
TLV: Abstraction through Testing, Learning, and Validation

Jun Sun*1, Hao Xiao∗2, Yang Liu2, Shang-Wei Lin1,2, and Shengchao Qin3,4

1ISTD Pillar, Singapore University of Technology and Design, Singapore
2School of Computer Engineering, Nanyang Technological University, Singapore

3School of Computing, Teesside University, United Kingdom
4College of Computer Science & Software Engineering, Shenzhen University, China

ABSTRACT

A (Java) class provides a service to its clients (i.e., programs which
use the class). The service must satisfy certain specifications. Dif-
ferent specifications might be expected at different levels of abstrac-
tion depending on the client’s objective. In order to effectively
contrast the class against its specifications, whether manually or
automatically, one essential step is to automatically construct an
abstraction of the given class at a proper level of abstraction. The
abstraction should be correct (i.e., over-approximating) and accu-
rate (i.e., with few spurious traces).

We present an automatic approach, which combines testing,
learning, and validation, to constructing an abstraction. Our ap-
proach is designed such that a large part of the abstraction is gen-
erated based on testing and learning so as to minimize the use of
heavy-weight techniques like symbolic execution. The abstraction
is generated through a process of abstraction/refinement, with no
user input, and converges to a specific level of abstraction depend-
ing on the usage context. The generated abstraction is guaranteed
to be correct and accurate. We have implemented the proposed ap-
proach in a toolkit named TLV and evaluated TLV with a number
of benchmark programs as well as three real-world ones. The re-
sults show that TLV generates abstraction for program analysis and
verification more efficiently.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
Validation; D.2.5 [Software Engineering]: Testing and Debug-
ging—Symbolic Execution

General Terms

Algorithms, Experimentation, Performance, Verification

Keywords

Program Abstraction, Automata Learning, Behavior Models, Sym-
bolic Execution
∗The two authors contributed equally to this work and their names
are sorted in alphabetical order of surnames.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’15 , August 30 – September 4, 2015, Bergamo, Italy
Copyright 2015 ACM 978-1-4503-3675-8/15/08 ...$15.00.

1. INTRODUCTION
Abstraction is perhaps the single most powerful weapon for com-

bating the complexity in program analysis and verification. A good
abstraction of a program should be at a proper level of abstrac-
tion, which is decided by the usage context. It should have a much
smaller state space so that it is subject to efficient search-based anal-
ysis like model checking [18]. It should be an over-approximation
of all behaviors of the program so that we could conclude that the
given program satisfies a (safety) property if the abstraction does.
It should be sufficiently accurate so that analysis based on the ab-
straction would result in few false alarms. The challenge is: how

do we automatically construct such an abstraction?

In this work, we propose an automatic approach called TLV
which combines testing, learning, and validation to generating an
abstraction of a given Java class. The abstraction characterizes
behaviors of any object of the class. In a way, TLV is designed
to mimic programmers so as to combat the complexity of pro-
gram analysis and verification. When experienced programmers
are asked to analyze a given program, they often execute the pro-
gram with various inputs, from which (among other artifacts like
documentations, program comments, and domain knowledge) they
would form some initial idea on what the program does (and how)
and then validate their guess with more test cases or through code
review. They may guess a number of times until they build a correct
abstraction (in the mind) on what the program does. Depending on
their objective, they would stop the process once the abstraction
allows them to accomplish their analysis goal.

The workflow of TLV is inspired by the above process, as shown
in Figure 1. The inputs are the source code of a program and op-
tionally an artifact which TLV could use to determine the proper
level of abstraction. TLV has three phases: learning, validation
and refinement. In the learning phase, we apply automatic testing
techniques to generate, inexpensively, sample behavior of the class,
which consists of sequences of method calls. The hope is that the
test cases would cover a large portion of the complete behavior. Fur-
thermore, we adopt techniques from the machine learning commu-
nity and design a learning algorithm based on the L* algorithm [4]
to not only guide the test case generation but also generate can-
didate abstractions systematically based on the testing results. In
the validation phase, we apply more heavy-weight techniques like
symbolic execution to validate the abstraction so that the abstrac-
tion is guaranteed to be correct and accurate. After validation, the
abstraction is checked to see whether it is at a proper level of ab-
straction. If it is too abstract, we refine the abstraction and restart
from the testing phase. The iterative process ends when a correct
and accurate abstraction is constructed.

However, a correct abstraction could be completely trivial and
thus useless. In order to make sure the abstraction is useful, we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786817

698

need to answer two questions. The first question is: what is the
right model for the abstraction? The answer decides what kind of
behaviors the abstraction is capable of capturing, which in turn de-
fines what purposes the abstraction could serve. One form of pro-
gram abstraction is predicate abstraction [7] which is particularly
useful for analyzing programs with non-trivial data states. Given a
program and a set of predicates, predicate abstraction constructs an
abstraction of the program by focusing only on the truth values of
the set of predicates. In our setting, predicate abstraction means to
construct an abstraction of the class in the form of a labeled Kripke
structure [14], i.e., a finite state automaton whose transitions are
labeled with method names and whose states are labeled with pred-
icates. An example is shown in Figure 5(b). Compared with other
models like finite state automata, this model is more expressive (for
instance, using a predicate on the number of elements in a stack, it
can express languages like the number of pop operations must be
less than or equal to the number of push operations) and more
catered for classes with rich data states. Furthermore, such models
can be readily fed into a model checker for verification.

The second question is what level of abstraction is sufficient for
the analysis. Equivalently, in the context of predicate abstraction,
what is the set of predicates? This question can be answered only
based on the usage context. TLV supports three different usage
contexts. First, if the abstraction is used to verify whether the class
satisfies certain temporal logic formula, it must be at a level which
would allow us to either prove or disprove the property. TLV ex-
tracts from the formula an initial set of predicates and then gener-
ates an abstraction as accurate as possible with respect to the predi-
cates. Afterwards, the abstraction can be verified against the given
property. In the event that a spurious counterexample is found, TLV
provides a way of automatically identifying a candidate predicate
for abstraction refinement, based on the testing results and machine
learning techniques. With the new predicate, a new abstraction is
constructed and this process repeats until TLV generates an abstrac-
tion which either proves or disproves the property. However, if
the abstraction is used by humans, the users should be able to cus-
tomize the level of abstraction and TLV provides two ways to set
the abstraction level manually. That is, users can either provide a
set of predicates; or users can choose to provide no predicate ini-
tially, but then ask TLV to resolve non-determinism in the abstrac-
tion by automatically generating new predicates.

The underlying idea of TLV is to use testing to discover as more

behaviors of the target class as possible. We first apply testing
techniques with the hope to discover a large part of the behavior
inexpensively. However, simply relying on random testing is lim-
ited (e.g., for predicate coverage [51]) and thus active learning tech-
niques are adopted to not only guide the testing process but also to
construct concise candidate abstractions automatically. Only when
a likely abstraction has been obtained, program validation tech-
niques are used to validate the abstraction. Furthermore, through
learning, we are able to automatically discover predicates which
can be used to refine the abstraction. The idea of learning from
traces of a program is not new [11, 24, 30, 53]. Neither is the idea
of verifying the learned model against programs [5, 55]. Rather,
TLV combines a number of techniques for effective abstraction.

In short, we make the following technical contributions. First,
we develop an approach on combining testing, active learning, and
validation to construct predicate abstractions at the proper level of
abstraction. Second, we propose a way of generating new predi-
cates to refine a predicate abstraction. We evaluate our approach us-
ing a number of programs, including benchmark programs as well
as three real-world classes, and show that TLV generates abstrac-
tion efficiently for program analysis and verification.

Testing Learning Validation
Java

code

traces

queries

Final

abstraction

candidate

abstraction

traces

Refinement
predicates abstraction

Figure 1: The high-level workflow of the TLV

p u b l i c c l a s s BoundedStack {
p r i v a t e s t a t i c f i n a l i n t MAX_SIZE = 1024 ;
p r i v a t e i n t s i z e ;
p r i v a t e i n t [] e l e m e n t s ;

p u b l i c BoundedStack () {
s i z e = 0 ;
e l e m e n t s = new i n t [MAX_SIZE] ;

}
p u b l i c vo id push (i n t e l e m e n t) {

i f (s i z e >= MAX_SIZE) {
throw new I l l e g a l S t a t e E x c e p t i o n (" F u l l S t a c k ") ;

}
e l e m e n t s [s i z e] = e l e m e n t ;
s i z e ++;

}
p u b l i c i n t pop () {

i f (s i z e <= 0) {
throw new I l l e g a l S t a t e E x c e p t i o n (" Empty S t a c k ") ;

}
s i z e −−;
re turn e l e m e n t s [s i z e] ;

}
}

Figure 2: A bounded stack in Java

2. AN ILLUSTRATIVE EXAMPLE
In this section, we illustrate how TLV works using a simple ex-

ample. The only input to TLV is the bounded stack class shown
in Figure 2. For simplicity, we focus on two methods: push and
pop. Recall that we need a usage context in order to determine
the right level of abstraction. For now, assume that the abstraction
is to be used for human comprehension and the user chooses not
to provide any predicate initially. Based on the assumption above,
the initial set of predicates is {⊤,⊥} where ⊥ is a special default
predicate which denotes whether a failure (i.e., assertion violation
or un-handled exception) has occurred and ⊤ denotes no failure.

The Learning Phase In this phase, TLV applies a learning algo-
rithm similar to the L* algorithm [4] to learn a candidate abstrac-
tion, relying on automatic testing techniques [41]. TLV drives the
learning process by generating two kinds of queries (both of which
are slightly different from those in the L* algorithm). One is mem-
bership queries, i.e., whether a sequence of method calls would
result in a particular abstract state. The other is candidate queries,
i.e., whether a candidate abstraction is correct and accurate (for-
mally defined in Section 3). The queries and testing results are
summarized in an observation table, as shown in Figure 3 (a) where
〈〉 is an empty sequence of method calls; 〈pop, push〉 denotes the
sequence of calling push after pop. The result column shows the
abstract state after the corresponding method calls. For instance,
after an empty sequence of method calls, ⊤ is true and calling pop
right after initialization results in exception, i.e., ⊥. Notice that be-
cause methods may take parameters, the same sequence of method
calls may result in different abstract states, as we shall see later.
Based on the observation table, TLV generates the first candidate
abstraction, as presented in Figure 3 (b).

699

trace result

〈〉 ⊤
〈pop〉 ⊥
〈push〉 ⊤

〈pop, push〉 ⊥
〈pop, pop〉 ⊥

(a)

⊤ ⊥

push

pop

push,pop

(b)

trace result

〈〉 ⊤
〈pop〉 ⊥
〈push〉 ⊤

〈push, pop〉 ⊤
〈pop, push〉 ⊥
〈pop, pop〉 ⊥

(c)

⊤ ⊥

push,pop

pop

push,pop

(d)

⊤ ⊥

push,pop

push,pop

push,pop

(e)

Figure 3: Artifacts in the 1st learning and validation iteration

Next, TLV asks a candidate query: is the abstraction in Fig-
ure 3 (b) correct? To answer the candidate query, TLV performs
random walking, i.e., randomly generates a set of test cases which
correspond to traces in the abstraction. Through the random walk-
ing, one inconsistency between the abstraction and the class under
analysis is identified. That is, the abstraction predicts that calling
pop from state ⊤ always results in ⊥, whereas it is not the case.
For instance, calling method push first and then pop results in no
failure. The inconsistency suggests that the abstraction must be
modified. In this case, the observation table is updated, as shown
in Figure 3 (c), which includes the sequence 〈push, pop〉 and its
testing result. After more membership queries, TLV constructs the
candidate abstraction shown in Figure 3 (d). The answer to the can-
didate query is positive and thus the learning phase terminates.

The Validation Phase The candidate abstraction may not be cor-
rect due to limitations of random testing. For instance, the abstrac-
tion in Figure 3 (d) is not correct as invoking method push at state
⊤ may result in ⊥ when the size of the stack equals MAX_SIZE.
This behavior is missing because there is no test case which in-
vokes push more than 1024 times. In general, cases like this are
hard to generate through random testing. Thus, the learned abstrac-
tion must be validated and refined if necessary. For the candidate
abstraction shown in Figure 3 (d), two proof obligations are gen-
erated. One is {⊤}push{⊤} (a Hoare triple), which denotes that
invoking push when there is no failure always results in no fail-
ure. The other is {⊤}pop{⊤ ∨ ⊥}, i.e., invoking pop at ⊤ may or
may not result in failure. We adopt the assertion checking feature
in Symbolic PathFinder (SPF) [45] to discharge proof obligations.
First, TLV modifies the pushmethod by enclosing its method body
with a try block, adds assert(false) to the catch block (i.e., to
assert that there is no failure), adds assert(true) to the finally-
block (i.e., to assert the post-condition), and adds the pre-condition
to an if-conditional. The modified push method is shown in Fig-
ure 4. Then TLV symbolically executes the modified push with
both parameters element and size as symbolic inputs. An asser-
tion violation is found with concrete values for the symbolic in-
puts: element = 3 and size = 1024. Using the concrete values
as parameters for push, TLV constructs a test case and executes
push, which results in an exception (i.e., ⊥). Thus a transition
from state ⊤ to ⊥ is added to the abstraction. After the proof obli-
gation {⊤}pop{⊤∨⊥} is also discharged, the abstraction shown in

p u b l i c vo id push (i n t e lemen t , i n t s i z e) {
i f (true) { / / t r u e encodes t h e pre−c o n d i t i o n

t r y {
i f (s i z e >= MAX_SIZE) {

throw new E x c e p t i o n (" F u l l S t a c k ") ;
}
e l e m e n t s [s i z e] = e l e m e n t ;
s i z e ++;

} catch (E x c e p t i o n e) {
a s s e r t (f a l s e) ;

} f i n a l l y { a s s e r t (true) ; } / / pos t−c o n d i t i o n

}
}

Figure 4: Modified push method

Figure 3 (e) is guaranteed to be correct and accurate (see the proof
in Section 3).

Learning a candidate abstraction helps to reduce the proving ef-
fort. If a naïve approach was used to abstract the class, we would
need to check satisfiability of every combination φ ∧ m ∧ δ, i.e.,
whether invoking m with φ results in a state satisfying δ, where φ
and δ are constraints which can be formed using conjunction of the
given predicates or their negations and m is a method. The number
of such combinations is exponential to the number of predicates.

The Refinement Phase A nondeterministic abstraction like Fig-
ure 3(e) might be confusing if it is intended for humans. For in-
stance, what does it mean to say that calling pop may or may not
lead to failure? To resolve non-deterministic transitions on pop,
TLV can be instructed to identify predicates which would explain,
for instance, when exactly calling pop leads to failure. The stan-
dard approach (e.g., as in [17]) is to partition the state ⊤ based
on wp(pop,⊥), i.e., the weakest precondition of pop resulting in
exception. Computing weakest precondition is often expensive. In-
stead, TLV applies machine learning techniques, e.g., Supporting
Vector Machines (SVMs) [46], to identify a new predicate. In par-
ticular, TLV gathers two groups of object states based on the test
cases at state ⊤. One group contains stack objects which would
result in state ⊥ after invoking pop. The other group contains
those which would result in ⊤. TLV uses SVM to generate a pred-
icate which partitions the two groups. The generated predicate is:
2∗size ≥ 1, which is turned into size > 0 after some bookkeeping
(based on the fact that size is an integer). With the new predicate,
we repeat the learning and validation phase and obtain the abstrac-
tion in Figure 5(b). The non-deterministic transitions on push in
Figure 5(b) can be discharged in the same manner.

The level of abstraction can be determined for different usage
contexts. For instance, if a temporal logic property is present (i.e.,
to be verified), TLV would generate and refine the abstraction based
on interactions with the model checker. For instance, assume the
property is G(push ∧ Xpop =⇒ X(size ≥ 0)) (written in
state/event linear temporal logic [14]), i.e., after push and pop,
size ≥ 0 should be always true. The initial set of predicates is
set to be {size ≥ 0,⊥}, i.e., all predicates in the property plus the
default one ⊥. Through the learning and validation phase, we ob-
tain the abstraction shown in Figure 5(a). Through model checking
(taking the abstraction as a labeled Kripke structure [14]), we found
a spurious counterexample: 〈size ≥ 0, push, size ≥ 0, pop,⊥〉,
which is a run of the abstraction. To remove this spurious coun-
terexample, again the standard approach is to partition the state p
based on wp(pop,⊥). TLV rather applies SVM to identify a new
predicate for differentiating states from which invoking pop results
in state ⊥ from states resulting in size ≥ 0. With the generated
predicate size > 0, TLV generates a new abstraction shown in
Figure 5(b). We remark that the spurious counterexample above is

700

sz ≥ 0 ⊥

push,pop

push,pop

push,pop

(a)

sz = 0 sz > 0

⊥

push

pop

pop

pu
sh

push,pop

push,pop

(b)

Figure 5: Refined abstraction, where sz stands for the field size

ruled out by the new abstraction. Model checking the abstraction
against G(push∧Xpop =⇒ X(size ≥ 0)) is successful and thus
this abstraction serves as a proof of the property at an abstraction
level which is more abstract than the code.

3. THE TLV APPROACH
In this section, we present the details on how TLV generates an

abstraction. We start with defining the problem.

3.1 Problem Definition
We assume a Java class C contains a finite set of instance vari-

ables V and a finite set of methods M , each of which may up-
date variables in V . The semantics of C is a labeled transition
system (Sc, sc,M, Tc) where Sc is a set of states, each of which
is a valuation of all variables in V ; sc ∈ Sc is the initial state;
Tc : Sc×M×Sc is the transition relation such that (s,m, s′) ∈ Tc

iff, given the variable valuation s, executing method m may re-
sult in variable valuation s′. A run of the labeled transition sys-
tem (a.k.a. a test of C) is a finite sequence of alternating states and
transitions 〈s0,m0, s1, m1, · · · ,mk, sk+1〉 such that s0 = sc and
(si,mi, si+1) ∈ Tc for all i ≥ 0. The sequence of method calls in
the run 〈m0,m1, · · · , mk〉 is called a trace.

The problem is to construct an abstraction of C automatically.
Let Prop be a set of propositions constituted by variables in V .
We write 2Prop to denote the set of predicates each of which
is the conjunction of a subset of propositions in Prop and the
negation of the rest. For instance, if Prop = {p, q}, 2Prop is
{p ∧ q, p ∧ q̄, p̄ ∧ q, p̄ ∧ q̄}. We write the powerset of 2Prop as
℘2Prop, i.e., the set of all subsets of 2Prop. A member of ℘2Prop

can be represented succinctly. For instance, the set {p ∧ q̄, p ∧ q}
can be represented as {p}, i.e., their disjunction. We write s |= φ

to denote that φ evaluates to true given the variable valuation s.
Given a set of concrete states X , we write absProp(X) to denote
the disjunction of all members φ of 2Prop such that s |= φ for
some s ∈ X . For instance, if Prop = {size ≥ 0, size ≥ 1024},
absProp({size 7→ 5, size 7→ 1034}) is size ≥ 0.

An abstraction of C w.r.t. Prop, denoted as A, is a labeled tran-
sition system (Sa, sa,M, Ta) where Sa ⊆ ℘2Prop ∪ {⊥} is a
set of abstract states, each of which is a subset of 2Prop or {⊥}
(a special state denoting exception); sa ∈ Sa satisfies sc |= sa;
Ta ⊆ Sa × M × Sa is an abstract transition relation. The ab-
straction is correct if there exists (s,m, s′) ∈ Tc such that s |= φ

and s′ |= φ′ imply (φ,m, φ′) ∈ Ta. The abstraction is accurate

if each (φ,m, φ′) ∈ Ta implies there exists (s,m, s′) ∈ Tc such
that s |= φ and s′ |= φ′. However, a correct and accurate abstrac-
tion may still contain spurious runs, due to broken traces [27] (i.e.,
an abstract transition is feasible locally but not globally). We use
abstract states and predicates interchangeably hereafter.

A naïve approach to obtaining A is to check whether every pos-
sible transition (φ,m, φ′) where {φ, φ′} ⊆ Sa and m ∈ M is
contained in A. This approach is infeasible as in the worst case
there are 2|Prop| × |M | × (2|Prop| + 1) checks (as, for simplicity,

Algorithm 1: The learning algorithm

Input: a program and a set of propositions Prop
Output: an abstraction

1 let obs be an empty observation table; visited be ∅;
2 while true do

3 while obs is not closed and the time is not up do

4 let trace tr s.t. T (tr) 6= T (tr′) ∀ prefix tr′ of tr;
5 for m ∈M do

6 generate a membership query tr · 〈m〉;
7 let X := Randoop(tr · 〈m〉);
8 obs := obs+ (tr · 〈m〉 7→ absProp(X));

9 generate a candidate query A from obs;
10 apply random walking to check A;
11 if no inconsistency found then

12 if Algorithm 2(A, obs, visited) returns true then

13 return A;

14 else

15 let (tr, s) be a counterexample to the candidate A;
16 obs := obs+ (tr 7→ absProp({s}));

we assume the behaviors after exception is un-interesting and thus
there is no need to check cases where φ = ⊥), where |Prop| is the
number of propositions and |M | is the number of methods. Thus,
we propose the process shown in Figure 1 to learn A.

3.2 Testing and Learning
TLV’s algorithm is presented as Algorithm 1. The inputs are

a program and a set of propositions Prop and the output is an ab-
straction. TLV maintains two data structures. One is an observation

table obs for storing (abstract) testing results and the other is a set
visited for storing validation results. The observation table obs is
a tuple (P,E,T) where P ⊆ M∗ is a set of traces; E ⊆ Sa is a
set of abstract states; T : P → E is a mapping function such that
T (tr) = φ indicates that after the trace tr, the abstract state φ can
be reached. Initially, P , E, T , and visited are all empty (line 1).
We write obs := obs+(tr 7→ φ) to denote the operation of adding
the mapping tr 7→ φ into the table, i.e., replacing P with P ∪{tr};
replacing E withE ∪{φ}; T is updated with T (tr) := φ if tr was
not in the domain of T ; otherwise, T (tr) := T (tr)∨φ. Intuitively,
the latter states that if we know that after tr, we can reach an ab-
stract state T (tr), with the new mapping tr 7→ φ, we now know
that after tr, we can reach either T (tr) or φ.

Within a certain time limit, TLV tries to make the observation ta-
ble closed by asking multiple membership queries and adding map-
pings into obs (line 3–8). Note that the concept of consistency in
the L* algorithm is irrelevant in our setting. An observation table is
closed if the set P is prefix-closed and for all tr ∈ P such that tr
is not a prefix of some other trace in P (i.e., tr is maximum), there
always exists a prefix of tr say tr′ ∈ P such that T (tr′) = T (tr).
Intuitively, the latter means that tr can be represented by its prefix;
therefore, TLV does not need to test further. Since there are only
finitely many abstract states, tr would eventually visit a state which
is visited by its prefix. We remark that this definition is justified be-
cause our goal is to discover as many abstract states and transitions
as possible. If the observation table is not closed, there must be a
trace tr such that T (tr) is not equivalent to T (tr′) for every pre-
fix tr′ of tr. In such a case, a membership query (i.e., tr · 〈m〉)
is generated for each method (line 6). In order to answer the query
inexpensively, TLV generates multiple test cases using random test-

701

ing (line 7). FunctionRandoop(tr) is similar to the Randoop algo-
rithm [41]. Given a membership query tr, TLV generates multiple
test cases calling the methods in the query one-by-one (from the
initial concrete state). In general, the methods would have multi-
ple parameters and TLV generates arguments for every method call.
Given a typed parameter, TLV randomly generates a value from a
pool of type-compatible values. This pool composes of a set of pre-
defined values (e.g., a random integer for an integer type, null or
an object with the default object state for a user-defined class) and
type-compatible objects that have been generated during the testing
process. In order to re-create the same object, we store the test case
which produces the object. We refer the readers to our previous
work [53] for details on test case generation.

After generating and executing multiple test cases according to
tr · 〈m〉, TLV collects the concrete data states reached by the test
cases (say X) and updates the observation table with the mapping
T (tr·〈m〉) = absProp(X) (line 8). Ideally, after multiple member-
ship queries, once the observation table (P,E,T) is closed, TLV
constructs a candidate abstraction A = (Sa, sa,M, Ta) such that
Sa = E; sa is the state corresponding to the empty trace T (〈〉);
(φ,m, φ′) ∈ Ta if there exists tr ∈ P and m ∈ M such that
T (tr) = φ and T (tr · 〈m〉) = φ′. In practice, with many methods
in the class, it might take a long time before the observation table
is closed. Nonetheless, with the validation phase, we can construct
the candidate abstraction even if the observation table is not closed.
In fact, the goal is to discover every abstract behavior of the class
and it is guaranteed that every behavior is discovered either during
testing or validation. Thus, if closing the observation table takes a
long time, TLV times out and constructs A based on obs.

Once the observation table is closed or the testing or learning pro-
cess timeouts, TLV raises a candidate query on whether A is cor-
rect and accurate with respect to Prop (line 9). TLV then employs
a slightly different testing technique to answer candidate queries.
We associate each abstract state φ in A with a set of concrete states
which have been generated through testing so far and satisfy φ.
Based on these concrete states, TLV uses random walking to con-
struct test cases from each abstract state in A to further explore
behaviors of C (line 10). The testing result is then compared with
A to see whether they are consistent. A is consistent with the test-
ing result iff for any sequence of method calls tr′ from a concrete
state (associated with an abstract state φ), the resultant concrete
states X are consistent with the corresponding abstract state φ′

reached by the same sequence of methods in A, i.e., absProp(X)
logically implies φ′. There is an inconsistency iff there exists a
concrete state s ∈ X such that s 6|= φ′ (line 11). In such a case,
TLV constructs a pair (tr, s), where tr = tr1 · tr′ and tr1 is the
shortest trace reaching φ in A, as a counterexample to the candi-
date query (line 15), which is then used to update the observation
table (line 16). For instance, assume Prop = {size ≥ 0} and
the abstract state after tr in the observation table is size ≥ 0, i.e.,
T (tr) = size ≥ 0. If after calling the methods in tr in sequence,
the concrete states are {size 7→ 2, size 7→ 3, size 7→ 4}, then it
is consistent. However, a testing result size 7→ −2 would be an
inconsistency and the observation table would be updated so that
T (tr) = size ≥ 0 ∨ size < 0.

Once the observation table is updated, TLV again checks whether
it is closed and raises membership queries if it is not, until the next
candidate query is generated. Once the tester answers positively
to a candidate abstraction (at line 11), TLV obtains an abstraction
which is “correct” modulo the limitation of random testing. Then,
Algorithm 2 is invoked to validate A (line 12). If it returns true, A
is returned (line 13); otherwise, the process repeats. The details of
Algorithm 2 is presented in the subsequent subsection.

Algorithm 2: The validation algorithm

Input: abstraction A = (Sa, sa,M, Ta); table
obs = (P,E, T); set visited

Output: true iff A is validated
1 for φ ∈ Sa \ {⊥} and m ∈M do

2 if the pair (φ,m) is not in visited then

3 check the proof obligation {φ}m{ψ} using SPF
where ψ is the disjunction of all φ′ such that
(φ,m, φ′) ∈ Ta;

4 if a counterexample is found by SPF then

5 construct a concrete state s |= φ with the
counterexample and invoke m on s and obtain
a concrete state s′;

6 if absProp({s
′}) is not in E then

7 let tr be the shortest trace in P such that
T (tr) = φ; update obs with the new
mapping tr · 〈m〉 7→ absProp({s

′});
8 return false;

9 else

10 add a transition from φ to absProp({s
′})

labeled with m;

11 else

12 add pair (φ,m) into visited;

13 return true;

Given that the number of states in A (and the size of E in the ob-
servation table) is bounded by 3|Prop| + 1, the learning algorithm
is always terminating. Furthermore, we argue that A may be much
smaller than this bound in practice. Firstly, variables in a class are
often co-related, which is equivalent to say that there are hidden
class invariants. Due to those class invariants, often not every ab-
stract state is reachable. For instance, if a hidden class invariant
is v1 ≥ v2 and Prop = {v1 ≥ 0, v2 ≥ 0}, the abstract state
v1 < 0 ∧ v2 ≥ 0 is infeasible. Because A is constructed based
on concrete testing results, those hidden class invariants are embed-
ded in A naturally and hence A would not contain those infeasible
abstract states. Secondly, as mentioned, given a set of concrete
states X (reached by the same trace), the abstract state constructed
is absProp(X), which would effectively collapse many abstract
transitions into one. Furthermore, unlike the L* algorithm, TLV
may learn a non-deterministic abstraction, which could be expo-
nentially smaller than its deterministic equivalent. Nonetheless, we
admit that the effectiveness of the testing technique may affect the
size of the abstraction. We skip the discussion on the complexity of
the algorithm as it depends on the effectiveness of the testing tech-
niques. Rather, we show empirically in Section 4 that the learning
phase is usually efficient and the generated candidate abstraction
usually covers a large portion of the behavior of C.

3.3 Validation
The abstraction A learned through random testing might not be

correct as some behaviors of C may never be tested (e.g., TLV is
unlikely to generate a test case which pushes more than 1024 times
and thus the transition (⊤, push,⊥) would be missing). However,
A is guaranteed to be accurate (but may not be correct).

LEMMA 3.1. Algorithm 1 returns an accurate abstraction A.

Proof (sketch): To prove that A is accurate, we need to prove that
for every transition (φ,m, φ′) in A, there exists a concrete state s

702

such that s |= φ and invoking m at s would result in a concrete
state s′ such that s′ |= φ′. This is guaranteed by line 8 and 16 in
Algorithm 1 which adds a mapping into the observation table such
that if T (tr) = φ and T (tr · 〈m〉) = φ′, then there must be a
concrete transition from a state satisfying φ to a state satisfying φ′

through invoking m, in both cases. Afterwards, we can prove the
lemma based on the construction of A. �

The lemma above states that every transition in A corresponds
to at least one concrete transition. Next, TLV checks if there are
missing transitions and if there is none, A is guaranteed to be an
over-approximation at the same time. In the following, we illustrate
how the validation algorithm (Algorithm 2) works.

The inputs are the observation table obs and the corresponding
abstraction A as well as the set visited which contains pairs of the
form (φ,m) where φ is an abstract state and m is a method name.
The set visited stores the successfully discharged proof obligations
so far. Every time the algorithm is invoked, for every pair (φ,m) of
abstract states (exclusive of ⊥) and methods, TLV checks whether
it is in visited (line 2). Intuitively, it is in visited iff TLV has
obtained all abstract states which are reachable from φ by invok-
ing m. If it is not in visited, TLV generates a proof obligation
{φ}m{ψ} where ψ is the disjunction of all abstract states which
are reachable from φ through m in A (line 3). The proof obliga-
tion is discharged using symbolic execution, i.e., with the help of
Symbolic PathFinder (SPF [45]), as explained in the following.

In a nutshell, given a Java program, SPF executes the code sym-
bolically so as to see whether there is an assertion violation. If
an assertion violation is possible, SPF generates a counterexam-
ple, which consists of the valuation of input variables and a path
condition that lead to the assertion violation. We refer interested
readers to work [45] for details on SPF. We instead present how the
proof obligation is encoded as an assertion violation checking prob-
lem. The first step of the encoding is to syntactically transform the
method m such that all relevant instance variables become param-
eters of the method. Next, TLV instruments the modified method
with the required pre-condition φ and post-condition ψ. The fol-
lowing illustrates how the instrumentation is done systematically.

i f (φ) {
t r y { body of method m ; }
catch (E x c e p t i o n e) {

a s s e r t f a l s e i f e x c e p t i o n i s n o t i n ψ ;
} f i n a l l y { a s s e r t (ψ) ; }

}

TLV first encloses the original method body with a try-catch-
finally block to catch all exceptions. The try block contains the
method body of m. If ⊥ logically implies ψ (i.e., A suggests that
exception might be the result when we invoke method m with pre-
condition φ), the try block contains no assertion; otherwise, it con-
tains the assertion assert(false). Thus, if an exception is not sup-
posed to occur, then the occurrence of an exception would lead
to an assertion failure. The finally block contains the assertion
assert(ψ) which asserts the post-condition. Next, TLV encloses
the try-catch-finally block with an if-conditional block. The condi-
tion is set to be the pre-condition φ so that SPF checks only sym-
bolic inputs which satisfy the pre-condition. The modified program
is then fed to SPF for assertion violation checking.

If no assertion violation is found, the pair (φ,m) is added into
visited (line 12). Otherwise, using the information returned by
SPF, TLV constructs a test case which starts from a concrete state
satisfying φ and results in a concrete state violating ψ (line 5). Note
that in the actual implementation SPF is configured to generate mul-
tiple counterexamples at once to reduce the number of SPF invoca-
tions. For the stack example, when SPF is used to prove {size ≥
0}push{size ≥ 0}, a counterexample is generated which al-

lows TLV to construct a concrete state with element = 3 and
size = 1024. Invoking method push at this concrete state results
in state ⊥ which violates size ≥ 0. If absProp({s

′}) is in Sa (not
a newly discovered abstract state), at line 10, TLV adds a new tran-
sition from φ to absProp({s

′}). If the abstract state absProp({s
′})

was unreachable previously, at line 7, TLV updates the observation
table with a new mapping: tr · 〈m〉 7→ absProp({s

′}) where tr
(i.e., the shortest trace which reaches φ) is a representative of all
traces reaching φ. With the new abstract state, the observation ta-
ble is no longer closed and therefore Algorithm 2 returns false (line
8) and TLV will execute the learning algorithm again to obtain an-
other candidate. The idea is that we always first rely on testing to
discover some of the states and transitions inexpensively. Note that

executing the learning algorithm again does not invalidate Lemma

3.1 as we show in the following that A remains accurate during the

validation algorithm. The validation algorithm returns true when
every pair (φ,m) is in visited (line 13). The following theorem
establishes the correctness of TLV.

THEOREM 3.2. When the validation algorithm (Algorithm 2)

terminates, A is a correct and accurate abstraction of C.

Proof (sketch): According to Lemma 3.1, A is accurate before
the validation algorithm starts, i.e., for every abstract transition
(φ,m, φ′) in A, there is a concrete transition (s,m, s′) such that
s |= φ and s′ |= φ′. We need to prove that (1) during the validation
algorithm, an abstract transition (φ,m, φ′) is added to A if there
is a concrete transition (s,m, s′) such that s |= φ and s′ |= φ′;
(2) if there is a concrete transition (s,m, s′) such that s |= φ and
s′ |= φ′, the abstract transition (φ,m, φ′) is in A. (1) is true be-
cause new transitions are only introduced at line 10 and (indirectly)
at line 7 in Algorithm 2. In both cases, (1) is true as s is obtained
from line 5 with a concrete transition. (2) can be proved by contra-
diction. Assume (s,m, s′) is a concrete transition such that s |= φ

and s′ |= φ′ and (φ,m, φ′) is not a transition in A. Then there is
a proof obligation {φ}m{ψ} such that φ′ does not imply ψ gen-
erated at line 3. Assume that SPF works correctly, then the proof
must fail, which contradicts the fact all proof obligations must be
discharged before the validation algorithm terminates. Thus, we
conclude the above theorem is correct. �

Complexity Assume that proving with SPF is terminating, the val-
idation algorithm always terminates. The number of proof obliga-
tions is determined by the number of abstract states in A. In the
worst case, it is exponential in the number of propositions in Prop
and the number of propositions is fixed. In practice, it is often
much less as we show empirically in Section 4. The transitions
in A are discovered through either testing or symbolic execution.
The more testing discovers, the less symbolic execution is needed.
Because testing is more scalable than symbolic execution, thus by
design, TLV minimizes symbolic execution as much as possible.
Although A is correct and accurate, it does not imply that all runs
in A are feasible. For instance, the run 〈⊤, push,⊤, push,⊥〉 of
the abstraction shown in Figure 3(e) is infeasible. This situation
is essentially due to the phenomenon known as broken traces [27].
We use abstraction refinement to remove such infeasible runs.

3.4 Abstraction Refinement
There are two cases where an abstraction refinement is necessary.

One is that the user requires to resolve some non-determinism in the
abstraction. The other is to refine the abstraction so as to prune a
particular spurious counterexample identified by a model checker.
In the following, we explain the latter first and show that the two
cases can be solved in the same way.

703

The abstraction generated after the validation phase is subject
to verification techniques like model checking. Assume that the
property to be verified is a safety property (e.g., a bounded LTL
formula constituted by propositions on instance variables in C). Be-
cause the abstraction is guaranteed to be correct, if model checking
A concludes there is no counterexample, then the same property is
satisfied by C. If a counterexample is identified, we need to check
whether it is spurious. If it is spurious, A must be refined to exclude
the spurious counterexample. In the following, we show that a new
predicate can be generated based on the information TLV gathered
during the learning and validation process. We remark that finding
the optimal refinement is known to be hard [17] and is not our goal.

Recall that by assumption, in the setting of verifying a temporal
logic formula, Prop contains all propositions in the formula. Let
〈φ0, m0, φ1,m1, · · · , φk,mk, φk+1〉 be the spurious counterex-
ample, which is a finite run of A (as this property is a safety prop-
erty). Because this run is spurious, it must be broken at some ab-
stract state φi where i ≤ k, i.e., invoking mi at a reachable (from
the concrete initial state) state satisfying φi never results in a state
satisfying certain required constraint φi+1 [27]. The idea is that
if we are able to find a new predicate which could separate those
concrete states (abstracted as φi) which, after invoking mi, would
result in a state satisfying φi+1 from those would result in a state vi-
olating φi+1, then we can construct a new abstraction (with the new
predicate) to rule out this spurious counterexample. For instance, in
the stack example shown in Section 2, the spurious counterexample
is: 〈size ≥ 0, push, size ≥ 0, pop,⊥〉. It is sufficient to rule out
the run if we could find a predicate separating those concrete states
associated with abstract state size ≥ 0 into two groups: one result-
ing in ⊥ after pop and the other resulting in size ≥ 0 after pop.
Thus, the problem is to find a classifier for two sets of states, which
can be solved using a machine learning based approach [48, 53].
We remark that in theory [17], this iterative process of abstraction
and refinement would always terminate, assuming the program se-
mantics is finite-state (e.g., considering an integer to be a bit-vector
rather than a mathematical integer). In practice, it may run many
abstraction/refinement iterations before termination.

In the case of resolving a non-determinism (as requested by the
user), by definition, we have one abstract state, at which calling the
same method would result in two different abstract states. Thus, the
task of resolving the non-determinism is similarly to find a classifier
for two sets of states at the abstract state. In the following, we
briefly explain how Support Vector Machines (SVMs) [46] is used
to find the classifier.

During the process of generating the abstraction, TLV associates
a set of concrete states for each abstract state, which can be par-
titioned into two groups accordingly. For instance, in the stack
example above, one group contains stack objects with size ≥ 1
(for which there is no exception after pop) and the other contains
a stack object with size = 0 (for which an exception occurs after
pop). With these two groups (say X and Y), TLV tries to identify
a classifier. Formally, a classifier for X and Y is a proposition ω
such that for all x ∈ X , x satisfies ω and for all y ∈ Y , and y
does not satisfy ω. TLV finds the classifier automatically based on
techniques developed by machine learning community, e.g., SVM.
As long as X and Y are linearly separable, SVM is guaranteed to
find a classifier (i.e., a hyperplane) separating X and Y . Further-
more, there are usually more than one classifiers. In this work, TLV
favors the optimal margin classifier [48] if possible. This separat-
ing hyperplane could be seen as the strongest witness why the two
groups are different.

In order to use SVM to generate classifiers, each element in X
or Y must be casted into a vector of numerical types. In general,

there are both numerical type (e.g., int) and categorical type (e.g.,
String) variables in Java programs. Thus, we need a systematic
way of mapping arbitrary object states to numerical values so as to
apply SVM techniques. Furthermore, the inverse mapping is also
important to feedback the SVM results to the original program. We
leverage our earlier approach [53] to generate a numerical value

graph from each object type and apply SVM techniques to values
associated with nodes in the graph level-by-level. We illustrate our
approach using an example in the following.

Recall that one group contains stack objects with size = 1 and
the other contains a stack object with size = 0. TLV first extracts
two sets of feature vectors from the two groups using the first level
features (i.e., features which can be accessed using the stack object
and no other references) in the graph, i.e., isNull and size. The
first set of feature vectors is {〈0, 1〉} where 〈0, 1〉 denotes the stack
object is not null (i.e., 0 means that isNull is false) and its variable
size is of value 1. The second set is {〈0, 0〉}. Next, SVM finds a
classifier 2∗size ≥ 1. Notice that if SVM fails to find a linear clas-
sifier based on the two sets of feature vectors, TLV constructs two
new sets by using numerical values from next level in the graph
(i.e., isNull for elements and length of elements, and the ac-
tual data in the array) and tries SVM again. The heuristic that we
look for a classifier level-by-level is based on the belief that calling
the same method leads to different results is more likely related to
the values of variables directly defined in the class and less likely
nested in its referenced data variables.

4. EVALUATION
TLV (available at [52]) is implemented with about 35K lines of

Java code. We use Eclipse JDT to analyze and instrument Java
source code, e.g., for generating modified programs for symbolic
execution. We use SPF [43, 45] for symbolic execution because it
supports features (such as assertion checking) which are necessary
in our approach. The experimental results are collected on a 64-bit
Ubuntu 14.04 PC with a 3.10GHz Intel Core i3 processor and 4GB
memory. For the learning phase, we generate 4 concrete values for
each argument of the method in an abstract trace and each learning
iteration is set to timeout in 1 minute. We evaluated TLV to answer
three research questions.

RQ1: How effective and scalable is TLV?

The answer to this question depends not only on the capability of
TLV but also on SPF. Thus, we answer the question by applying
TLV to two groups of Java classes, one containing relatively simple
classes which we could get useful results from SPF and the other
containing real-world classes which are beyond the capability of
SPF. The idea is to show that TLV is able to generate correct and
accurate abstraction efficiently if the symbolic execution engine is
working as hoped, and TLV is able to generate meaningful abstrac-
tions (without soundness guarantee) for large programs even when
SPF fails to provide any support.

The first group contains 12 Java classes. In particular, ALTBIT,
FLIGHTRULE, INTMATH, SIGNATURE, SOCKET, and STREAM

were used in the evaluation of X-PSYCO tool [30]; SERVERTABLE

and LISTITR are from the work [3]; BANKACCOUNT is from the
work [55] and EWALLET and PAYAPPLET are adopted from Java
Card applets [32]. To determine the level of abstraction, for each
class, we set the initial predicates to be those collected from the
source code, e.g., conditions in “if” and “for” statements. In our
experience, those predicates would often allow us to quickly get
some idea of the class behavior. The set of predicates for each of
the above target classes can be accessed at our website [52]. We
acknowledge that these classes are relatively small because most

704

Table 1: Statistics on TLV abstracting the classes, where N.A. stands for not available
Inputs Learning Initial Abs Validation Final Abs Memory (MB)

Class LOC #M #Pred #MQ #CQ TL(s) #S #T TV (s) #Prof #S #T TLV

ALTBIT 60 2 3 22 1 0.4 5 11 7.0 8 5 11 104
BANKACCOUNT 40 2 3 22 1 0.7 3 8 4.7 4 3 8 105
BOUNDEDSTACK 45 2 3 8 2 0.1 2 3 7.0 2 3 7 104

FLIGHTRULE 50 3 1 10 1 0.2 2 3 2.7 3 3 8 104
INTMATH 500 8 1 5209 1 60.3 2 16 5.0 8 2 16 544
LISTITR 40 5 4 320 1 1.3 6 36 25.7 25 6 47 291

SERVERTABLE 90 6 6 5485 1 60.2 6 42 29.3 30 6 42 712
SOCKET 200 7 10 6203 1 60.2 13 102 167 168 25 219 559
STREAM 180 4 3 41 1 0.6 3 9 7.0 8 3 9 104

SIGNATURE 50 5 4 61 1 0.4 4 15 13.1 15 4 15 104
EWALLET 90 4 5 33 1 0.4 2 5 7.5 8 3 13 169

PAYAPPLET 100 5 6 31 1 0.3 2 5 29.8 25 6 29 104

SOCKETREAL 1660 7 6 1807 1 60.6 13 85 N.A. N.A. 13 85 381
JAVAMAILREAL 2000 5 2 21 1 14.6 3 10 N.A. N.A. 3 10 357
STREAMREAL 180 4 4 2725 1 60.2 4 14 N.A. N.A. 4 14 454

of the above-mentioned approaches (like TLV) are limited to the
capabilities of symbolic execution.

To show that TLV is useful even without the validation phase,
we collect a second group of classes, containing real-world pro-
grams, and apply TLV to generate abstraction. In particular,
SOCKETREAL is the java.net.Socket class defined in JDK 7 (with
>1.6K LOC in the class and >20K LOC in the referenced library);
JAVAMAILREAL is the com.sun.mail.smtp.SMTPTransport class
defined in the JavaMail library (version 1.5.2, with 2K LOC in the
class and >45K LOC in the referenced library). STREAMREAL is
the JDK 7 class java.io.PipedOutputStream class (with 180 LOC in
the class and >3K LOC in the referenced library). These programs
are un-modified other than that we set the first two programs to con-
nect to a local socket server and mail server for testing purpose (as
did in TAUTOKO [19, 20]). They either use Java Native Interface
or contain reference type fields and parameters, which are not sup-
ported by SPF. To determine the level of abstraction, we manually
inspect the classes and collect predicates which we believe are asso-
ciated with the class invariants. Based on the abstractions learned
by TLV we confirm that those are indeed class invariants.

The experimental results for these two groups of classes are
shown in Table 1. Column #M shows the number of methods used
for abstraction; Column #Pred is the number of propositions for
each class (excluding the one on whether the state is ⊥). We collect
the number of membership queries (column #MQ), and the num-
ber of candidate queries (column #CQ), and the total time (column
TL) to learn the initial abstraction. The statistics for the validation
phase are the number of proof obligations (column #Prof , i.e., the
size of visited in the validation algorithm) and the time used in
the validation phase (column TV). A closer look shows that TL is
dominated by the time spent on maintaining the observation table
(merging abstract states/transitions). On the contrary, running the
test cases only takes a small portion of the time. TV includes the
interprocess communication time and each invocation of SPF often
takes less than one second. The instrumentation and compilation
time in the validation phase are negligible. For all classes, we man-
ually confirm the correctness and accuracy of the generated abstrac-
tions. It shows that for all classes, TLV generates the abstraction in
minutes. Furthermore, the overall time is dominated mostly by the
validation algorithm (for 10 out of 12 cases) for the first group of
classes. For all classes, the peak memory consumption for TLV is
712 MB and thus TLV is reasonably memory efficient.

Comparison with other tools There are two existing tools on pred-
icate abstraction of Java programs: J2BP [42] and X-PSYCO [30].
J2BP generates abstractions for a Java program with a “main”
method and not for Java classes. Furthermore, it does not sup-

port random numbers or symbolic inputs, we are unable to write
a driver program so that J2BP can be used to abstract a Java class.
X-PSYCO is designed for generating an interface specification. It
discovers predicates (through symbolic execution) on method pa-
rameters to specify constraints which must be satisfied in order to
invoke the method. X-PSYCO assumes that only propositions on
method parameters and return values are relevant. This implies X-
PSYCO and TLV target at completely different programs. Thus, we
conclude that X-PSYCO and TLV are complementary but incompa-
rable. In addition, there is one ongoing effort by the JPF team [22]
and a previously reported tool [3], which is not available any more.
Besides tools for predicate abstraction, there are tools of generat-
ing models for Java classes, among which we identify the TAU-
TOKO tool [19, 20] to be bearing a similar goal as TLV. Thus, in
the following, we compare TLV with TAUTOKO1 in the context
of answering the above research question.

TAUTOKO first uses ADABU [21] to generate an initial model
for each test case in the user-provided test suite. It then mutates ex-
isting test cases to generate more tests cases from the initial model
and combines models for new test cases with the initial model to
generate an enriched model. For fairness, we use the test cases
generated by TLV in the learning phase as the input test suite for
TAUTOKO. For the predicates, TAUTOKO is limited to predi-
cates generated with a set of abstraction templates over instance
variables of the given class, while TLV is more flexible. Thus, we
set the predicates used in TLV to be those used in TAUTOKO.
We compare TLV and TAUTOKO by applying them to the first
group of classes. Notice that TAUTOKO has trouble in obtaining
models for the second group of classes for various reasons: TAU-
TOKO cannot handle SOCKETREAL as TAUTOKO does not sup-
port Java 7; TAUTOKO does not generate models for STREAM-
REAL because it does not instrument classes in java.io package;
TAUTOKO fails to generate the trace file from the test suite for
JAVAMAILREAL because some test cases do not close the connec-
tion to the server and do not terminate; TLV is able to get the states
of the object even if the connection does not terminate. The statis-
tics for the models generated by TAUTOKO and TLV are shown
in Table 2, which shows the number of states (column #S) and
transitions (column #T) discovered by TLV and TAUTOKO, re-
spectively. In addition, #Te denotes the numbers of transitions to
state ⊥, which is a useful metric [20]. The results show that TLV
generates more accurate models (more valid states and transitions)
than TAUTOKO. The time statistics (column T) show that TLV is
often more efficient than TAUTOKO, especially when the number
of test cases is large.

1We use the version of TAUTOKO reported in [20] as the imple-
mentation reported in their later work [19] is not available.

705

Table 2: Comparing TLV with TAUTOKO on abstraction
TLV TAUTOKO

Class #S #T #Te T (s) #S #T #Te T (s)
ALTBIT 5 11 8 7.6 4 5 2 37.2

BANKACCOUNT 5 19 8 141.2 4 12 0 1817
BOUNDEDSTACK 3 7 2 4.4 3 5 1 14.2

FLIGHTRULE 3 8 3 6.5 2 3 2 12.6
INTMATH 2 16 8 5.9 1 6 0 6.4
LISTITR 6 47 19 27.0 3 10 2 20.2

SERVERTABLE 12 118 52 68.5 7 27 10 244.2
SOCKET 25 219 146 174.0 2 8 1 475.8
STREAM 3 9 2 7.9 3 7 1 9.7

SIGNATURE 4 15 5 14.4 4 15 5 18.4
EWALLET 3 13 8 8.2 2 2 1 2.4

PAYAPPLET 6 29 20 15.3 2 3 2 12.5

Table 3: Comparing TLV’s abstraction and manual abstraction
Testing and Learning Manually Constructed

Class #S #T #Te #S #T #Te

JAVAMAILREAL 3 10 2 3 10 2
STREAMREAL 4 14 6 4 14 6
SOCKETREAL 13 85 62 13 85 62

RQ2: How effective are testing and learning?

This question evaluates TLV’s underlying assumption, i.e., testing
and learning could effectively reduce the effort on symbolic execu-
tion. For the second group of classes, the answer to this question
would determine how much behavior the abstraction contains and
thus how useful it is, since the symbolic execution engine is help-
less for these classes. For the first group of classes, this question is
answered by measuring the percentage of abstract states/transitions
which are discovered in the learning phase. In particular, we com-
pare the initial candidate abstraction (column Initial Abs) which
is generated based on testing and learning only and the final ab-
straction (column Final Abs). We collected the respective number
of states (column #S) and number of transitions (column #T). It
can be observed that for most of the classes in the first group (11
out of 12), most of the states (96%) and transitions (94%) are dis-
covered during learning based on the test cases, which suggests
that our underlying assumption is often valid. On the other hand,
there is only one class (PAYAPPLET) where testing is shown to
be ineffective in discovering the behavior (only 17% of the tran-
sitions are discovered by testing), which evidences that a validation
phase is indeed necessary. A closer look at the class shows that
only the method “setKey” leads to a state (which is then connected
to a number of other states) from the initial state. Furthermore,
this transition can only happen when a particular integer param-
eter value is passed in (there is an “if” statement with condition
size = (DES_KEY _SIZE+ID_SIZE)). TLV did not gener-
ate the particular integer value for size satisfying this condition and
thus missed many states. We expect this situation happens more fre-
quently with larger and more complicated programs, which might
pose a thread to TLV. On the other hand, by comparing the TL with
TV and contrasting TL with the number of transitions discovered
during testing, it is evident that testing discovers abstract states/-
transitions much cheaper than symbolic execution and therefore it
is wise to start with testing and learning.

For the second groups of classes, we compare the generated ab-
stractions with those constructed manually using the same set of
predicates. The results in Table 3 show that TLV can learn all the
states and transitions of these classes with regard to the given set of
predicates. In general, learning-guided testing is unlikely to cover
all behaviors of a class. However, for these classes whose meth-
ods have no or few parameters, learning-guided testing, as imple-

S0

S2

S3

S4 S6

S7S5

S8

S9

S10

S11

S12

clo
se

b
in

d

connect

close

connect

close

getInputStream
,

getO
utputStream

close

sh
ut

do
w

nI
np

ut

shutdow
nO

utput

close

close

getOutputStream

close

shutdow
nO

utput

getInputStream

sh
ut

do
w

nI
np

ut

close

close

close

close

close

Figure 6: Abstraction for java.net.Socket class with the fol-

lowing predicates: closed = T, created = T, bound =
T, shutIn = T, shutOut = T, connected = T , where the er-

ror state S1 and all transitions to it are omitted for brevity.

mented in TLV, is effective at discovering most of the behaviors
systematically. In the following, we present some details on the
SOCKETREAL case. The abstraction generated by TLV is shown in
Figure 6 with the 6 predicates used for abstraction. The predicates
are obtained from suspected class invariants, e.g., connected = T

implies bound = T and bound = T implies created = T . Thus,
part of the goal of using TLV to generate the abstraction is to check
whether these are indeed class invariants. The abstraction learned
by TLV contains (only) 12 valid states plus the error state. In addi-
tion to those transitions shown in Figure 6, there is a transition from
S0 to S1 labeled with bind. This transition occurs when the port
number (e.g., 3) used for binding is reserved and thus the method
call results in permission violation exception. Note that other tran-
sitions to the error state are omitted for brevity. We confirm that
the abstraction is correct and accurate by manually discharging all
the proof obligations. Based on the abstraction, we can easily con-
firm that the suspected class invariants are indeed invariants since
all states in the abstraction satisfy them.

RQ3: Does TLV learn good predicates automatically?

We remark that this question is best answered with specific proper-
ties to be verified and specific spurious counterexamples returned
by a verification engine. We have integrated a model checker [50]
into TLV, which makes TLV a fully automatic Java model checker
based on abstraction and refinement (by learning new predicates).

In order to answer this question, we assume that TLV is being
used to verify a Java class against a precise deterministic specifica-
tion on when an exception occurs in the class, i.e., a ‘typestate’ [49].
Note that such a specification often involves predicates on instance
variables. Thus, TLV is first used to construct an abstraction with
one proposition true. The result is an abstraction containing two
states: true and ⊥. Next, TLV refines the model by discovering
new predicates which would show exactly when an exception oc-
curs (and thus rules out spurious counterexamples found by verify-
ing the abstraction against the given specification). We show that
TLV eventually finds the right predicates based on testing results
and learning.

The results are shown in Table 4 (note that not all of the classes
have a nontrivial stateful typestate). Note that for class PAYAP-
PLET, SVM generates two predicates state ≥ 0 and state ≤ 0
and uses their conjunction to obtain the same result as the one
(state = 0) shown in the table. We remark that in this setting,
TLV solves the same problem of synthesizing a stateful typestate
as that addressed by the TzuYu [53] tool. However, different from

706

Table 4: Statistics for automatic predicate generation
Class Time (s) Mem (MB) Predicates

BOUNDEDSTACK 77.5 361 size ≥ 0, size ≥ 1024

SIGNATURE 43.0 124
state ≤ 0, state ≤ 1,

state ≤ 2

PAYAPPLET 349.4 379
state ≥ 0, state ≤ 0,
size ≥ 16, size ≤ 16,
value + state > 1

TzuYu, the typestates generated by TLV are guaranteed to be cor-
rect (as well as accurate).

Limitations TLV has two main limitations. First, because TLV
employs symbolic execution for abstraction validation, it inherits
the limitation from symbolic execution engines, e.g., limitations in
handling programs with loops [33] or complex data structures[12,
34]. We believe that TLV (like previous approaches) would handle
larger programs with advancements in program verification tech-
niques. Second, because TLV relies on random testing to discover
behaviors, the performance of TLV would suffer if the program
contains many behaviors which are hard to explore with random
testing (in this case, TLV constructs the abstraction mainly based
on symbolic execution).

5. RELATED WORK
To the best of our knowledge, TLV is the first to combine testing,

learning, and validation for program abstraction. TLV is inspired
by predicate abstraction [3, 11], specification mining [24, 30, 53],
testing for predicate-coverage [6].

TLV is a generalization of TzuYu [53] which learns a typestate
for a Java class. Both TzuYu and TLV rely on random testing and
learning to generalize models from concrete tests. However, TzuYu
learns only typestate which has only two states (⊤ and ⊥), whereas
TLV can handle more predicates; TzuYu’s learning algorithm is a
direct adoption of the L* algorithm, whereas TLV’s learning algo-
rithm is designed to maximize predicate-coverage [6]. More impor-
tantly, TzuYu provides neither correctness nor accuracy guarantee
of the typestate, whereas TLV does.

Alur et al. [3] construct the interface specification of a Java class
based on active learning and use a model checker as the teacher;
the Sigma* tool [11] learns the symbolic input/output relation for
a transducer program by using symbolic execution to find new pro-
gram paths; the PSYCO tool [24] uses symbolic execution to answer
both membership queries and candidate queries for learning a spec-
ification of a class. The X-PSYCO tool [30] combines testing and
symbolic execution to learn a symbolic abstraction of program be-
havior. Concrete test inputs in X-PSYCO are generated with sym-
bolic execution. Although learning is applied in TLV and these
approaches, TLV is built on the idea of “test as much as we can”
and thus avoids techniques like model checking or symbolic execu-
tion as much as possible. In addition, TLV has a clear target level
of abstraction which is often unclear in the above approaches.

As mentioned earlier, TLV bears a similar goal as the TAU-
TOKO tool [19, 20]. Different from TAUTOKO, TLV uses sym-
bolic execution to discover more states and transitions and to pro-
vide correctness guarantee. Furthermore, TLV’s abstraction is
catered for specific usages and has a targeted level of abstraction.
Alrajeh et al. [1, 2] integrate inductive learning and model check-
ing to elicit operational requirements from goal models. Their ap-
proach differs from TLV in their goals and underlying techniques.

Existing approaches on building finite state models [9, 21, 36,
38, 40] use similar state abstraction strategies as used in TLV. The
STRAWBERRY tool [9] mines behavior protocols concerning usage

of a web service. ADABU [21] generates invariants from concrete
execution traces of Java classes with a set of fixed invariant tem-
plates. ReAjax [38] uses a similar way as ADABU to generate
the abstract model for the Document Object Model of an Ajax web
pages. KrKa et al. [36] use DAIKON to generate a set of possible
state invariants and then use SMT solvers to decide the feasibility
of possible states (combinations of invariants) and transitions in the
abstract model. Revolution [40] mines state based behavior model
for systems whose behaviors may evolve with time.

TLV uses automata learning and testing to construct the initial
abstraction. Similar ideas have been used to generate models for
legacy systems [31, 39] and bug detection [44]. They use L* to
learn Deterministic Finite Automata (DFA) or Mealy Machines,
whereas the learning algorithm in TLV learns a Non-deterministic
Finite Automaton (NFA). TLV requires the source code of the tar-
get class to generate abstractions while some techniques [9, 23]
treat the System Under Test (SUT) as black-box, thus they use only
the externally visible values for state abstraction. Ghezzi et al. [23]
use behavior equivalent model for finite data container to generate
an abstract model for a given Java class with a test suite.

L* based learning algorithms have been applied to learning spec-
ification from source code [3, 11, 24, 30, 53], model checking of
programs [26], and security domain [15, 16, 54]. TLV learns NFAs,
whereas L* learns only DFA which is limited for programs with
data variables. TLV is related to work on extending the L* algo-
rithm to learn NFAs [10] or other finite state models [8, 13, 37, 47].
Bollig et al. [10] extend the L* to learn a non-deterministic Resid-
ual Finite State Automata (RFSA) for a deterministic SUT. Berg
et al. [8] extend L* to learn a symbolic Mealy Machine. Shahbaz
and Groz [47] introduce a direct Mealy Machine learning algorithm
which handles counterexamples returned by the teacher much more
efficiently. Lorenzoli et al. [37] propose the GK-tail algorithm to
generate an Extended Finite State Automata. Cassel et al. [13] ex-
tend L* to learn symbolic register automata with tree queries.

TLV proposes an alternative approach for predicate abstraction.
Graf and Saïdi [25] invent predicate abstraction. Ball et al. [7]
propose predicate abstraction for C programs. There are many ex-
tensions such as lazy abstraction by Henzinger et al. [29] and the
work by Arie et al. [28]. The J2BP tool [42] and its variant Ab-
stract Pathfinder [22, 35] are the first to do predicate abstraction
for Java programs. All these work relies solely on SMT solvers to
compute the abstraction, whereas TLV combines testing, learning,
and validation. Lastly, TLV can be viewed as an approach to testing
Java classes for predicate-coverage [6]. Visser et al. [51] observed
that predicate-coverage is harder to achieve than block-coverage for
testing. In a way, TLV aims to provide complete predicate-coverage
by integrating testing, learning, and validation.

6. CONCLUSION AND FUTURE WORK
In short, we proposed an approach named TLV, which combines

testing, learning, and validation in order to automatically generate
predicate abstraction of Java classes and to automatically refine the
abstraction if necessary. TLV generates accurate and correct ab-
stractions efficiently. As for future work, we are experimenting
different testing strategies and machine learning algorithms to fur-
ther improve TLV’s performance. We also plan to leverage existing
test suite provided with the class to improve TLV’s performance.

7. ACKNOWLEDGMENTS
This project is supported by MOE tier 2 grant T2MOE1303 at

SUTD. The external collaborator Shengchao is partially supported
by NSFC No. 61373033 and SZSTI No. JCYJ201418193546117.

707

8. REFERENCES

[1] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Learning
Operational Requirements from Goal Models. In ICSE,
pages 265–275, 2009.

[2] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Automated
Support for Diagnosis and Repair. Commun. ACM,
58(2):65–72, 2015.

[3] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of
Interface Specifications for Java Classes. In POPL, pages
98–109, 2005.

[4] D. Angluin. Learning Regular Sets from Queries and
Counterexamples. Inf. Comput., 75(2):87–106, 1987.

[5] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena,
J. Sun, Y. Liu, and J. S. Dong. AUTHSCAN: Automatic
Extraction of Web Authentication Protocols from
Implementations. In NDSS, 2013.

[6] T. Ball. A Theory of Predicate-Complete Test Coverage and
Generation. In FMCO, pages 1–22, 2004.

[7] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.
Automatic Predicate Abstraction of C Programs. In PLDI,
pages 203–213, 2001.

[8] T. Berg, B. Jonsson, and H. Raffelt. Regular Inference for
State Machines Using Domains with Equality Tests. In FASE,
pages 317–331, 2008.

[9] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli.
Automatic Synthesis of Behavior Protocols for Composable
Web-services. In ESEC/FSE, pages 141–150, 2009.

[10] B. Bollig, P. Habermehl, C. Kern, and M. Leucker.
Angluin-style Learning of NFA. In IJCAI, pages 1004–1009,
2009.

[11] M. Botinčan and D. Babić. Sigma*: Symbolic Learning of
Input-output Specifications. In POPL, pages 443–456, 2013.

[12] P. Braione, G. Denaro, and M. Pezzè. Enhancing Symbolic
Execution with Built-in Term Rewriting and Constrained
Lazy Initialization. In ESEC/FSE, pages 411–421, 2013.

[13] S. Cassel, F. Howar, B. Jonsson, and B. Steffen. Learning
Extended Finite State Machines. In SEFM, pages 250–264,
2014.

[14] S. Chaki, E. M. Clarke, O. Grumberg, J. Ouaknine,
N. Sharygina, T. Touili, and H. Veith. State/Event Software
Verification for Branching-Time Specifications. In IFM,
pages 53–69, 2005.

[15] C. Y. Cho, D. Babi ć, E. C. R. Shin, and D. Song. Inference
and Analysis of Formal Models of Botnet Command and
Control Protocols. In CCS, pages 426–439, 2010.

[16] C. Y. Cho, D. Babic, P. Poosankam, K. Z. Chen, E. X. Wu,
and D. Song. MACE: Model-inference-Assisted Concolic
Exploration for Protocol and Vulnerability Discovery. In
USENIX Security Symposium, 2011.

[17] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-Guided Abstraction Refinement. In CAV,
pages 154–169, 2000.

[18] E. M. Clarke, O. Grumberg, and D. A. Peled. Model

Checking. MIT Press, 1999.

[19] V. Dallmeier, N. Knopp, C. Mallon, G. Fraser, S. Hack, and
A. Zeller. Automatically Generating Test Cases for
Specification Mining. IEEE Trans. Software Eng.,
38(2):243–257, 2012.

[20] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller.
Generating Test Cases for Specification Mining. In ISSTA,
pages 85–96, 2010.

[21] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller.
Mining Object Behavior with ADABU. In WODA, pages
17–24, 2006.

[22] J. Daniel, P. Parízek, and C. S. Păsăreanu. Predicate
Abstraction in Java Pathfinder. SIGSOFT Softw. Eng. Notes,
39(1):1–5, 2014.

[23] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing
Intensional Behavior Models by Graph Transformation. In
ICSE, pages 430–440, 2009.

[24] D. Giannakopoulou, Z. Rakamarić, and V. Raman. Symbolic
Learning of Component Interfaces. In SAS, pages 248–264,
2012.

[25] S. Graf and H. Saïdi. Construction of Abstract State Graphs
with PVS. In CAV, pages 72–83, 1997.

[26] A. Groce, D. Peled, and M. Yannakakis. AMC: An Adaptive
Model Checker. In CAV, pages 521–525, 2002.

[27] A. Gupta and E. M. Clarke. Reconsidering CEGAR:
Learning Good Abstractions without Refinement. In ICCD,
pages 591–598, 2005.

[28] A. Gurfinkel, S. Chaki, and S. Sapra. Efficient Predicate
Abstraction of Program Summaries. In NFM, pages 131–145,
2011.

[29] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
Abstraction. In POPL, pages 58–70, 2002.

[30] F. Howar, D. Giannakopoulou, and Z. Rakamarić. Hybrid
Learning: Interface Generation Through Static, Dynamic,
and Symbolic Analysis. In ISSTA, pages 268–279, 2013.

[31] H. Hungar, T. Margaria, and B. Steffen. Test-based Godel
Generation for Legacy Systems. In ITC, pages 150–159,
2003.

[32] IBM. Java Card Technology. http://www.oracle.
com/technetwork/java/embedded/javacard/

overview/default-1969996.html, May 2014.

[33] J. Jaffar, J. A. Navas, and A. E. Santosa. Unbounded
Symbolic Execution for Program Verification. In RV, pages
396–411, 2012.

[34] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized
Symbolic Execution for Model Checking and Testing. In
TACAS, pages 553–568, 2003.

[35] A. Khyzha, P. Parízek, and C. S. Păsăreanu. Abstract
Pathfinder. SIGSOFT Softw. Eng. Notes, 37(6):1–5, 2012.

[36] I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic.
Using Dynamic Execution Traces and Program Invariants to
Enhance Behavioral Model Inference. In ICSE, pages
179–182, 2010.

[37] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic
Generation of Software Behavioral Models. In ICSE, pages
501–510, 2008.

[38] A. Marchetto, P. Tonella, and F. Ricca. State-Based Testing
of Ajax Web Applications. In ICST, pages 121–130, 2008.

[39] T. Margaria, O. Niese, H. Raffelt, and B. Steffen. Efficient
Test-based Model Generation for Legacy Reactive Systems.
In HLDVT, pages 95–100, 2004.

[40] L. Mariani, A. Marchetto, C. Nguyen, P. Tonella, and
A. Baars. Revolution: Automatic Evolution of Mined
Specifications. In ISSRE, pages 241–250, 2012.

[41] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-Directed Random Test Generation. In ICSE, pages
75–84, 2007.

[42] P. Parízek and O. Lhoták. Predicate Abstraction of Java
Programs with Collections. In OOPSLA, pages 75–94, 2012.

708

http://www.oracle.com/technetwork/java/embedded/javacard/overview/default-1969996.html
http://www.oracle.com/technetwork/java/embedded/javacard/overview/default-1969996.html
http://www.oracle.com/technetwork/java/embedded/javacard/overview/default-1969996.html

[43] C. S. Păsăreanu and N. Rungta. Symbolic PathFinder:
Symbolic Execution of Java Bytecode. In ASE, pages
179–180, 2010.

[44] M. Pradel and T. R. Gross. Leveraging Test Generation and
Specification Mining for Automated Bug Detection Without
False Positives. In ICSE, pages 288–298, 2012.

[45] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell,
K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape.
Combining Unit-level Symbolic Execution and System-level
Concrete Execution for Testing Nasa Software. In ISSTA,
pages 15–26, 2008.

[46] B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors.
Advances in Kernel Methods: Support Vector Learning. MIT
Press, 1999.

[47] M. Shahbaz and R. Groz. Inferring Mealy Machines. In FM,
pages 207–222, 2009.

[48] R. Sharma, A. V. Nori, and A. Aiken. Interpolants as
Classifiers. In CAV, pages 71–87, 2012.

[49] R. E. Strom and S. Yemini. Typestate: A Programming
Language Concept for Enhancing Software Reliability. IEEE

Trans. Software Eng., 12(1):157–171, 1986.

[50] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. In CAV, pages 709–714, 2009.

[51] W. Visser, C. S. Pasareanu, and R. Pelánek. Test Input
Generation for Java Containers Using State Matching. In
ISSTA, pages 37–48, 2006.

[52] H. Xiao. TLV hosting site. http://bitbucket.org/
spencerxiao/tlv-fse2015, Jan 2015.

[53] H. Xiao, J. Sun, Y. Liu, S.-W. Lin, and C. Sun. TzuYu:
Learning Stateful Typestates. In ASE 2013, pages 432–442,
2013.

[54] Y. Xue, J. Wang, Y. Liu, H. Xiao, J. Sun, and
M. Chandramohan. Detection and Classification of
Malicious JavaScript via Attack Behavior Modelling. In
ISSTA, pages 48–59, 2015.

[55] L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid.
Feedback-driven Dynamic Invariant Discovery. In ISSTA,
pages 362–372, 2014.

709

http://bitbucket.org/spencerxiao/tlv-fse2015
http://bitbucket.org/spencerxiao/tlv-fse2015

	Introduction
	An Illustrative Example
	The TLV Approach
	Problem Definition
	Testing and Learning
	Validation
	Abstraction Refinement

	Evaluation
	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

