
Gamification for Enforcing Coding Conventions

Christian R. Prause
DLR Space Administration

Königswinterer Str. 522-524
Bonn, Germany

christian.prause@dlr.de

Matthias Jarke
RWTH Aachen

Institut i5
Aachen, Germany

jarke@informatik.rwth-aachen.de

ABSTRACT
Software is a knowledge intensive product, which can only
evolve if there is effective and efficient information exchange
between developers. Complying to coding conventions im-
proves information exchange by improving the readability of
source code. However, without some form of enforcement,
compliance to coding conventions is limited. We look at
the problem of information exchange in code and propose
gamification as a way to motivate developers to invest in
compliance. Our concept consists of a technical prototype
and its integration into a Scrum environment. By means of
two experiments with agile software teams and subsequent
surveys, we show that gamification can effectively improve
adherence to coding conventions.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.9 [Software Engineering]: Management

General Terms
Human Factors, Documentation, Management, Measurement

Keywords
code style, gamification, software quality, experiment

1. INTRODUCTION
The standard ISO-9126 establishes a basic model of soft-

ware quality based on six quality characteristics (e.g., func-
tionality, maintainability) each subdivided into several sub-
characteristics (e.g., analysability, changeability). These char-
acteristics can be roughly divided into characteristics of ex-
ternal and internal quality. The famous iceberg metaphor
illustrates this relationship: external quality is the iceberg’s
surfaced part that can be easily seen by users of the software.
Internal quality is the part dangerously hidden below the
surface. Among the submerged parts, the maintainability

quality characteristic means how cost-effectively developers
can continuously improve and evolve the software.

Maintainability is broken down into the sub-characteristics
analyzability, changeability, stability, testability and main-
tainability compliance. They describe how easy places to be
changed and causes of faults can be located, how well fu-
ture changes are supported and can be realized, how much
the software avoids unexpected effects from changes, how
well the software supports validation efforts, and how com-
pliant the interior of the software is to maintainability stan-
dards and conventions. Maintainability is like an internal
version of the usability quality characteristic, i.e., how easy
developers can understand whether source code is suitable
for certain purposes and how to use it for particular tasks
and in specific conditions, how well inner workings can be
learned, how much developers stay in control of the changes
they make, how attractive the inner workings of the soft-
ware appear to the developers, and how compliant they are
to standards, conventions, style guides or regulations. When
we speak of understandability, learning, attractiveness, and
compliance in this paper, we mean this internal view and not
the view from the end-user’s external usability perspective.

Maintainability is important for the evolvability of soft-
ware. We argue that it is related to knowledge, and informa-
tion exchange in the team. As a hidden quality characteris-
tic, however, it is easily overlooked, and requires efforts and
discipline that are not granted. In particular, human behav-
ior is controlled by trading off the valences1 of alternative
actions all the time. If the valence of complying to conven-
tions is not high enough, developers will easily be drawn
to other activities. The dilemma of information exchange
commences. The more freedom developers have, the more
important such valence aspects are. Internal un-quality, also
known as technical debt, increases (see Section 2).

We propose gamification as a solution. Gamification refers
to the use of design elements characteristic for games in
non-game contexts. It has gained considerable attention in
domains like productivity, finance, health, education, news,
and media. In this sense, gamification does not mean “play”
but means to optimize one’s behavior with respect to the
rules in the sense of mechanism design [18, 55]. In a real-
world context (programming) with real-world effects (read-
ability of code and rewards), gamification is what connects
the real-world on both sides using mechanisms known from
games. For this approach to work, two different integra-

1In psychology, the term valence means the intrinsic attrac-
tiveness or aversiveness (i.e., positive or negative valence,
respectively) of an event, object, or situation [22].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786806

649

tions must be achieved: Firstly, a technical solution must
be integrated into the development environment so that the
necessary development data can be obtained and prepared
for gamification. For every developer, a reputation score is
calculated that averages the compliance to coding conven-
tions of the files the developer contributed to. Secondly, the
gamification must be integrated socially to affect the de-
velopers’ valence judgments so that desirable behaviors will
emerge more often. We rely on the typical game design el-
ements of personal scores, transparent rules, leader board,
and real-world individual and group incentives that can be
earned as team (see Section 3).

In order to evaluate our game design, we set up two paral-
lel experiments with software development teams following
the agile Scrum methodology. We distributed postgradu-
ate developers with similar skills onto two teams of green-
field projects. Both teams would run through an interven-
tion and a control phase resulting in experimental between-
group and within-group designs. Surveys using question-
naires were scheduled with each team at the end of their
intervention period to capture qualitative and quantitative
information about the gamification. Furthermore, partici-
pation in customer meetings and feedback from the project
leaders enrich our perception of what happened during the
experiments (see Section 4).

Evaluation of the experiments shows a clear effect of the
interventions in both teams. Both teams invested the efforts
necessary to achieve the designated convention compliance.
The game elements had the desired effects, and feedback
from the developers suggests that the investments in con-
vention compliance were worth the efforts (see Section 5;
threats to validity are discussed in Section 6).

Coding conventions are widely recognized as a means to
improve the internal quality of software. Much work has
been put into conventions, commercial tools relating conven-
tion compliance and technical debt, and the enforcement of
conventions with techniques like reviews or strict tool-based
enforcement. We compare our work to such approaches.
The advantages of our approach are relatively comparably
low efforts in personnel, and higher flexibility on the devel-
opers’ side. Furthermore, other research successfully applied
gamification to shape developer behavior (see Section 7).

Our contributions lead us to conclude that gamification
works to improve coding convention compliance and is worth
further research (see Section 8).

2. CODING CONVENTIONS
Software is a highly knowledge intensive product. Its

source code results from a non-algorithmic, experimental ac-
tivity of discovery and invention. Developers identify issues,
experiment with possible solutions, and come to decisions
in a process involving justifications, alternatives and trade-
offs [9]. Its source code is “the only precise description of
the behaviour of the system” [24], and it must be both, exe-
cutable by machines and understandable to humans. A de-
veloper must first understand the code before being able to
successfully implement changes. Code therefore plays a key
role in the information exchange between developers and for
preserving knowledge. If the necessary knowledge is not pre-
served well and easy to retrieve for a human, i.e. readable,
software becomes costly to maintain and evolve [14]. When
internal quality decreases, efforts in re-work increase (called
“un-quality” by Philip B. Crosby), and technical debt grows

into a danger to the project [13]. Some therefore even call
not putting efforts into such information exchange unprofes-
sional “anti-team behaviour” [33]. If information exchange is
so important, why are programmers“notorious” [44] for their
dislike of writing down knowledge in a readable form [26]?

The literature on programming lists countless different
motives: time and schedule pressure; missing responsibil-
ity, education and professionalism; lack of incentives; care-
lessness, incompetence, “sapient” developers; human nature;
additional (cognitive) effort; or operand conditioning, per-
ceived boredom and pathological gambling. Writing down
information in a readable way costs a developer his precious
time and (cognitive) efforts but has little immediate value for
himself. The potential values pay off much later and mainly
benefit others [11,15,23,30,32,33,36,41,43,48,49,56].

We note that information exchange through code is an in-
stance of the more general dilemma of information exchange
(cf. [16]): A developer must constantly chose between im-
plementing new functionality, and spending efforts on in-
formation exchange. Writing helpful source code comments
and thinking about the effect for readability of every single
keystroke does not work on autopilot [48]. Developers sub-
consciously weigh up motives like time pressure, cognitive
effort, and joy of creating new functionality against other
motives like the desire to conform to management expecta-
tions, pro-social information exchange and the satisfaction
of achieving quality. According to psychological theory, fac-
tors weighted by personal expectations and beliefs, sum up
on the pro and con sides of the decision. The developer will
decide for the alternative with the greatest expected valence.

Developers will disregard information exchange, when its
expected valence is lower than that of other activities. A
social dilemma then commences, if it is still valuable to the
team as a whole. And indeed, the value for the sending
developer is lower than for his audience: A developer who
wrote the code himself, will have a deep understanding of
its functions, inner workings, side effects, and constraints.
He will not need to read that knowledge from the code; at
least not in the near future while his memory has not faded
and the code remains unchanged (cf. [38]). However, other
developers miss that knowledge. For example, they reinvent
the wheel over and over again [28], wander like explorers of
a new world looking for ways to solve problems [35], and
cannot use their advanced skills [51]. They have to learn
the code first to successfully implement changes.

Readability is a judgment of how easy source code is to
understand, i.e., how easy the knowledge encoded in it can
be retrieved by a human [14]. Coding conventions support
information exchange by improving understandability and
readability [50]. They facilitate communication and col-
laboration between developers by maintaining uniformity
[31]. Nordberg compares conventions to homeowners’ associ-
ations that support quality by reducing individuality. They
prevent code from getting unreadable due to mixtures of
unconventional styles [36] and therefore help to reduce what
Graham [23] calls the common-room effect, which makes
code written by different developers feel bleak and aban-
doned, and accumulate cruft.

The benefit of coding conventions often is not so much
that each rule is well-grounded. In fact, many conventions
implement common wisdom, memes of a project’s coding
culture, and subjective opinions about aesthetics [36]. Take
Linus Torvalds’ famous comment as an example: “First off,

650

I’d suggest printing out a copy of the GNU coding standards,
and NOT read it. Burn them, it’s a great symbolic gesture.”
From an objective point of view, many rules might not stand
scientific scrutiny. Their benefit is that they reduce style de-
viations, which are nothing but distracting noise when read-
ing code [50]. Despite a human language text remaining
understandable in principle, who would seriously doubt the
benefits of orthographic and typographic conventions like
spelling, hyphenation, capitalization, word breaks, empha-
sis, punctuation, line length or spacing? Conventions are
low-hanging fruits that are an important and pragmatic in-
gredient to making software better, which is supported by
broad interest in the topic (see Section 7). We are therefore
convinced that they are relevant for internal quality.

3. GAMIFYING COMPLIANCE
Gamification is related to mechanism design. It uses game

design elements for a not-playful purpose in a non-game con-
text. It does not aim to create a full-fledged game for enjoy-
ment. Instead, it employs design elements that are known
to work from games to set up structured rules for a compet-
itive strife toward goals for its players [18]. Embedded in a
real-world setting, the additional rules increase the valence
of putting effort in desirable behaviors. As a result, devel-
opers will more often choose to comply to coding rules. Our
gamification of coding conventions consists of two parts:

1. a technical component (the CollabReview prototype)
that integrates into the software development process
to mine the necessary data, (Section 3.1) and

2. game elements that have valence for developers and
motivate them to invest in complying to coding con-
ventions (Section 3.2).

3.1 Technical Component: Obtaining Data
At the heart of the technical component is a reputation

system. It gathers reputation statements by observing users’
actions and collecting feedback. The statements are then
integrated into a model of the developers’ reputation, ex-
pressed as personal scores [21].

The personal reputation score reflects the average com-
pliance of a developer’s code with the coding conventions,
ranging from +10 (fully compliant) to -10 (extremely de-
viant). For determining it, the reputation system must

1. determine compliance of each source file (Section 3.1.1),

2. assess who is responsible for each file (Section 3.1.2),

3. integrate both into the reputation score (Section 3.1.3).

Note, that contribution quantity is not represented in the
reputation score. The rationale is that we do not want to
measure performance but promote compliance.

3.1.1 Determining Compliance
Checkstyle is an open source static analysis tool for Java.

It reports different rule violations like formatting, Javadoc-
related, magic numbers, and many more using four severity
levels: ignore, info, warning and error. It is highly config-
urable and can be made to support almost any coding stan-
dard. The Sun Code Conventions and Google Java Style
are supported natively [1]. We automatically compute the
compliance judgment −10 ≤ q(f) ≤ 10 for each file f as the

density of reported violations, i.e., the number of violations
vc in the top three severity levels divided by the number of
non-empty lines csloc :

q(f) = max

(
10 − 10 × v

csloc
,−10

)
3.1.2 Assessing Responsibility

The developer who added or last modified a line of code
owns it and is responsible for it. Using an algorithm simi-
lar to Subversion’s blame command, responsibility is mined
from the code’s revision repository. The idea is that any new
version of a file is created by manipulating the contents of its
parent. Reconstructing these manipulations means solving
the string editing problem. It results in an edit script with
the shortest series of changes (insertion, deletions and sub-
stitutions) that transform the parent into the new version.

Our algorithm differs in three aspects from Subversion:
First, it is indifferent to white space changes. Second, clone
detection finds if a code block is moved unchanged within or
between files to retain original authorship. Third, the parent
of a new version is any file or version that is most similar to
it, which is not necessarily the direct previous version of the
same file. The rationale behind all modifications is to retain
responsibility of contributors even though others may make
minor changes to the same code [40].

The results of this process are responsibility ratios 0 ≤
r(d, f) ≤ 1, where r(d, f) is the responsibility of developer d
for file f . r(d, f) is proportional to the number of characters
in lines owned by d in f . For any given file

∑
r(d, f) = 1,

regardless of its size.

3.1.3 Computing Reputation Scores
On average, a developer should have a reputation score

that approximates her average compliance of contributions.
For reasons of fairness, a file to which she has contributed
more (or which is large) should have more influence on the
score than a file for which she has fewer responsibility (or
which is smaller). Reputation k(d) is defined as the average
of the compliance of code q(f) over all files F in the project,
weighted by size w(f) and responsibility of the respective
developer r(d, f):

k(d) =

∑
f∈F

q(f)r(d, f)w(f)∑
f∈F

r(d, f)w(f)

The source code of the CollabReview platform is available
as open source (see [3]).

3.2 Social Component: Valence and Influence
Reputation scores are an essential component to the gami-

fication. Yet their mere existence does not affect developers
because it has no valence for them. Research shows that
users will value reputation quite exactly as much as it pro-
vides valence [29]. The elements of gamification are then
what presents valence to users and lets them pursue higher
reputation scores. Common examples of such elements are
leader boards, levels or badges [18]. The choice of gamifi-
cation elements must be calibrated to the specifics of the
environment (cf. [42]). Farmer and Glass give a guide to de-
signing gamification elements using reputation systems [21].

651

When we created the design, we had knowledge from pre-
vious experiments and studies. We had thoroughly stud-
ied theoretical work, conducted expert workshops, and in-
terviewed software engineering experts to identify potential
problems. Additionally, we had tested the technical aspects
of reputation computations to gain confidence in their cor-
rectness. In general, it is important to have a good under-
standing of the users and their organizational environment.

3.2.1 Personal Scores
Personal scores are the technical basis of most gamifica-

tion designs. Choosing an environment where score can be
obtained is therefore essential. For example, responsibility
can be difficult to determine in pair programming situations
when two developers work together but only one commits
to the repository.

Presenting individual scores let team members develop a
feeling of self-efficacy when they see how their actions af-
fect their score. It helps them to learn and optimize their
behavior and understand the game. We therefore disclosed
the personal scores to the developers.

3.2.2 Transparent Rules
In our experiment, developers would perform distributed

development, mostly working off-site. Such setting hinder
informal interaction, information exchange, and the estab-
lishing of resilient social structures. Consequently, instruc-
tions regarding the game — like briefings, goals and repu-
tation reports — would have to be complete, precise and
self-explanatory. A gamification can easily fail due to a lack
of understanding of how to “play”.

Furthermore, communication of reputation scores is a crit-
ical ingredient. Scores must be communicated in a way that
developers take note of them, easily understand them and
can relate them to their actions. An important element
hence are intermediate reputation reports sent to the devel-
opers via email. Each report explains how scores are com-
puted. It contains the relevant computation basis of compli-
ance of each file q(f) (including the reported violations) and
the two main contributors with the highest responsibility
r(d, f) for the file.

While the reports were generated automatically, we sent
them manually as emails to the team’s focal point, who was
then responsible for distributing it further in the team. This
manual process increases the visibility and perceived impor-
tance of the reports. For the same reason, we kept the total
number of reports sent below ten.

3.2.3 Leader Board
In a survey we conducted earlier, the typical elements used

in gamifications (levels, badges, leader boards) were deemed
to be ineffective and have only limited valence. A problem
with leader boards, in particular, is that they emphasize the
top ranks, while having few motivational influence on the
vast majority of the remaining ranks in the middle. An ex-
ception are leader boards with negative reputation that were
strongly unpopular. For example, technical debt is valuable
as means of conveying overall information about internal
quality. However, it is not suitable as reputation, i.e., ev-
erybody would have his own share of technical debt.

The compliance reports still contained a table of reputa-
tion scores. However, it was not intended to function as a
leader board. Its purpose was to inform the team of its over-

all progress and to create transparency within the team. It
shows developers their own and the others’ scores to sup-
port self-coordination of group work, who needs support,
and what has to be done to achieve the rewards.

3.2.4 Individual and Group Incentives
The main driving force of the gamification is a mixed

individual and group incentive that can be earned either
by an individual or by the whole team. Group incentives
have the advantage over individual incentives that they have
stronger effect because members attempt to manage one an-
other through peer pressure and other social sanctions. At
the same time, this can lead to friction in the team. Adding
individual incentives reduces this risk [25]. Furthermore,
group rewards allow developers to help each other.

The group incentive was announced to be given to the
whole team if each team member achieved at least a score of
k(d) ≥ 9 (which is no more than one violation per 10 lines
of code) by the end date. While the condition took into
account the score of each developer individually, developers
could help one another by fixing violations in someone else’s
files. Still, personal scores allowed the teams to manage
conformance. The target threshold of 9 out of 10 possible
reputation points was chosen not to be too easy but also not
extremely difficult to achieve.

For the case the group incentive was completely out of
reach due to too many deniers, an individual incentive was
also announced. This individual incentive would only be
given to developers, if the team failed to achieve the team
goal. The purpose of the individual incentive was as a fall-
back and to reduce friction in the team if several developers
would not consider the prize worthwhile achieving. In that
case, the individual prize was announced to developers with
the highest reputation scores at the end of the experiment.
On the one hand, at least developers interested in the prize
would be able to achieve it. On the other hand, a team of
deniers could not decide as a whole to not go for the prize
because the highest scoring developers would still get it.

An effective reward must be valuable and seem attainable.
In an earlier experiment, we offered a prize money of several
dozen Euros in a student lab for ranking first. As only one
developer could earn the prize, the expectancy-value was
perceived as too low, and consequently the reward turned
out not to be attractive. We therefore offered the prize to
the second ranked as well. Instead of money, we offered a
bonus of one third of a grade on the final project grade. No
reward was offered for the third rank because three willing
developers were about one third of the members of a team.
We considered three developers as a critical mass that would
be strong enough to push the whole team towards the group
goal situation instead.

4. SETUP OF THE EXPERIMENT
We aimed our experiment at the gold standard of experi-

mentation: Out of two groups, one group receives the inter-
vention while the other one does not. Ideally, any observed
difference can then be attributed to the intervention. The
two questions that drive our experiment are:

Principal Question: Does gamification of coding conven-
tion enforcement lead to improved compliance?

The results of a rigorous experiment alone should provide
sufficient evidence for the above question. However, sur-
veying the test subjects after the experiment can increase

652

confidence in the results by revealing processes and motives
that were in effect. Therefore, it is valuable to investigate
how the gamification intervention itself is perceived by the
subjects. For example, if the gamification is present in the
subjects’ minds during the experiment and is considered im-
portant, then it is quite probable that it also influences their
behavior. Qualitative investigations on these motives can
provide hints for improvement and further explanations.

Secondary question: Does gamification cause undesirable
social effects?

Another important aspect is that gamification should not
have negative side effects on the team itself. For example,
group incentives can cause friction [25], or the gamification
could over-emphasize convention compliance. For investi-
gating the second question, we analyze survey responses and
have course instructors report suspicious incidents.

4.1 Frame Conditions
As part of the teaching activities of a local post-graduate

teaching institution, two independent software teams exe-
cuted separate projects following the agile Scrum method-
ology. The teams consisted of rather experienced develop-
ers, however, included also ones with only some experience
(see Section 4.2). To avoid potential problems with legacy
code, both projects were green-field projects. It should be
noted that the purpose of the projects was not the exper-
iment but that they were supposed to deliver actual func-
tionality/software. The gamification experiment was only a
piggyback. Therefore both projects had different functional
topics, while still being setup very similar from a develop-
mental point of view.

The duration of the projects was more than two months,
including 47 work days (excluding weekends and several pub-
lic holidays). Each team was responsible for organizing it-
self, e.g., resource allocation or scheduling. However, one
Scrum sprint retrospective and a review meeting with the
instructors acting as customers had to take place at the end
of each week. The course instructors and the experimenter
were different persons. The experimenter only appeared as
a guest at the respective intervention start and ending meet-
ings.

The size and organization of the projects allowed for an ex-
periment with both within-group and between-group designs.
Team A starts its project while receiving the CollabReview
intervention. During this time, the performance of Team A
is compared to the performance of Team B (between-group).
After about half of the project duration, the intervention
ends for Team A and begins for Team B. At the end, the
performance of Team B is compared to its prior performance
without the intervention (within-group). The performance
of both teams is monitored all the time.

4.2 Distribution onto Teams
For a successful between-group experiment, both groups

need to be as similar as possible. We manually distributed
the developers onto the two projects in advance.

In the end, the two teams consisted of nine and eight
developers, respectively. Additionally, developers were dis-
tributed in such a way that different skill levels were evenly
distributed. We determined skill levels by means of a short
questionnaire that developers filled out. The questionnaire
asked them to assess their Java coding skills, other cod-
ing skills, experience in Scrum, knowledge of software engi-

neering processes, and practice with collaboration tools like
Subversion. The collected self-assessments were combined
into a single overall average skill score. (The combined per-
developer score has been included for reference in the fi-
nal results Table 2. Three developers joined Team A last-
minute, so no self-assessment data is available.) In the end,
average skill scores between teams differed by less than five
percent. On these scales, the developers considered them-
selves as rather experienced in programming in general and
with Java, and were knowledgeable of the software develop-
ment process. They had some experience with collaboration
tools but few with Scrum.

4.3 Experiment Time Schedule
The time for the end of the intervention for Team A and

start for Team B was fixed to be at the half of the project
duration, i.e., after about one month, i.e., 22 work days
excluding weekends and public holidays. Development in
both teams started after about two weeks because earlier
software development life cycles phases (e.g., requirements
elicitation) had to deliver early results first. While the in-
tervention had been announced to Team A on the first day,
the first compliance report was sent to Team A only after
two weeks when development was really ongoing (Day 10).
The intervention ended for Team A, and started for Team
B on Day 23.

4.4 Intervention and Briefing
Each intervention started with an instructional email to

the respective team’s Scrum Master, who was responsible
for circulating it within his team. The instructional emails
described the gamification and contained the first compli-
ance report. It displayed the developers’ current reputation
score, and details on responsibilities and detected violations
as hints for improving reputation.

The teams were also informed that any intermediate re-
ports sent to them were not important for the reward. Only
the final score at the end of the respective intervention pe-
riod was relevant. That meant that both teams should have
enough time to carefully approach a better score. Team B
received the explicit advice to carefully improve style and
fix problems over time, and not to heedlessly fix them im-
mediately, or hope to fix them in the last few days.

The teams also received the following additional hints:

• If developers liked, then they could use the static anal-
ysis tool themselves to check their code before check-in.

• Most IDEs like Eclipse are capable of automatically
fixing style issues, which should easily let a developer
get rid of several violations without manual effort.

• While every developer had his own score, they could
help each other by fixing someone else’s code. They
could win individually or as a team.

4.4.1 Surveys after the Intervention
At the end of each team’s intervention, a questionnaire

was given to the developers to gain a better understanding
of how CollabReview was perceived. We wanted to learn
for future designs. Each question contained a 5-point Likert
scale (“How much...”) and a free text item (“Why was it...”)
for capturing feedback both quantitatively and qualitatively.

It asked how present scores were in the developer’s con-
sciousness, how important the gamification was for them,

653

how fair it was, how well the developer did understand its
computation, how much the developer did like that reputa-
tion was computed, how well it was fitting into the devel-
opment process, how acceptable the gamification was, how
much influence it had on the developer’s way of program-
ming, how much additional effort it caused for the developer,
how much the code readability improved due to the interven-
tion, if it would have made a difference for the developer to
only see a team’s average score instead of individual scores,
and if the developer had privacy concerns. (The identifiers
in italics re-appear in the next section.)

5. RESULTS AND EVALUATION
This section presents collected reputation data, reflects

observations made during the experiment, reproduces re-
sults from the final questionnaire, and finally interprets and
summarizes the results.

5.1 Collected Reputation Scores
Figure 1 shows how reputation developed over the course

of the experiment. The continuous lines are the average
reputation scores of Team A in red and Team B in blue. The
“average” reputation is weighted by each developer’s level of
contribution to the project. It has the same value as if all
code had been written by a single developer. In addition,
the figure depicts all developers’ individual reputation scores
with dotted lines in the team’s color.

Four events are explicitly marked with thick gray lines.
These are the start and end dates of the intervention of
Team A and Team B, respectively. Team A received their
first compliance report (and the experimental instructions)
at the tenth day when their code base first contained more
than 200 lines of code.

The average reputation of Team A does not change very
much during the first two weeks of their intervention. In-
stead, an average reputation of about 5 seems to be achieved
naturally without much attention. The reputation of Team
A then suddenly goes up to the maximum possible score (10)
in the last few days before End A. From then on, after the
intervention, average reputation slowly begins to decrease.

As opposed to this, Team B starts out with an average
reputation of 5. During the next weeks, reputation slightly
lowers until reaching a “natural” 3 at the day of Start B. For
two and a half weeks, Team B steadily works its way towards
the team reward threshold of 9. They then use the remainder
of their intervention period (End B) to further improve their
scores a bit while never reaching the maximum of 10.

Both teams reached the average reputation needed to be
awarded the team reward at the end of their intervention
period. While Team A seems to have been more deadline
oriented, Team B slowly worked toward the goal and then
maintained a safe margin over the threshold.

Translated into violation density, the reputation scores
mean: At the start of their respective interventions, Team
A had ≈ 0.65 violations per line of code, while Team B had ≈
0.75. Until the end of their interventions, Team A improved
compliance to zero violations per line of code, while Team
B improved compliance to almost zero violations.

5.2 Observations
This subsection reflects on a few observations that we

made during the experiment. As teams were distributed
and conduction of the work was in their own responsibil-

ity, observations were restricted to the weekly Scrum review
meetings. However, a few anecdotes emerged:

Developer A3 misread the briefing of the intervention,
when reputation scores were first revealed to his team. He
reported spending the whole night trying to fix problems but
finally gave up as he saw no chance of reaching the target
score. In the Scrum review, he was frustrated and expressed
feeling offended because he had worked so much and now
feared he would not get the prize. But his team could ap-
pease him as he misread the briefing and still had enough
time left to fix his reputation score.

During the next weeks, however, A3 did not improve his
score very much. Instead, his team helped him fix problems
with his code only the day before the deadline. In the Scrum
retrospective at the end of the intervention he argued that
the conventions were driving him mad as they were taking
him too much time. He continued that it was only for his
team members who saved him. Interestingly, he followed
up on his original statement several weeks later when the
intervention of Team A had long ended. He said that he
had actually learned to appreciate the better readability re-
sulting from convention compliance and, to his dismay, had
noticed its decay after the intervention had ended.

B7 also stated that he had someone else improve the code
for him. Indeed, it seemed to be a strategy in both teams to
have certain members specialize in fixing compliance when
the deadline approached. CollabReview leaves this flexibil-
ity to developers while at the same time encouraging them to
efficiently and autonomously negotiate improvement work.

The members of Team A increased their scores overhastily
right before their intervention ended. This could be the rea-
son why they went for a perfect 10 instead of the necessary
9: They had no time left and had to get it right with one
shot; so they did not risk a single violation. A problem with
this approach was that they broke their software right be-
fore presentation at the Scrum review. Some functionality
got lost in the huddles.

5.3 Questionnaire Feedback
Figure 2 summarizes opinions about the intervention. As

the items additional effort and concern capture negative
opinions, the responses shown in the table were inverted for
easier visual comparison. Row averages (in parenthesis) are
presented as an indication of “overall feeling” that should be
treated with care. On average, Team B (3.9) perceived the
intervention better than Team A (3.2).

Present: The valence of the team prize was a major reason
why the gamification had a high presence for developers.
But developers also said that they cared for the readability
of their source code and found the intervention helpful, and
that they wanted to have a high score. Some developers
of Team A admitted to have started caring more for the
compliance of their code when approaching the deadline.
The idea of paying some attention all the time was more
widespread in Team B.

Fair: The gamification was perceived as quite fair. The
biggest concern was about the computation of scores. De-
velopers with many contributions could (in absolute num-
bers) catch more violations, and thus have a lower score.
Vice versa, fewer contributions meant less potential conven-
tion violations. These developers considered neglecting of
quantity demotivating. For some developers, a concern was
that Checkstyle did not support aspects like identifier names

654

Start A End A Start B End B

Reputation

Day

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Figure 1: Average team scores (Team A red, Team B blue) and scores of individual team members (corre-
sponding colors, dotted)

while being too picky about aspects like trailing spaces. In-
deed, this is a valid remark regarding Checkstyle; yet not so
much of the enforcement. Other developers, however, found
that Checkstyle was making fair judgments, and that scores
were helpful and gave them the feeling to have achieved
something.

Important: The gamification was important to the ma-
jority of developers. Reasons why they found it important
were the prizes, wanting to finish on a top rank in the leader
board, the desire write clean code, and as a way to reflect
on one’s own work. Those who found it less important, said
that they preferred to focus on functionality.

Understand: The majority of developers felt that they
understood how reputation was computed. A bit of experi-
menting and studying the reports was still necessary to un-
derstand the score and how to influence it. This aspect was
particularly relevant for Team A because they started to
take care of the scores rather lately.

Like: In Team A, the gamification caused some distress
for functionality-oriented developers due to their needing of
help from others. Developers in Team B generally liked the
intervention from an educational point of view and because
they were kept alert about readability. They had no feeling
of a contest but felt they were collaborating nicely. They
particularly enjoyed that all team members were encouraged
to comply to conventions.

Fitting: In general, CollabReview was perceived as fit-
ting quite well into the development environment. How-
ever, developers noticed that the high pressure coming from
the Scrum environment was further increased by one more
aspect that they had to take care of. A recurring topic
was that the compliance aspect was perceived as distracting
(cf. [48]). In particular, developers wanting to focus more on
functionality felt they were forced to invest in compliance as
well. One developer criticized that in group work individual
scores would not fit well. However, proponents held up that
clear code benefited the team as it was easier to read for all
others, and that reputation scores were just the right moti-
vation. Scores allowed them to see who cared about compli-
ance, and to organize themselves to react accordingly. The
scores fitted well into the project because functionality and

readability were both in the focus now, and it served the
educational purposes as it supported learning.

Acceptable: Except for its potential of causing competi-
tion within the team and penalizing of functionality-focused
behavior, the gamification was received well. Developers
pointed out its positive motivating effects, and accepted it
due to its fairness, quality of measurement, its “telling the
truth” and the possibility to win as a team.

Influence: Developers who felt they were writing clean
code right from the start felt they were influenced very little.
Those who felt influenced named reasons like the desire to
write clean code, wanting to win the prize or found what
they learned about style helpful. Some developers changed
their behavior to take care of style right from the start and
to develop in a more organized way. B8 admitted to have
actively influenced others so that everybody would have a
high score. While Team A had to dedicate the last days
before the deadline to fixing styles, Team B adapted their
way of working early and did not feel influenced.

Additional effort: Developers who integrated automated
checks into their normal way of working reported little ad-
ditional effort. They used IDE plug-ins to do most of the
work and accepted that they had to dedicate a little extra
time. Developers who fixed problems later reported higher
efforts. They spent whole days fixing their own and others’
code. The finickiness of Checkstyle made them review their
code several times before committing it to the repository.
Using IDE functions to format code and Checkstyle them-
selves would have reduced this effort. Fixing compliance
violations in code that they did not understand anymore
was a major problem for them.

Readability improved: A controversy if readability had im-
proved revolved around Checkstyle. Some developers ac-
cused it of not addressing issues like identifier naming but
checking seemingly unimportant things like formatting. Yet,
others found that quality improved indeed. Convention com-
pliance made the code easier to read, while the required
Javadoc comments added to understandability.

Difference: Broad consensus was that individual scores
made a difference compared to one overall score. Reputation
was first perceived as interfering with collaboration. But

655

S
k
il
l

p
re

se
n
t

fa
ir

im
p

o
rt

a
n
t

u
n
d

er
-

st
a
n

d
a
b

le

li
k
a
b
le

fi
tt

in
g

a
cc

ep
ta

b
le

in
fl
u

en
ce

a
d
d

it
io

n
a
l

eff
o
rt

(i
n
v
.)

re
a
d

a
b
il
it

y
im

p
ro

v
e-

m
en

t

d
iff

er
en

ce

co
n

ce
rn

(i
n
v
er

te
d

)

o
v
er

a
ll

a
v
er

a
g
e

fe
el

in
g

A1 2.6 0 - - ++ + - - - - - + + - ++ ++ 0 (2.9)
A2 — + - 0 + 0 - 0 - - - - - + ++ 0 (2.8)
A3 4.9 ++ - - + - - - - 0 + 0 + ++ ++ 0 (3.0)
A4 — + ++ + - - 0 0 + + 0 0 + - 0 (3.3)
A5 — 0 ++ ++ - - 0 ++ ++ + - ++ 0 0 + (3.5)
A6 3.9 + 0 - + 0 + - - - - ++ ++ 0 (3.2)
A7 2.6 0 0 + + 0 - 0 - + 0 0 + 0 (3.0)
A8 3.9 0 ++ ++ ++ + ++ ++ - - - ++ + 0 + (4.0)
A9 3.4 + 0 + 0 0 0 0 0 - 0 + + 0 (3.3)

B1 2.9 ++ + + + + + ++ + - + - ++ + (3.9)
B2 3.8 ++ ++ + + + ++ ++ + - + ++ 0 + (4.2)
B3 3.4 + + + ++ ++ + ++ + + 0 + (4.0)
B4 3.5 + 0 + + 0 + + + + ++ + 0 + (4.1)
B5 1.7 0 0 + + + 0 + 0 - + ++ ++ + (3.6)
B6 3.4 + + + + + + - + + + 0 + (3.5)
B7 4.4 0 0 - + 0 + + - - + + - 0 (3.2)
B8 4.8 ++ ++ ++ + ++ ++ ++ ++ 0 ++ ++ ++ ++ (4.8)

Average A 3.6 3.67 3.11 4.00 3.11 2.67 3.00 3.33 3.00 2.44 3.11 4.11 4.00 0 (3.2)
Average B 3.5 4.13 4.14 3.88 4.13 4.00 4.13 4.50 3.50 2.71 4.25 4.14 3.63 + (3.9)
Average 3.5 3.88 3.56 3.94 3.59 3.29 3.53 3.88 3.24 2.57 3.65 4.13 3.82 + (3.6)

Figure 2: Likert-scaled opinions about the intervention, plus self-assessed skill (see Section 4.2)

developers reported to then have learned how to use it as a
tool to see who needed help and to identify developers from
whom they could learn. It inspired them to work hard to
get a good reputation score, and A2 said that the “scores
aroused some unexplainable competitive spirit” in him.

Concerns: Publishing scores was not seen as a privacy is-
sue as long as scores were not published to others outside
the team. Instead, developers explicitly stated that they had
nothing to hide and even said that it helped them to orga-
nize themselves because it helped them to better understand
their team.

5.4 Research Questions Answers
This subsection interprets the results with respect to the

two research questions.

5.4.1 Does Gamification of Coding Convention En-
forcement Lead to Improved Compliance?

Reputation depends directly on measured convention com-
pliance. The history of the reputation scores clearly shows
that the intervention had the intended effect on both de-
velopment teams. It can be seen that for both teams, the
individual and average reputation scores were lower at in-
tervention start than at its end. The employed convention
checking tool found (almost) zero problems at the end of
the intervention for both teams as compared to their start.
Furthermore, compliance increases for teams receiving the
intervention (at End A, Team A better scores than Team B;
at End B, Team B better scores than Team A). We therefore
conclude that gamification of coding convention compliance
leads to improved compliance.

The surveys additionally support this finding: In both
teams, the intervention was perceived as present and highly
important. Moreover, Team B and also Team A mentioned
that they understood quite well what to do. They felt that
the gamification had an active influence on them that would
not have been there, if individual scores would not have been

not computed. They noticed that it caused them additional
effort. The developers found that the quality of their code
improved due the intervention.

5.4.2 Does Gamification Cause Undesirable Social
Effects?

The second research question whether gamification does
cause undesirable social effects is more difficult to substanti-
ate. The reason is that only indirect data from surveys and
observations is available.

Indication that our gamification caused undesirable effects
come mainly from Team A: the anecdote of the developer
who got no sleep for one night, the breaking of previously
working functionality before product presentation, and a
slight overall tendency to dislike the gamification. Only
A8 liked it, while A1 and A3 strongly disliked it (yet one
of them, A3, later changed his mind when he recognized
the benefits it brought to their code). Potential problems
reported by both teams were that it caused some compe-
tition inside the team, was a bit unpredictable due to un-
derstanding problems, and made developers feel indebted to
colleagues when those fixed their violations.

In Team B, the overall reception was very positive. For
both teams the gamification was (totally) acceptable and
welcomed. The only issues raised with acceptability (poten-
tial for competition and penalizing of mass contributors),
were outweighed by motivating effects and perceived fair-
ness. Only two developers were slightly concerned about
individual scores, while all others were not. No developer
reported a too strong influence on his behavior, thereby pre-
cluding the existence of extreme adverse effects like team
friction or crowding out primary project goals. Quite to the
contrary, developers helped each other to reach the goals.
Developers did not report privacy concerns regarding the
publishing of scores. The row averages indicate that no de-
veloper had strong overall adverse feelings, which would cer-
tainly have been the case, if something bad happened.

656

The results for Team A are not as good. This may have
several reasons. The project managers (who had seen no rep-
utation scores) gauged that, in general, Team A was weaker
and less organized than Team B. Developers of Team A were
mostly functionality-oriented. Moreover, they used a de-
velopment framework that recommended slightly different
coding styles, which led to controversial opinions about the
usefulness of Checkstyle’s conventions. By addressing their
scores only lately, the hastiness caused additional troubles
(broken features).

In summary, the gamification was perceived as rather fair,
likable, fitting into the situation and acceptable, and caus-
ing only few concerns. Serious friction did not occur in the
experiment; the broken features issue was probably due to
a general organizational weakness in Team A. Additionally,
as a lesson from this issue, Team B was more carefully in-
troduced to the intervention, emphasizing that enough time
was left. We therefore negate the question and conclude that
gamification does not cause undesirable social effects.

5.5 Lessons Learned
Compared to Team B, Team A reported costs we deem un-

necessarily high, and from which we derive our first lessons:
One reason might be organizational weaknesses also observed
by instructors that might have become intensified. Use cau-
tion when introducing gamification! Secondly, coding rules
were not calibrated to the third-party libraries used. The
enforced conventions should be adapted to the project sit-
uation! Thirdly, Team A tried to achieve perfect 10 scores
to not risk missing the goal (which was intentionally not set
to perfect scores). However, according to the eighty-twenty
rule, the last few percent are the most costly ones to achieve.
The goal was therefore intentionally set below the perfect
score (to 9); but this must also be recognized and realized
by the team! Fourthly, higher effort resulted from not using
automated tools for fixing problems like formatting. Hence,
available tools should employed by the teams where possi-
ble! Fifthly, Team A addressed violations not promptly but
rather late, which is (i) usually more costly in itself, and (ii)
leads to being able to benefit from readability improvements
only lately. Weeks after answering our survey, A3 said he ac-
tually learned the value of cleaner code only after seeing its
decay. So, gamification should reward and promote immedi-
ate adaptation of behaviors! Sixthly, for Team B, a positive
difference between additional effort and benefits from read-
ability improvements stands out. Feedback indicates that
they had a relaxed and planned approach to dealing with
reported violations. They fixed issues during programming,
saw it as a normal task they had to dedicate time to, and
used tools to automatically fix most problems. Gamification
works best in a relaxed, planned but continuous way!

Some lasting learning effects may have occurred. The de-
cay in reputation after the intervention for Team A supports
that it was the intervention, which was responsible for the
increase. But reputation does not fall abruptly after the in-
tervention although much more code was produced. It only
decreases by about 15%. This observation is congruent with
the developers’ statements that they had learned things like
immediately writing comments, or keeping an eye on style.

The compliance report listed for each file the main con-
tributor, the file’s compliance rating and detected violations.
This information helped developers to sufficiently well un-
derstand how scores were computed. The developers uttered

concerns about the finickiness of Checkstyle. Still they found
that it led to more readable code.

5.6 Summary
The CollabReview concept was successfully validated in

two projects, where it fitted well into Scrum development.
The primary goal of increasing coding convention compli-
ance was clearly reached. It was seen as a good support for
achieving better readability. Developers reported that they
it made consider both functionality and readability when
programming. The interventions were perceived well by the
developers and we found only few indication of adverse ef-
fects. As a result of the experiment, a reasonable readability
improvement was reached cost-effectively.

6. THREATS TO VALIDITY
Regarding internal validity, the evaluation was designed

towards the gold standard of experimentation. Results ob-
tained with and without intervention were clearly distin-
guishable. A between-groups and a within-group experi-
mental design were realized. The developers had similar
educational backgrounds were assigned randomly to the two
groups in such a way that a similar average skill-level was
present in both groups. Of course, both groups did not
consist of perfectly equal individuals. The work context of
both teams was comparable because the projects were sim-
ilar with respect to process model (Scrum), tool support,
programming language (Java), expected quality level (proto-
type), domain (web application), same project managers and
the like. The size of the groups was quite small in statistical
terms but a typical size for agile development. The results
from the conducted surveys are congruent with statistical
findings so that they support confidence. Developer opin-
ions are evaluated partly based on averages of Likert data.
There is an ongoing controversy about Likert data and para-
metric statistics. However, Norman concludes that statistics
are sufficiently robust, save to use with Likert data, and that
this assumption is backed by empirical literature [37].

Regarding external validity, the environment of the exper-
iment was designed to reflect a typical development environ-
ment. But recruiting industrial development teams for ex-
perimental research is almost impossible [54]. The results of
our research might therefore not simply extend onto highly
professionalized industrial projects. Replication is necessary.
However, besides such environments, there is a lot more soft-
ware development going on in different domains that is often
overlooked. For example, in teaching, start-up projects, am-
ateur open source, or scientific programming (cf. [34]). Such
environments are much more similar to the environment in
which our experiment took place.

7. RELATED WORK
Coding conventions are often relied on as a first measure

to improve internal quality (cf. [36]). Therefore, it is no
surprise that they are a dime a dozen (cf. [31]). Famous ex-
amples are the GNU coding conventions or MISRA-C, which
forbids constructs that tend to be unsafe. This is not to say
that internal quality is all about coding conventions. For
example, see the discussion of technical debt and its many
derivatives like design, testing or documentation debt [13].
Regarding source code, researchers have looked into aspects
like the problem of complexity (cf. [53]) and complementary

657

readability [14]. Nevertheless, an important ingredient to
readability is coding conventions (see Section 2).

As of today, it is not possible to fully automatically as-
sess the readability or quality of code. However, style vi-
olations and smells are significant hindrances for readabil-
ity [50]. Consequently, readability can be improved through
coding conventions that judged through style violations and
code smells like white space, line length, comments, magic
numbers and others. Buse and Weimer [14] showed that
text-level analysis, on average, is better at judging read-
ability than any human assessor. Lee et al. [31] analyzed
several open source projects with respect to Checkstyle and
the above readability metric. They empirically substanti-
ated claims that consistent style and readability are corre-
lated; i.e. that less readable source files have a higher rule
violation density. Smit et al. [47] assessed the importance
of 71 rules from code conventions for maintainability, and
found that they can be discriminated into more and less se-
vere rules. The metric we use for compliance is that of Smit
et al. but without considering severity levels. Due to this
important role of coding conventions, professional tools like
SonarQube [4] or SQuORE [5] rely on conventions checking
tools (e.g., Checkstyle) to assess internal quality. They even
go as far as quantifying technical debt in dollars based on
this. However, Boogerd and Moonen find that some coding
rules can also have detrimental effects to reliability [12].

Various kinds of review processes, more or less formal
ones, and distributed and asynchronous ones, using auto-
matic scheduling, exist to enforce coding standards and guide-
lines (cf. [10]) Our approach to enforcing conventions dif-
fers from others in that it does not aim to enforce total
compliance to conventions in each and every situation but
still pushes developers towards compliance. For instance,
Vashishtha and Gupta [52] and Merson [35] use Subversion
hooks to prevent check-ins of code that is not compliant to
conventions. The latter reports that introduction of new
rules is problematic as it may stall the entire project until
the new rule has been fully realized in the code. Plösch et al.
combine static analyzers with downstream human reviews to
improve code quality [39]. As opposed to this, Murphy-Hill
et al. [20] propose soft advice based on a non-distracting
ambient/background display to deal with the fallibility of
automatic readability judgments.

Online communities like Coderwall or TopCoder [2,6] have
long applied gamification to developers. In communities of
web developers, increasing rewards leads to increased con-
tributions of the desired kinds [19]. Anonymous bidding for
implementations can even establish a market equilibrium for
quality improvements [8]. Singer and colleagues apply gami-
fication in development teams to promote good development
practices like frequent commits [45,46]. Dencheva et al. used
gamification to improve contribution to a knowledge man-
agement platform, taking quantity into account as well [17].
Contributor analysis as input to reputation systems is, for
instance, researched in the domain of wikis [7, 27].

8. CONCLUSION
Source code is a medium of communication and the only

precise documentation of implementation details in software
development. It has therefore a central role for the preser-
vation of valuable knowledge. Following coding conventions
can make code more easily understandable for other develop-
ers by constraining expressive freedom and avoiding distract-

ing code noise. However, this information exchange aspect
is often neglected in practice. Investing efforts in making
code more easily understandable has a high cost for the in-
dividual but benefits are spread over the whole team. This
imbalance is a major reason for the appearance of the infor-
mation exchange dilemma. We

• relate problems of unclean code to the information ex-
change dilemma,

• propose gamification as a way to motivate developers
to comply to coding conventions,

• design a solution for implementing such gamification,

• explain how to integrate it into the social environment
of a development process, and

• conducted two experiments with agile teams where
gamification improved convention compliance, without
major detrimental social effects.

Gamification was accepted as it gave developers a tool for
self-management. Developers noted additional effort and
potential hassles, which could, however, be controlled by
better (self-)organization, support of respective tools, prompt
fixing of violations, and not taking it too serious. Checkstyle
was perceived as valuable although it has some shortcom-
ings: being picky but dumb (e.g., not checking the sensible-
ness of identifier naming) and requiring adaptation to the
peculiarities of the project. Overall, developers welcomed
gamification for improving readability, for supporting self-
organization, and for causing a lower additional cost than
the value of its resulting benefits.

Our implementation may be better suitable for environ-
ments where rigid quality controls are not in place and where
functionality deadlines are not too tight, e.g. academic teach-
ing, amateur open source or scientific programming. At
least, we are convinced that our study is representative for
such environments. In the future, we want to replicate our
experiments in other environments to make a transition to-
wards industrial settings, and run trials with more long-term
projects. Our results will hopefully serve us to convince fur-
ther (industrial) development teams to try this approach.

Gamification may grant more flexibility for managing qual-
ity. It allows developers to fix each others’ code, while effec-
tively motivating them to invest in compliance themselves.
It might replace rigid enforcement mechanisms for coding
conventions in some cases. By motivating developers to in-
vest in compliance, they have the flexibility to adapt their
compliance efforts to other project pressures. This might be
more efficient because if a fixed compliance level is set at
a too low value, then it will not promote sufficient invest-
ments in compliance; if it is set too high, it will unneces-
sarily burden developers. Compliance efforts should be fair
and the general conditions should be set in such way that
the required efforts are borne by all and are not only at the
expense of responsible team members.

9. ACKNOWLEDGMENTS
We like to thank the experiment participants for their co-

operation, Andreas Zimmermann and Alexander Schneider
for kindly hosting the experiments, Markus Eisenhauer for
his advice with the experimental design, and Katrin Wolter
and many anonymous reviewers for their helpful comments.

658

10. REFERENCES
[1] Checkstyle. http://checkstyle.sourceforge.net/.

[2] Coderwall. http://coderwall.com/.

[3] Collabreview.
http://sourceforge.net/projects/collabreview/.

[4] Sonarqube. http://www.sonarqube.org/.

[5] Squore. http://www.squoring.com/.

[6] Topcoder. http://www.topcoder.com/.

[7] B. T. Adler, K. Chatterjee, L. de Alfaro, M. Faella,
I. Pye, and V. Raman. Assigning trust to wikipedia
content. In Intl. Symp. on Wikis, 2008.

[8] D. F. Bacon, Y. Chen, D. Parkes, and M. Rao. A
market-based approach to software evolution. In
OOPSLA companion. ACM, 2009.

[9] S. C. Bailin. Software development as knowledge
creation. IntJ. of Applied Software Technology,
3(1):75–89, 1997.

[10] M. Bernhart, S. Reiterer, K. Matt, A. Mauczka, and
T. Grechenig. A task-based code review process and
tool to comply with the do-278/ed-109 standard for
air traffic managment software development: An
industrial case study. In IntSymp. on High-Assurance
Systems Engineering (HASE), pages 182–187, 2011.

[11] B. Boehm. Get ready for agile methods, with care.
IEEE Computer, 35:64–69, 2002.

[12] C. Boogerd and L. Moonen. Assessing the value of
coding standards: An empirical study. In ICSM, pages
277–286. IEEE, 2008.

[13] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim,
P. Kruchten, E. Lim, A. MacCormack, R. Nord,
I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and
N. Zazworka. Managing technical debt in
software-reliant systems. In Future of Software
Engineering Research. ACM, 2010.

[14] R. P. L. Buse and W. R. Weimer. Learning a metric
for code readability. IEEE Transactions on Software
Engineering, 36(4):546–558, July 2010.

[15] C. Connell. Creating poetry in software code. Boston
Globe, 1999.

[16] U. Cress, J. Kimmerle, and F. W. Hesse. Information
exchange with shared databases as a social dilemma -
the effect of metaknowledge, bonus systems and costs.
Comm. Research, 33(5):370–390, 2006.

[17] S. Dencheva, C. R. Prause, and W. Prinz. Dynamic
self-moderation in a corporate wiki to improve
participation and contribution quality. In ECSCW.
Springer, 2011.

[18] S. Deterding, D. Dixon, R. Khaled, and L. Nacke.
From game design elements to gamefulness: Defining
“gamification”. In Intl. Academic MindTrek Conf.:
Envisioning Future Media Environments. ACM, 2011.

[19] D. DiPalantino and M. Vojnovic. Crowdsourcing and
all-pay auctions. In 10th Conference on Electronic
Commerce. ACM, 2009.

[20] T. B. Emerson Murphy-Hill and A. P. Black.
Interactive ambient visualizations for soft advice.
Information Visualization, 12(2):107–132.

[21] F. R. Farmer and B. Glass. Building Web Reputation
Systems. O’Reilly, March 2010.

[22] N. H. Frija. The Emotions (Studies in Emotion and
Social Interaction). Cambridge University Press, 1987.

[23] P. Graham. Hackers & Painters: Big Ideas from the

Computer Age: Essays on the Art of Programming.
O’Reilly & Associates, Inc., 2004.

[24] M. Harman. Why source code analysis and
manipulation will always be important. In SCAM.
IEEE Computer Society, 2010.

[25] R. L. Heneman and C. V. Hippel. Balancing group
and individual rewards: Rewarding individual
contributions to the team. Compensation & Benefits
Review, 27(63):63–68, 1995.

[26] J. D. Herbsleb and D. Moitra. Global software
development. IEEE Software, 18(2):16–20, 2001.

[27] B. Hoisl. Motivate online community contributions
using social rewarding techniques — a focus on wiki
systems. Master’s thesis, Vienna University, 2007.

[28] W. S. Humphrey. Managing Technical People.
Addison-Wesley, 1997.

[29] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust
and reputation systems for online service provision.
Decision Support Systems, 43(2):618–644, 2007.

[30] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical
debt: From metaphor to theory and practice. IEEE
Software, 29(6):18–21, 2012.

[31] T. Lee, J. B. Lee, and H. P. In. A study of different
coding styles affecting code readability. IJSEIA,
7(5):413–422, 2013.

[32] D. Leonard-Barton. Implementing structured software
methodologies: A case of innovation in process
technology. Interfaces, 17(3):6–17, May/June 1987.

[33] A. Lynex and P. Layzell. Organisational considerations
for software reuse. Annals of Software Engineering,
5:105–124, 1998. 10.1023/A:1018928608749.

[34] Z. Merali. Computational science: Error, why
scientific programming does not compute. Nature,
467(7317):775–777, 2010.

[35] P. Merson. Ultimate architecture enforcement:
Custom checks enforced at code-commit time. In
Conference on Systems, programming, & applications:
software for humanity, pages 153–160. ACM, 2013.

[36] M. E. Nordberg, III. Managing code ownership.
Software, IEEE, 20(2):26–33, March/April 2003.

[37] G. Norman. Likert scales, levels of measurement and
the ”laws” of statistics. Adv in Health Sci Educ,
15:625–632, 2010.

[38] C. Parnin. A cognitive neuroscience perspective on
memory for programming tasks. In PPIG, PPIG, 2010.

[39] R. Plösch, H. Gruber, C. Körner, and M. Saft. A
method for continuous code quality management using
static analysis. QUATIC, pages 370–375. IEEE
Computer Society, 2010.

[40] C. R. Prause. Maintaining fine-grained code metadata
regardless of moving, copying and merging. In SCAM.
IEEE CS, 2009.

[41] C. R. Prause and Z. Durdik. Architectural design and
documentation: Waste in agile development? In
ICSSP. IEEE, 2012.

[42] C. R. Prause, J. Nonnen, and M. Vinkovits. A field
experiment on gamification of code quality in agile
development. In PPIG, 2012.

[43] P. Seibel. Coders at Work: Reflections on the Craft of
Programming. Apress, 2009.

[44] B. Selic. Agile documentation, anyone? IEEE

659

Software, 26(6):11–12, Nov/Dec 2009.

[45] L. Singer and K. Schneider. Influencing the adoption
of software engineering methods using social software.
In ICSE. IEEE, 2012.

[46] L. Singer and K. Schneider. It was a bit of a race:
Gamification of version control. In Intl. W. on Games
and Software Engineering, 2012.

[47] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia.
Code convention adherence in evolving software. In
Intl. Conf. on Software Maintenance, ICSM, pages
504–507. IEEE, 2011.

[48] D. Spinellis. Reading, writing, and code. ACM Queue,
October 2003.

[49] D. Spinellis. Code documentation. IEEE Software,
27:18–19, 2010.

[50] D. Spinellis. elyts edoc. IEEE Software, 28:104–103,

March 2011.

[51] E. Tryggeseth. Report from an experiment: Impact of
documentation on maintenance. Empirical Software
Engineering, 2:201–207, 1997.

[52] S. Vashishtha and A. Gupta. Automated code reviews
with checkstyle, part 2, 11 2008.

[53] E. J. Weyuker. Evaluating software complexity
measures. IEEE Trans. Software Eng.,
14(9):1357–1365, 1988.

[54] E. J. Weyuker. Empirical software engineering
research - the good, the bad, the ugly. In Symp. on
Emp. Softw, Eng. & Measrmnt. IEEE, 2011.

[55] J. R. Whitson. Gaming the quantified self.
Surveillance & Society, 1:163–176, 2011.

[56] S. Wray. How pair programming really works. IEEE
Software, 27:50–55, 2009.

660

