows that SES
finds bugs orders of magnitude faster than prior prioritiza-
tion techniques on our benchmarks (Section 6).

Even though state caching is an important optimization,
it is not a panacea to the explosion inherent in system-
atic testing. The complexity of the algorithm mentioned
in the previous paragraph still grows exponentially with the
number of allowed delays. Consequently, if a delaying ex-
plorer is unable to find a bug quickly within a few delays,
the search must be stopped because of the external time
bound. To further scale search to large delay budgets, we
present the SS algorithm which performs stratified sampling
of the search space with probabilistic guarantees. Our algo-
rithm guarantees that any execution that is visited with db
delays is sampled with probability at least 1/Ldb , where L
is the maximum number of program steps. SS is useful be-
cause it allows even distribution of the limited time resource
over the entire search space. Furthermore, since each sample
is generated independently of every other sample, random
exploration can be easily and efficiently parallelized or dis-
tributed. Finally, for some systems state caching may not
be possible because of the difficulty of taking a snapshot of
the entire system state. In this situation, search based on
random sampling could be very useful. We empirically show
(Section 6) that on our benchmarks, SS can find bugs faster,
often by an order-of-magnitude, compared to the prior best
technique [3] for random sampling of executions of multi-
threaded programs.

We have implemented our framework and algorithms for sys-
tematic testing of applications written in P [6], a domain-
specific language for asynchronous event-driven program-
ming currently used for developing device drivers and dis-
tributed services. The P compiler generates both executable
C code and Zing code which can be explored with the Zing
model checker. The generated C code is used for executing
the application either locally on a single computing node
or distributed across a collection of nodes. We have imple-
mented in P a fault-tolerant transaction management sys-
tem (TMS) that internally comprises many protocols such
as two-phase commit [2], multi-paxos [4], and chain replica-
tion [21]. Using our test framework, we found many bugs,
caused by protocol-level race conditions, in our implementa-
tion of TMS. The suite of protocols in TMS form the bench-
mark set for evaluating our algorithms.

We note that our techniques are not limited to the P lan-
guage. They generalize to any programming system with

74

two properties: (1) ability to create executable models of
the execution environment of a program, and (2) control
over all sources of nondeterminism in program semantics.

We conclude this section by summarizing our contributions:

1. We introduce delaying explorers as a foundation for sys-
tematic testing of asynchronous reactive programs. We
empirically demonstrate that for the domain of message-
passing programs, delaying explorers are better, often by
an order-of-magnitude, than existing prioritization tech-
niques.

2. We observe that the efficacy of a delaying explorer de-
pends on the test problem. To enable programmers to
easily write custom explorers, we have created a flexible
interface for specifying explorers. We have written four
delaying explorers, each in less than 50 LOC, using our
interface.

3. We present the SES algorithm that uses state-caching
for efficiency while prioritizing search using a delaying ex-
plorer. The algorithm guarantees soundness even without
caching the state of the delaying explorer.

4. We present the SS algorithm to efficiently sample exe-
cutions with a fixed number of delays. Our algorithm
guarantees that if a buggy execution exists with db delays
for a given delaying explorer, then each sample triggers
the bug with probability at least 1/Ldb where L is the
maximum number of steps in the program.

2. DELAYING EXPLORERS
In this section, we provide intuition for delaying explorers
and their use in systematic testing of asynchronous reactive
systems. We begin by formally stating our model of pro-
grams and explorers.

A program P is a tuple (S,Cid , T, s0):

1. S is the set of states of P.

2. Cid is a finite set of nondeterministic choices that P can
make during execution. This set includes both choices
due to scheduling of concurrent processes in P and choices
due to nondeterministic input received by each process.

3. T ∈ Cid × S ⇀ S is the transition function of P. If
s′ = T (c, s), we say that (s, s′) is a transition of P. We
define Choices(s) = {c | ∃s′. T (c, s) = s′}.

4. s0 is the initial state of P.

A sequence of states s0, s1, s2, . . . , sn is an execution of P if
(si, si+1) is a transition of P for all i ∈ [0, n). A state s ∈ S is
reachable if it is the final state of some execution. An infinite
sequence of states s0, s1, s2, . . . is an infinite execution of P if
(si, si+1) is a transition of P for all i ≥ 0. We assume that P
is terminating , i.e., it does not have any infinite executions.

The formalization of the nondeterministic transition graph
of an asynchronous reactive program is standard in the lit-
erature; it is depicted pictorially in Figure 2. The explo-
ration algorithms popularized by model checking tools, e.g.
SPIN [11], view the transitions coming out of a state as un-
ordered; the order in which those transitions are explored
is considered an implementation-level detail. A delaying

𝑆0

𝑆2𝑆1 𝑆3

𝑆5𝑆4 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

Figure 2: A concurent program

Next Delay

Next Delay Next Delay

𝑆1, 𝐷1 , 0

𝑆0, 𝐷0 , 0

𝑆0, 𝐷2 , 1

𝑆4, 𝐷3 , 0 𝑆1, 𝐷4 , 1 𝑆2, 𝐷5 , 0
𝑆0, 𝐷6 , 2

Next

𝑆3, 𝐷11 , 0

Next Delay

𝑆5, 𝐷7 , 0 𝑆1, 𝐷8 , 2

Next Delay

𝑆7, 𝐷9 , 0 𝑆2, 𝐷10 , 1

Figure 3: A concurrent program composed with a
delaying explorer

explorer, formalized below, instead considers the order of
transitions an important concern for efficient exploration. It
provides a general interface for specifying this order based
on the entire history of the program execution.

A delaying explorer D is a tuple (D,Next ,Step,Delay , d0):

1. D is the set of states of D. The state of the explorer
typically includes a data structure, e.g. stack or queue,
to maintain an ordering among the choices available to
the program.

2. Next ∈ D → Cid is a total function. Given a explorer
state d, the choice Next(d) is prescribed by the explorer
to be taken next.

3. Step ∈ S × D → D is a total function. Suppose we
have a program state s and a explorer state d, and we
execute the choice Next(d) at s. Then Step(s, d) yields
the explorer state corresponding to the program state
T (Next(d), s). The Step function enables building ex-
plorers which change their state in response to specific
events that occur during execution of the program, such
as sending or receiving of messages, creation of new pro-
cesses, etc.

4. Delay ∈ D → D is a total function. Given a explorer
state d, the application Delay(d) yields a new explorer
state. The Delay function provides a mechanism to change
the next choice to be explored.

5. d0 is the initial state of D.

Consider a delaying explorer that attemts to order the out-
going transitions of each state left to right for the program
in Figure 2. The unfolding of the nondeterminism in this
program as controlled by such a delaying explorer is shown
in Figure 3. We formalize and explain the intuition behind
this figure below.

Let (P,D) denote the composition of a program P and a de-
laying explorerD. A state of (P,D) is a triple (s, d, n), where

75

s is the state of P, d is the state of D, and n is the number
of consecutive delay operations applied in state s. A finite

sequence (s0, d0, n0)
x0−→ (s1, d1, n1)

x1−→ (s2, d2, n2)
x2−→ · · ·

is an execution of (P,D) if for all i ≥ 0, either (1) xi = Next ,
ni+1 = 0, T (Next(di), si) = si+1, and Step(si, di) = di+1,
or (2) xi = Delay , ni+1 = ni + 1, ni+1 < |Choices(s)|,
si = si+1, and Delay(di) = di+1. In this execution, a transi-

tion
Next−→ is a Next-transition and

Delay−→ is a Delay-transition.
In Figure 3, each state has exactly these two outgoing tran-
sitions. A triple (s, d, n) is a reachable state of (P,D) if it
occurs on an execution. A db-delay execution of (P,D) is
one in which the number of Delay-transitions is db. Thus, a
delaying explorer D induces a stratification of the executions
of a program P such that the i-th stratum contains exactly
the set of i-delay executions.

In order to ensure that all behaviors are covered, the delay-
ing explorer must ensure that all nondeterministic choices
from a state are generated by successive applications of Delay .
To formalize this requirement, we define Delayk (for k ≥ 0)
inductively as

Delay0(d) = d
Delayk+1(d) = Delay(Delayk(d))

and Nextk (for k ≥ 0) inductively as

Next0(d) = {}
Nextk+1(d) = Nextk(d) ∪ {Next(Delayk(d))}.

A delaying explorer D is sound with respect to a program P
if Choices(s) = Next |Choices(s)|(d) for every reachable state
(s, d) of (P,D). This property states that all nondetermin-
istic choices in a state are covered through iterative appli-
cation of the Delay operation composed with Next . In Fig-
ure 3, all successors, S1 through S3, of state S0 are reachable
via at most two invocations of Delay . This property guar-
antees (Theorem 1) that reachability analysis on (P,D) is
equivalent to reachability analysis on P.

Theorem 1. Consider a program P and a delaying ex-
plorer D that is sound with respect to P. A state s is reach-
able in P iff (s, d) is reachable in (P,D) for some d.

Example: Let us consider a simple program in which the
only source of nondeterminism is the scheduling of concur-
rent processes. An example of a delaying explorer for this
program is a round-robin process scheduler. The state D of
this scheduler is a queue of process ids initialized to contain
the id of the initial process. Next returns the process id
at the head of the queue. Step instruments the program’s
execution so that the id of a new process is added to the
tail, the id of a terminated process is removed, and the id
of a blocked process is moved to the tail. Delay moves the
process id at the head to the tail. This explorer maintains
the invariant that the ids of all enabled processes are present
in the queue. By applying the Delay operation at most n
times, where n is the size of the queue, any enabled process
can be moved to the head and be returned by a subsequent
call to Next . Therefore, this explorer is sound with respect
to the program.

0 L-1

00 L-1 L-1

0

db

Execution with 0 delay

Executions with 1 delay

Executions with 2 delays

Figure 4: Stratified exhaustive search

3. STRATIFIED EXHAUSTIVE SEARCH
Figure 4 shows a pictorial representation of stratified exhaus-
tive search of a program with respect to a delaying explorer.
In this picture, L is the maximum number of steps in the
program. In contrast to the graphs in Figures 2 and 3 where
a node represents the program state, each node in Figure 4
is a complete execution of the program. The root node is
the execution with no delays. This execution presents at
most L positions to insert a delay operation, each yielding
another complete execution with a single delay operation.
These executions are indicated by the nodes at the end of
the edges coming out of the root node. This process can
be continued until all executions have been generated. It is
clear that there can be at most Ldb executions with no more
than db delays. Thus, for small values of db, it is feasible to
enumerate all executions even for large values of L. This ob-
servation suggests our stratified exhaustive search algorithm
(SES) which generates executions level by level, exploring
all executions in a level before moving to the next level. A
delaying explorer induces a stratification of the executions
of a program; in general, different delaying explorers induce
different stratification for the same program. Thus, a delay-
ing explorer is a mechanism to bias the search performed by
our SES algorithm to different parts of the execution space.

The algorithm in Figure 5 takes as input a program P, a
delaying explorer D, and a parameter δ > 0. It uses three
global variables. The integer db, initialized to 0 and itera-
tively incremented by δ, contains the current delay bound.
During the search, a frontier of pending executions, that go
beyond the current delay bound, is maintained in the dic-
tionary Frontier . For each state s in the frontier, Frontier
contains a pair (d, i), where d is the explorer state just prior
to the the execution of i-th transition from state s. The
mapping from s to (d, i) is put into the frontier because exe-
cution of the i-th transition would require more delays than
the current bound. Finally, we optimize the search by using
a cache of (hashes of) visited states maintained in the set
Cache.

The workhorse of our algorithm is DelayBoundedDFS , a
procedure with four parameters—program state s, explorer
state d, transition count i, and delay count n. The goal of
DelayBoundedDFS is to continue exploration from state s.
The transition count i is the number of transitions already
explored from s. The delay count n is the number of delays
required, starting from the initial state, to execute the next
transition out of s. DelayBoundedDFS iterates through the
transitions from s by repeatedly invoking the Next operation
of the delaying explorer to find out which transition to exe-
cute and incrementing i to indicate the execution of another
transition. For each discovered state s′, if s′ is not present in

76

var db : N;
var Frontier : Dictionary〈S, (D × N)〉;
var Cache : Set〈S〉;
DelayBoundedDFS(s : S, d : D, i : N, n : N) {

var s′ : S;
while (i < |Choices(s)|) {

s′, i := T (Next(d), s), i+ 1;
if (s′ 6∈ Cache) {

Cache.Add(s′);
DelayBoundedDFS(s′,Step(s, d), 0, n);

}
if (n = db ∧ i < |Choices(s)|) {

Frontier(s) := (d, i);
break;

}
d, n := Delay(s, d), n+ 1;

}
}
SES() {

var db′ : N;
var Frontier ′ : Dictionary〈S, (D × N)〉;
db,Frontier ,Cache := 0, ∅, ∅;
Cache.Add(s0);
DelayBoundedDFS(s0, d0, 0, 0);
while (Frontier 6= ∅) {

Frontier ′,Frontier := Frontier , ∅;
db′, db := db, db + δ;
foreach ((s, d, i) ∈ Frontier ′)

DelayBoundedDFS(s,Delay(s, d), i, db′ + 1);
}

}

Figure 5: SES algorithm: Stratified exhaustive
search

Cache then it is added to Cache and DelayBoundedDFS is
called recursively on s′. To move to the next transition, the
Delay operation of the delaying explorer needs to invoked.
If the current delay count n has already reached the current
delay bound db and there is at least one more transition to
be executed, then exploration cannot continue from s and
work for the remainder of exploration from s is added to the
frontier. Otherwise, the Delay operation is used to update
d and the delay count n is incremented.

The top-level procedure of our algorithm is SES . This pro-
cedure initializes db to 0 and Frontier and Cache to ∅. It
then executes two nested loops. The outer loop iterates over
the value of db incrementing it by δ each time around. The
goal of each iteration of this loop is to restart each pend-
ing exploration in the current frontier. To do this task, a
copy of Frontier is made in Frontier ′ and Frontier is reset
to ∅. The inner loop then picks each work item in Frontier ′

and invokes DelayBoundedDFS with it. The execution of
the inner loop refills Frontier which is again emptied in the
next iteration of the outer loop. Theorem 2 formalizes the
correctness of the SES algorithm.

Theorem 2. Consider a program P and a delaying ex-
plorer D that is sound with respect to P. The SES algorithm
(Figure 5) terminates and visits a state s′ iff s′ is reachable
from s0.

Neither the termination nor the safety argument for our al-
gorithm depends on Cache. The only role of Cache is to op-
timize the search by avoiding redundant executions. There-

fore, there is considerable flexibility in how much memory is
devoted to the storage for Cache. The two extreme cases are
when Cache is not used at all and when all visited states are
put into Cache. But, it is possible and our implementation
supports imposing a bound on the memory consumption for
Cache beyond which states are either not added to Cache
or added with replacement.

An important consideration in our use of Cache is that we
store only the program state in it and avoid storing the ex-
plorer state. This design has the advantage that we get the
maximum pruning out of the use of state caching. If a state
s is first visited with explorer state d and later with explorer
state d′, the second visit is ignored even if it happened with
fewer delays compared to the first visit. As a result, we can
avoid re-exploration for the second visit. However, it may
be possible that a state is discovered with a higher delay
than the minimum delay required to visit it. We believe
that this trade-off is good because the primary goal of a
delaying explorer is to bias the search rather than enforce
strict priority.

Finally, we note that it is enough to store only a hash of a
state in Cache. But it is important to store the full state
both when it is passed as a parameter to DelayBoundedDFS
or when it is stored in Frontier since the program needs to
be executed from it. For the latter uses, a state could either
be cloned or reconstructed by re-executing the program from
the beginning.

4. STRATIFIED SAMPLING
In the previous section, we described the SES algorithm
to perform stratified exhaustive search over the executions
of an asynchronous reactive program. In this section, we
describe a complementary algorithm that enables stratified
exploration via near-uniform random sampling of executions
from the strata induced by a delaying explorer; we call this
algorithm the stratified sampling algorithm (SS).

To motivate why random sampling is beneficial, we note
that the complexity of the SES algorithm grows exponen-
tially with the upper bound on the number of allowed de-
lays. Consequently, if a delaying explorer is unable to find
a bug quickly within a few delays, the search often takes
more time than the programmer is willing to wait for. To
deal with this common problem, a time bound is usually
supplied in addition to the number of delays. When an ex-
ternal time bound could stop the search before the delay
limit has been reached, random sampling has certain ad-
vantages over exhaustive deterministic exploration. First,
unlike deterministic exploration, random sampling can sam-
ple every execution with a non-zero probability, making it
possible to distribute the limited time resource over the en-
tire search space. Second, since each sample is generated
independently of every other sample, random exploration
can be easily and efficiently parallelized, an important ad-
vantage in an era where parallelism is abundantly available
via multicore and cloud computing.

Figure 6 shows how our algorithm samples an execution
with two delay operations. First, the ExecutePath func-
tion (defined later in Figure 7) executes the program using
a custom strategy defined by the delaying scheduler with-

77

𝑆0,0

𝑆𝑛0,0

𝑆𝑛0+1,0

𝑆𝐿0,0

𝑆𝑛1,1

𝑆0,1

𝑆𝑛1+1,1

𝑆𝐿1,1

𝑆𝐿2,2

𝑆0,2

𝑆1,2

Next

Next

Next

Next

Next

Next

Delay

Next

Delay

Figure 6: A run of SS algorithm

out introducing any delays. The ExecutePath function re-
turns the length of the execution L0 from the start state to
the terminal state. Using choose(L0) we uniformly pick a
value n0 in the range [0, L0) to insert the first delay. When
ExecutePath is invoked again, it introduces a delay at n0, de-
terministically executes the program upto termination, and
returns L1, the length of the path since the last delay. Us-
ing choose(L1) we uniformly pick a value n1 in the range
[0, L1) to insert the second delay. Finally, the execution
S0,0 →∗ Sn0,0 → S0,1 →∗ Sn1,1 → S0,2 →∗ SL2,2 represents
a random execution with two delays.

Given a program P, a delaying explorer D, and a delay
bound db, an invocation of DelayBoundedSample (Figure 7)
produces a terminating execution of P with no more than
db delays. The random exploration performed by our algo-
rithm is very different in spirit from the classical random
walk algorithm on a state-transition graph (Figure 2) which
starts from the initial state and executes the program by ran-
domly selecting a transition out of the current state. This
naive random walk, although it guarantees a non-zero prob-
ability for sampling any execution, suffers from the problem
that the probability of sampling long executions decreases
exponentially with the execution length. Instead, our algo-
rithm performs a random walk, not on the state-transition
graph, but on a different graph (Figure 4) induced by the
delaying explorer D. In this graph, each node is a complete
terminating execution (as opposed to a state) and an edge
is a position in the execution for inserting a delay (as op-
posed to transition). We show later that the probability of
sampling any execution requiring db delays is at least 1

Ldb .
Unlike the naive random walk, the probability of sampling
an execution is exponential in the number of required delays
rather than the number of steps. A long execution has just
as much chance to be produced as a short execution with the
same number of delays, thereby eliminating the bias towards
short executions.

The algorithm in Figure 7 uses a single global variable path,
a sequence of natural numbers. This sequence represents
a path as follows. For each i starting from 0 and up to
path.Length − 1, execute P for path[i] steps followed by a
delay. Finally, execute P until it terminates. The procedure
ExecutePath performs the execution encoded by path and
returns the number of steps performed after the last delay.

The procedure DelayBoundedSample invokes the procedure
ExecutePath repeatedly to randomly sample an execution

var path : Sequence〈N〉
ExecutePath() : N {

var i, j : N;
var s : S;
var d : D;
s, d, i := s0, d0, 0;
while (i < path.Length) {

j := 0;
while (j < path[i]) {

s, d, j := T (Next(d), s),Step(s, d), j + 1;
}
d, i := Delay(s, d), i+ 1;

}
j := 0;
while (0 < |Choices(s)|) {

s, d, j := T (Next(d), s),Step(s, d), j + 1;
}
return j;

}
DelayBoundedSample() {

var i, l : N;
if (|Choices(s0)| = 0) return;
path := ∅;
l := ExecutePath();
i := 0;
while (i < db)
invariant 0 < l
{

path.Append(choose(l));
l := ExecutePath();
i := i+ 1;

}
}
SS() {

var i : N;
db := 1;
while (true) {

i := 0;
while (i < NumSamples(db)) {

DelayBoundedSample();
i := i+ 1;

}
db := db + 1;

}
}

Figure 7: SS algorithm: Near-uniform random sam-
pling

with db delays. If the initial state s0 does not have any
transitions, there is nothing to do. Otherwise, it sets path
to the empty sequence and calls ExecutePath which executes
P without any delays. The algorithm chooses a step at ran-
dom from the number of steps returned by ExecutePath as
the position to execute a delay operation. It extends path
with it and invokes ExecutePath again to create a new ex-
ecution. It continues to do so iteratively until the number
of delays in the execution has reached db. A single invo-
cation of DelayBoundedSample samples a single execution
with db delays. To calculate this sample, it must re-execute
the program db times and perform db random choices.

Theorem 3. Consider a program P and a delaying ex-
plorer D that is sound with respect to P. Let L be the max-
imum number of steps along any execution of P. For any
integer db ≥ 0 and any execution τ of (P,D) with db delays,
the SS algorithm (Figure 7) generates τ with probability at
least 1

Ldb .

78

Figure 7 also shows a procedure SS that repeatedly invokes
DelayBoundedSample to implement a stratified sampling al-
gorithm. This procedure has an (timeout-terminated and in-
finite) outer loop that repeatedly increases the delay bound
db. The inner loop samples NumSamples(db) executions
from the set of executions with exactly db delays by invok-
ing DelayBoundedSample repeatedly. Our algorithm is pa-
rameterized by a function NumSamples that specifies the
number of executions to be sampled for each delay bound.
As we have explained before, the number of executions in-
creases exponentially with the number of available delays.
Therefore, we believe that a practical NumSamples function
should also have an exponential dependency on the delay
bound. For our evaluation (Section 6), we chose c1 + cdb2
to be the shape for NumSamples(db); through trial and er-
ror, we found that c1 = 100 and c2 = 3 work well for the
benchmarks we studied in this paper.

5. IMPLEMENTATION
In this section, we provide an overview of our framework for
the evaluation of delaying explorers in systematic testing of
reactive asynchronous programs.

P programs: We wrote our programs in the P programming
language [6], a domain-specific language for implementing
asynchronous event-driven systems. A P program is a col-
lection of state machines, each with an input message queue,
communicating with each other by sending and receiving
messages. The P compiler generates from the input pro-
gram both C code and Zing code. The generated C code is
used for executing the application either locally on a single
computing node or distributed across a collection of nodes;
the P runtime supports both local and distributed execu-
tion. The generated Zing code is provided as input to the
Zing explorer [1] for systematic testing.

The contribution of this paper —exploiting delaying explor-
ers to search executions of asynchronous programs— de-
pends on two properties of the P programming and testing
framework. First, P allows the programmer to write con-
currency unit tests [14] by composing a program with an
executable model of its execution environment also written
in P. Environment models are erased during compilation to
C code and replaced with hand-written C code. Second, P
provides control over all sources of nondeterminism in the
program execution to enable systematic exploration of these
nondeterministic choices. The techniques described in this
paper are applicable to any programming system with these
two properties.

There are two sources of nondeterminism in the semantics of
P programs. First, P has interleaving nondeterminism be-
cause the language provides a primitive for dynamic machine
creation. As a result, multiple machines can be executing
concurrently. In each step, one machine can be chosen non-
deterministically to execute and it can either compute on
local state or dequeue a message or send a message to an-
other machine. This nondeterminism implicitly creates non-
determinism in the order in which messages are delivered to
a machine. The code of a machine has to be programmed
robustly and tested so that it continues to perform safely
regardless of the reordering. Second, a P program may also
make an explicit nondeterministic choice by using the spe-

interface IZingDelayingScheduler
{

// Next is called to get the next process to be executed
int Next ();

// Delay is called to cycle through scheduling choices
void Delay ();

// Start is called when a new process is created
void Start (int processId);

// Finish is called when a process is terminated
void Finish (int processId);

// Step is called to communicate information about execution,
// e.g. change priority, blocked process, etc.
void Step (params object [] P);

}

Figure 8: Delaying explorer interface

cial expression $ whose evaluation results in a nondetermin-
istic Boolean choice. This feature is extremely useful for
modeling the environment of reactive systems; like nonde-
terministic component failure or message loss. To find bugs
quickly and debug them, it is essential to control both these
sources of non-determinism.

Implementing a delaying explorer : We have implemented
the algorithms in Sections 3 and 4 using the infrastructure
in the Zing model checker. The component of Zing most
pertinent to our implementation is state caching and the ex-
plorer that orchestrates the depth-first search of the state-
transition graph of the input Zing program. We modified
the explorer to query an external object implementing the
IZingDelayingScheduler interface. The explorer invokes
the method Next to determine the process whose transition
it should explore and the method Delay to inform the sched-
uler of its decision to delay the next process.

The methods Start, Finish, and Step together implement
the capability formalized by the Step function described
in Section 2; these methods inform the delaying scheduler
of important events occurring during the execution. The
method Start is invoked whenever a new process is cre-
ated and the method Finish whenever a process terminates.
The method Step is used to implement a general mechanism
for instrumenting the program’s execution for updating the
scheduler state.

Controlling non-determinism : The general approach of
controlling schedules in systematic testing frameworks [3,
12, 10] is to instrument the program at every synchroniza-
tion points. In the context of asynchronous message passing
programs like P, the only synchronization points are at en-
queue of a message, blocking at dequeue and creation of
a new machine (more details in [6]). The P compiler au-
tomatically instruments the program at these three points
and passes the information to the delaying explorer using
the Step function. In addition to prioritizing interleaving
nondeterminism, a delaying explorer must also prioritize ex-
plicit nondeterministic choice. We simply adopt the con-
vention that false is ordered before true. For a language
that provides nondeterministic choice over types other than
Boolean, the choices may be controlled by expanding the
IZingDelayingScheduler interface.

79

6. EVALUATION
Our evaluation was directed towards the following goals:

X Evaluate the performance of SES and SS in compari-
son with the best known approaches, preemption bound-
ing [12] and probabilistic concurrency testing [3], respec-
tively (Section 6.1).

X Evaluate the performance of different delaying explorers
in finding bugs, and demonstrate the need for flexible
delaying explorer interface (Section 6.2).

X Demonstrate the benefit of writing custom explorer with
a case study of chain replication protocol(Section 6.3).

Experimental setup: All the experiments are performed
on Intel Xeon E5-2440, 2.40GHz, 12 cores (24 threads),
160GB machine running 64 bit Windows Server OS. The
Zing model checker can exploit multiple cores during explo-
ration as its iterative depth-first search algorithm is paral-
lel [20]. We do not report the time taken to find bugs as
it is dependent on the degree of parallelism and the parallel
explorer implementation, but instead we report the number
of distinct states explored (in the case of SES) and number
of schedules explored (in the case of SS) before finding the
bug. Time taken to find the bug is directly proportional to
these parameters. The numbers reported for the evaluation
of stratified sampling algorithm in Table 1 are a median over
5 runs of the experiment.

Benchmarks: We have used P [6] to implement a fault tol-
erant Transaction Management System (TMS) and a Win-
dows driver communicating with an OSR device. We used P
because its compiler provides a translation both to C code
for execution on the Microsoft Azure cluster and to Zing
code for systematic testing. Our implementations are not
abstract models; they are detailed enough to be deployed as
a distributed service. TMS uses various protocols like Two-
Phase Commit protocol [2] for atomicity of transactions,
Chain Replication protocol [21] for fault-tolerant replication
of state machines, Multi-Paxos protocol [4] for consistent
log replication and consensus. The buggy programs used for
evaluation in this paper were collected during the develop-
ment of this protocol suite. Each row in Table 1 represents
a different bug. We only consider hard-to-find bugs that led
to unhandled-event exceptions (system crash) and violation
of global safety specifications (written as monitors).

6.1 Evaluation of SES and SS
Evaluating SES: We applied the iterative SES algorithm
with different delaying explorers to the set of buggy pro-
grams (incrementing the value of db by 1 after each iter-
ation). For evaluating the performance of SES, we imple-
mented iterative preemption bounding [12] (PB) with state-
caching in Zing. Table 1 shows the number of distinct states
explored before finding the bug by both the approaches. It
can be seen that PB fails to find the bug in most of the
cases, and in cases where PB succeeds, SES with some de-
laying explorer is able to find the bug orders of magnitude
faster (except for TMS 1 and ChainRep 8). Also, there is
a lot of variance in the performance of SES when combined
with different delaying explorers, which motivates the need
for a flexible interface to write custom delaying explorers.

Evaluating SS: We implemented random scheduler (RS) [19]
as the baseline for comparison. Random scheduler fails to
find most of the bugs, as the probability of finding a bug
decreases exponentially with length of buggy execution. We
found that iterative random scheduler (IRS) that combines
random scheduling with iterative depth bounding performs
better than simple random scheduling. Stratification in IRS
is obtained by iteratively incrementing the maximum depth
bound. We incremented the depth bound by 100 after each
iteration and sampled 100+3i executions from each stratum
(where i is the iteration number).

We compared the iterative SS algorithm described in Sec-
tion 4 with the PCT [3] algorithm, which is considered as
state of the art in probabilistic concurrency testing. PCT
provides probabilistic guarantees of finding a bug with bug-
depth d, by randomly inserting d priority inversions. Most of
the concurrency bugs using PCT were found with bug depth
of less than 3 in [3, 15]. The PCT algorithm makes an as-
sumption about the maximum length of program execution
(k), which is hard to compute statically in the case of asyn-
chronous reactive programs. We use k = 5000 and d = 5
for our experiments. Table 1 shows that PCT fails to find
most of the bugs, confirming that the bugs in asynchronous
programs generally have a larger bug-depth. In the cases
where PCT succeeds in finding the bug, SS with some de-
laying explorer is orders of magnitude faster. Similar to the
behavior of SES, for SS also we see variance in performance
of different delaying explorers across different problems.

Comparison between SES and SS: We have extensively
used both SES and SS for finding bugs in our implementa-
tions. In our experience, the SES algorithm is able to find
bugs faster than SS in most of the cases as it uses state-
caching to prune redundant explorations. Furthermore, SES
can find low-probability bugs that occur at smaller values of
delay budget faster than SS. In the case of ChainRep 6 and
Paxos 3 there was a low probability bug at small delay bud-
get; SS fails to find it whereas SES finds it.

As the delay bound increases, search space explodes expo-
nentially. If there is a bug that requires large delay budget
for a given stratification strategy, then SES may fail to find
it due to running out of memory. We came across scenar-
ios (TMS 3 and TMS 4 in Table 1) where SES ran out of
memory but after running SS for a long time we uncovered
a bug. SS can be kept running for a long time without any
memory constraints. Since it performs sampling with prob-
abilistic guarantees, it may find a bug at larger delay budget
where SES fails.

We can fruitfully combine both approaches as follows. Per-
form SES first to find all shallow (few delays) bugs quickly
and get strong coverage guarantees. Once SES has uncov-
ered all shallow bugs and has almost consumed the memory
budget, perform SS from the frontier states and get proba-
bilistic guarantees. We leave the evaluation of this combi-
nation for future work.

6.2 Experience with Delaying Explorers
We have implemented three different delaying explorers. In
this section, we explain the construction of each explorer
and the reasons for the variance in their performance. The

80

Table 1: Evaluation Results for SS and SES using various delaying explorers

Stratified Sampling Stratified Exhaustive Search

Programs
No. of schedules explored before finding bug No. of states explored before finding bug

RS IRS PCT
SS + Delaying Explorer

PB
SES + Delaying Explorer

RR RTC PRR RR RTC PRR

2pc 1 9842 1891 1983 781 331 816 793221 8851 6571 6512
2pc 2 * * * 10943 6378 6300 * * 17690 9090
2pc 3 * 2966 9835 1823 1018 4109 48321 1898 1123 2189
2pc 4 * 7629 * * 3321 * * * 5101 77212

ChainRep 1 9655 652 9832 5607 9999 1985 * 92178 9913 936
ChainRep 2 * * * 34034 7829 28221 74231 32166 8821 88732
ChainRep 3 * * 13283 2032 1711 6093 * 19731 3452 8981
ChainRep 4 4213 313 4439 3452 4249 1238 59234 672 5441 11742
ChainRep 5 196 77 55 53 110 101 * 3973 521 6652
ChainRep 6 * * * * * * * 78443 44331 54981
ChainRep 7 * * * * * * * * 3538 *
ChainRep 8 * 4561 * 5513 * 2201 8342 9791 * 8218
ChainRep 9 * * * 66381 9425 16559 * 37222 7812 37213
ChainRep 10 782 159 74 129 331 888 4561 5431 1944 1781
MultiPaxos 1 * 5211 9934 7821 765 5819 * 82114 89341 88129
MultiPaxos 2 * * * 9872 8873 11239 * 15563 9983 1934
Multipaxos 3 * * * * 15023 9589 * 18831 8923 1198

Paxos 1 229 86 592 122 53 233 3320 2233 1098 4312
Paxos 2 * 2211 * 9563 831 1874 77834 4912 833 8831
Paxos 3 * * * * * * * * 14832 *
TMS 1 224 64 227 12 305 34 553 2220 660 8965
TMS 2 * * * * * * * * 44832 *
TMS 3 # # # # # 3009214 # # # #
TMS 4 # # # # 5530042 # # # # #
OSR 1 435 122 332 75 122 1009 5532 4421 683 55392
OSR 2 756 78 131 115 66 224 12864 12931 1634 3212

* → the search ran out of memory budget of 60GB or exceeded the time budget of 2 hours.
→ the search exceeded the time budget of 5 hours (running for longer duration).

source code for these explorers is available at the following
website: [https://github.com/ZingModelChecker/Zing].

Run-to-completion explorer (RTC): The run to com-
pletion explorer was introduced in prior work [6] for testing
device drivers written in P. The default strategy in RTC
is to follow the causal sequence of events, giving priority to
the receiver of the most recently sent event. When a delay is
applied, the highest priority process is moved to the lowest
priority position. Even for small values of delay bound, this
explorer is able to explore long paths in the program since it
follows the chain of generated events. In our experience, this
explorer is able to find bugs that are at large depth better
than any other explorer. For example, bugs in ChainRep 7
and TMS 2 were found were found by RTC at depth greater
than 1500 and delay budget less than 4 while other explorers
could not find these bugs.

Round-robin explorer (RR): The round-robin delaying
explorer, explained earlier in Section 2, cycles through the
processes in process creation order. It moves to the next
task in the list only on a delay or when the current task is
completed. Round-robin explorer has been used in the past
([8, 19]) to test multithreaded programs. In our experience,
in most of the cases (Table 1) other delaying explorers per-
form better than RR. RR can be used for finding bugs that
manifest through a small number of preemptions or inter-
leaving between processes. Our evaluation shows that most
bugs in asynchronous programs do not fall in that category.

Probabilistic round-robin explorer (PRR): A proba-
bilistic delaying explorer is one in which the Step operation
is allowed to make random choices. While a determinis-

tic delaying explorer induces a fixed stratification over the
executions of a program, a probabilistic delaying explorer
induces a probability space over stratification. We have ex-
perimented with a cannibalistic version of the round-robin
explorer (PRR). We believe that the culprit behind the poor
performance of the round-robin explorer is its default pro-
cess scheduling order which is based on the order of process
creation. The simplest way to change this default order is to
randomize it. Instead of inserting a freshly-created process
at the tail of the queue, insert it at a random position in the
queue; everything else carries over from the round-robin ex-
plorer. The probabilistic round-robin explorer is still sound
since the definitions of Next and Delay do not change. Ta-
ble 1 indicates that PRR typically performs better than RR.

6.3 Writing a Custom Delaying Explorer
After testing the chain replication protocol using the three
delaying explorers explained earlier, we tested it for more
specific scenarios. One such scenario is testing the system
against random node failures. We provide a brief description
of the chain replication protocol. Next, we show how we
wrote a custom explorer to test for the node failure scenario
and found a previously unknown bug in our implementation.

The chain replication protocol [21] is a distributed fault-
tolerant protocol for replicating state machines. Consider
an instance of a chain replication system with 6 machines—
4 instances of Server machine (S1, . . . , S4) connected in a
chain, 1 instance of Master machine (M), and 1 instance
of Fault machine (F). S1, . . . , S4 communicate with each
other to implement replication. M periodically monitors
the health of S1, . . . , S4 to detect if any of them has failed.
If it detects a fault in Si, it tells the neighbors of Si to re-

81

https://github.com/ZingModelChecker/Zing

configure. F is a machine that models fault injection. It
maintains a set of numbers initialized to {1, . . . , 4}. F re-
peatedly and nondeterministically removes a number i from
this set and sends a failure message to Si until the size of the
set becomes 1. The chain replication protocol is expected to
behave correctly for N servers as long as at most N − 1 fail.

When a distributed system starts up, there is an initializa-
tion phase involving exchange of messages between nodes
for setting up the network topology and other system con-
figuration. Bugs during the initialization phase are straight
forward, infrequent, and get discovered quickly. Subtle bugs
are generally encountered after the system is initialized and
has reached an interesting global state. Since we want to test
our system against a specific scenario of failure occurring
after the system has stabilized, the new delaying explorer
should not spend a lot of time injecting failures or moni-
toring the system during the initialization phase. We need
stratification that gives less priority to certain interleaving
in the the initial phase.

To capture this intuition with a delaying explorer, we wrote
a customized delaying explorer (CustExplorer). The ex-
plorer maintains an ordering of all dynamically-created ma-
chine and cycles through them based on the ordering. The
program can change the ordering by invoking ChangeOrder
callbacks (implemented using Step). Using ChangeOrder
callback in the initialization phase, the machines S1, . . . , S4

are ordered before machines M and F . After the initializa-
tion phase, the machines M and F are moved ahead in the
ordering as compared to machines S1, . . . , S4. Thus, Cust-
Explorer helps in stratifying the search by giving less priority
to interleaving the failure and monitor machines, until the
system has stabilized.

Using CustExplorer we were able to find a previously un-
known bug in chain replication, which occurred when the
failure was injected simultaneously at two neighboring nodes
after the initialization phase. CustExplorer was able to find
the bug with SES by exploring 220103 states and with SS by
exploring 193442 schedules. We applied the same strategy
to ChainRep 6 as it had similar bug related to node failure
and we were able to find the bug in 10445 states which is
nearly 4 times faster than the next best.

7. RELATED WORK
Model checking [11, 22] is a classic technique applied to
prove temporal properties on programs whose semantics is
an arbitrary state-transition graph. Our use of state caching
to prune search is inspired by model checking. Partial-order
reduction [9] is another technique to prune search. Combin-
ing partial-order reduction with schedule prioritization tech-
niques is known to be a challenging problem [13]. Coons et
al. [5] have proposed a technique to combine preemption-
bounding with partial-order reduction. In future work, we
would like to investigate the feasibility of combining delayed
exploration with partial-order reduction.

There is prior work on random sampling of concurrent execu-
tions. Sen [16] provides an algorithm for sampling partially-
ordered multithreded executions. Similar to our work, the
PCT algorithm [3] also exploits prioritization techniques to
effectively sample multithreaded executions. The PCT al-

gorithm characterizes a concurrency bug according to its
depth and guarantees that the probability of finding a bug
with depth d in a program with L steps and n threads is
at least 1/nLd−1. The mathematical techniques underlying
PCT and our sampling algorithm are different. PCT pro-
vides a custom algorithm for a particular notion of bug depth
whose definition has a deep connection with the proof for the
probability bound. On the other hand, our algorithm does
not depend on a characterization of bugs. Rather, it is pa-
rameterized by a delaying explorer, a mechanism used by the
programmer to stratify the search space. Consequently, the
proof for our probability bound is a straightforward combi-
natorial argument on a bounded tree in terms of its branch-
ing factor and depth.

Predictive testing [17, 18, 23, 24] follows the basic recipe
of executing the program, collecting information from the
execution, constructing a model of the program from the
collected information, and then re-executing the program
based on new predicted interleavings likely to reveal errors.
The various techniques differ in the information collected
and the targeted class of errors. The search performed by
predictive techniques is goal-driven but typically does not
provide coverage guarantees. On the other hand, our search
technique is not goal-driven but provides coverage guaran-
tees.

Concurrit [7] proposes a domain specific language for writ-
ing debugging scripts that help the tester specify thread
schedules for reproducing concurrency bugs. The search
is guided by the script without any prioritization. In con-
trast, our work is focused on finding rather than reproduc-
ing bugs. Instead of a debugging script, a tester writes a
domain-specific scheduler with appropriate uses of sealing;
iterative deepening with delays automatically prioritizes the
search with respect to the given scheduler.

8. CONCLUSION
We have demonstrated how delaying explorers help in sys-
tematic testing of asynchronous reactive programs. We also
showed that using delay bounding [8] with a single default
scheduler is not scalable for finding bugs. Different delaying
explorers induce different stratification, and hence, writing
custom delaying explorers as unit test strategies can make
testing complex asynchronous protocols scalable. We also
presented and evaluated two algorithms, (1) SES for exhaus-
tive search with strong coverage guarantees and showed how
state-caching can be used efficiently for pruning, (2) SS for
sampling executions with probabilistic guarantees. We eval-
uated both these algorithms on real implementation of dis-
tributed protocols and showed that our techniques perform
orders of magnitude better than state-of-art search prioriti-
zation techniques like preemption bounding and PCT.

9. ACKNOWLEDGMENTS
The first and third authors were supported in part by the
TerraSwarm Research Center, one of six centers supported
by the STARnet phase of the Focus Center Research Pro-
gram (FCRP) a Semiconductor Research Corporation pro-
gram sponsored by MARCO and DARPA.

82

10. REFERENCES
[1] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and

Y. Xie. Zing: A model checker for concurrent software.
In Proceedings of CAV. 2004.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison Wesley Publishing Company, 1987.

[3] S. Burckhardt, P. Kothari, M. Musuvathi, and
S. Nagarakatte. A randomized scheduler with
probabilistic guarantees of finding bugs. In Proceedings
of ASPLOS, 2010.

[4] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: An engineering perspective. In Proceedings
of PODC 2007.

[5] K. E. Coons, M. Musuvathi, and K. S. McKinley.
Bounded partial-order reduction. In Proceedings of
OOPSLA 2013.

[6] A. Desai, V. Gupta, E. Jackson, S. Qadeer,
S. Rajamani, and D. Zufferey. P: Safe asynchronous
event-driven programming. In Proceedings of PLDI,
2013.

[7] T. Elmas, J. Burnim, G. Necula, and K. Sen.
CONCURRIT: A domain specific language for
reproducing concurrency bugs. In Proceedings of
PLDI, 2013.

[8] M. Emmi, S. Qadeer, and Z. Rakamarić.
Delay-bounded scheduling. In Proceedings of POPL,
2011.

[9] P. Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems: An Approach to
the State-Explosion Problem. Springer-Verlag, 1996.

[10] P. Godefroid. Model checking for programming
languages using Verisoft. In Proceedings of POPL,
pages 174–186, 1997.

[11] G. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 1997.

[12] M. Musuvathi and S. Qadeer. Iterative context

bounding for systematic testing of multithreaded
programs. In Proceedings of PLDI, 2007.

[13] M. Musuvathi and S. Qadeer. Partial-order reduction
for context-bounded state exploration. Technical
Report MSR-TR-2007-12, Microsoft Research, 2012.

[14] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In Proceedings of
OSDI, 2008.

[15] S. Nagarakatte, S. Burckhardt, M. M. Martin, and
M. Musuvathi. Multicore acceleration of priority-based
schedulers for concurrency bug detection. In
Proceedings of PLDI 2012.

[16] K. Sen. Effective random testing of concurrent
programs. In Proceedings of ASE, 2007.

[17] K. Sen. Race directed random testing of concurrent
programs. In Proceedings of PLDI, pages 11–21, 2008.

[18] F. Sorrentino, A. Farzan, and P. Madhusudan.
Penelope: Weaving threads to expose atomicity
violations. In Proceedings of FSE, 2010.

[19] P. Thomson, A. F. Donaldson, and A. Betts.
Concurrency testing using schedule bounding: An
empirical study.

[20] A. Udupa, A. Desai, and S. Rajamani. Depth bounded
explicit-state model checking. In Proceedings of SPIN,
2011.

[21] R. van Renesse and F. B. Schneider. Chain replication
for supporting high throughput and availability. In
OSDI 2004.

[22] W. Visser and P. C. Mehlitz. Model checking programs
with Java Pathfinder. In Proceedings of SPIN, 2005.

[23] C. Wang, S. Kundu, M. Ganai, and A. Gupta.
Symbolic predictive analysis for concurrent programs.
In Proceedings of FM 2009.

[24] C. Wang, M. Said, and A. Gupta. Coverage guided
systematic concurrency testing. In Proceedings of
ICSE 2011.

83

	Introduction
	Delaying explorers
	Stratified Exhaustive Search
	Stratified Sampling
	Implementation
	Evaluation
	Evaluation of SES and SS
	Experience with Delaying Explorers
	Writing a Custom Delaying Explorer

	Related work
	Conclusion
	Acknowledgments
	References

