
CLOTHO: Saving Programs from Malformed Strings and
Incorrect String-Handling

Aritra Dhar
✲

Rahul Purandare
✱

Mohan Dhawan
✣✱

Suresh Rangaswamy
✱

✲
Xerox Research Centre India

✱
IIIT Delhi

✣
IBM Research

Bangalore, India New Delhi, India New Delhi, India

ABSTRACT

Software is susceptible to malformed data originating from
untrusted sources. Occasionally the programming logic or
constructs used are inappropriate to handle the varied constraints
imposed by legal and well-formed data. Consequently, softwares
may produce unexpected results or even crash.

In this paper, we present CLOTHO, a novel hybrid approach
that saves such softwares from crashing when failures originate
from malformed strings or inappropriate handling of strings.
CLOTHO statically analyses a program to identify statements that
are vulnerable to failures related to associated string data. CLOTHO

then generates patches that are likely to satisfy constraints on the
data, and in case of failures produces program behavior which
would be close to the expected. The precision of the patches is
improved with the help of a dynamic analysis.

We have implemented CLOTHO for the JAVA String API, and
our evaluation based on several popular open-source libraries
shows that CLOTHO generates patches that are semantically similar
to the patches generated by the programmers in the later versions.
Additionally, these patches are activated only when a failure is
detected, and thus CLOTHO incurs no runtime overhead during
normal execution, and negligible overhead in case of failures.

Categories and Subject Descriptors

D.2.5 [SOFTWARE ENGINEERING]: Testing and Debugging
—Error handling and recovery

Keywords

Automatic Program Repair, Program Analysis, Strings

1. INTRODUCTION
Developers invest a significant amount of time and human

involvement in testing and verification to make their software
production ready. However, in spite of this effort and the tools
used to ensure its safety and security, the software invariably carries
subtle bugs, which are evident only when the software throws
an exception and crashes. The cost of a crash varies depending

1 private int substitute() {

2 if (priorVariables == null) {

3 priorVariables = new ArrayList<String>();

4 priorVariables.add(

new String(chars, offset, length));

5 }

6 }

Code 1: Apache Log4j bug example.

on the criticality of the software, and whether it occurred during
production or testing.

A software bug in production systems may result in huge
monetary losses to the tune of hundreds of millions of dollars for
organizations running third-party software [1–4]. Further, these
organizations must wait for the vendor to release a patch for the
offending software, which may take days or even weeks. If a major
software bug strikes during the internal acceptance testing, it may
significantly hamper the testing progress itself, thereby affecting
the entire software release cycle. Additionally, the software testers
may have to wait for the newer patched version before they resume
the testing process. Lastly, any such crash during a software’s beta
testing phase might frustrate the public resulting in rejection of the
product itself. In all of the above scenarios, it would be extremely
useful if a temporary program patch that not only saves the program
from crashing, but also guarantees acceptable and close to the
intended behavior can be applied to the software on-the-fly.

Software failures that result in crashes often originate from
subtle program bugs that are related to unusual program inputs,
unexpected environment changes, or specific thread schedules.
While crashes are always undesirable, they are particularly
annoying when they arise from non-critical modules that are not
related to the core software functionality. For example, Code 1
depicts a bug in Apache Log4j library version 2.0-beta9 [34] that
crashed the entire logging framework. It was reported as a major
bug in spite of the fact that it occurred in logging component. The
object priorVariables is a List of String. On line 4, there is no
check on the variables to ensure that invariants such as offset +

length <= chars.length, offset > 0, and length > 0 hold. In
case of such failures, rather than allowing the application to crash,
organizations would prefer to collect diagnostic information to
identify the defect, and proceed with a sub-optimal execution run
hoping that it will eventually stabilize, or reveal a few more bugs.

Prior work [6, 36, 43, 56] proposes several mechanisms to
automatically fix incorrect program behavior by generating
program patches. These approaches either need a complete system
shutdown to apply a patch, or isolate the faulty part of a data
structure on the fly thereby limiting the functionality, or keep
suppressing the exceptions with a hope that a suboptimal behavior
would be acceptable until the application stabilizes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786877

555

In this work, we propose a novel hybrid approach that deals
with failures originating due to malformed strings, or incorrect
handling of strings in JAVA applications. We target string
objects for patching, in particular, for the following two reasons.
First, JAVA applications are typically built using libraries, and
String APIs are commonly used in third party libraries [17, 31,
32]. In order to understand the usage and potential involvement
of JAVA string objects in the application failures, we mined
stackoverflow [52] for related posts. We observed that
almost 33K out of 60K posts contained JAVA string related
exceptions, indicating heavy string usage in programs. Second, we
exploit extensive domain knowledge about strings to automatically
synthesize high-quality patches.

CLOTHO performs precise static analysis to identify program
locations that are vulnerable to string-related failures, and also the
contexts under which they trigger a failure. This enables repairing
the program close to the point of failure and generating precise
patches that take into account the constraints on the string objects.
CLOTHO further uses dynamic analysis to improve the precision of
the patches generated by the static analysis.

We applied CLOTHO to patch 30 bugs, several of them rated
critical or major, resulting from unhandled runtime exceptions from
JAVA String APIs in various hugely popular open-source libraries.
Our evaluation shows that CLOTHO develops precise patches that
are semantically close to the ones developed by the developers.

This work makes following contributions:

(1) We present the design and implementation of CLOTHO (§ 2,
§ 4 and § 5) that automatically generates effective program patches
to handle string-related errors.

(2) We use a finite state machine (FSM) as a formalism (§ 4) to
describe the behavior of JAVA String API, and apply it to drive the
generation of exception-specific patches.

(3) Our evaluation (§ 6) indicates that CLOTHO can effectively
produce patches that save programs from crashing due to failures
originating from known bugs. The results also gives insights into
the characteristics of the commonly occurring string problems.

(4) Manual inspection of CLOTHO-generated patches reveal that
in most cases they are semantically similar to the ones produced by
the developers in the later versions. Thus, CLOTHO can also guide
developers in the process of building patches.

Our source code and data sets are available to the open source
community at https://github.com/aritradhar/CLOTHO.

2. OVERVIEW
There is always a tradeoff between precision and scalability that

static program analysis must balance. Static analysis achieves
high scalability by making sound approximations, which typically
leads to false positives. Complex programming logic and data
coming from diverse sources make the already hard problem worse.
As a result, successful execution of an application can never be
guaranteed, and unexpected failures may happen. These failures
often result in applications throwing runtime exceptions, which if
not handled correctly may crash the application.

Code 2 shows a snippet from the fileUtils class in Apache
Common IO library. The method getPathNoEndSeparator throws
a StringIndexOutOfBounds exception, which originates from the
return statement on line 13 when the method is called with
parameter "/foo.xml". Here, the value of prefix as returned by
getPrefixLength is 1. It fails to satisfy the constraint implied
by the program condition prefix <= index + separatorAdd for
substring method, which ensures that beginIndex cannot be
greater than endIndex. As a result, the exception is thrown.

1 public static String getPathNoEndSeparator

2 (String filename) {

3 return doGetPath(filename, 0);

4 }

5 private static String doGetPath

6 (String filename, int separatorAdd) {

7 if(filename == null) return null;

8 int prefix = getPrefixLength(filename);

9 if (prefix < 0) return null;

10 int index = indexOfLastSeparator(filename);

11 if ((prefix >= filename.length()) || (index < 0))

12 return "";

13 return filename.substring(prefix,

14 index + separatorAdd);

15 }

Code 2: Snippet from fileUtils class in Apache Commons

library.

13 String temp = null;

14 try {

15 temp = filename.substring(prefix, index +

separatorAdd);

16 } catch(IndexOutOfBoundsException ex) {

17 int length = filename.length;

18 int t = index + separatorAdd;

19 temp = filename.substring(

20 getStart(prefix,t,length),getEnd(prefix,t,length));

21 }

22 return temp;

Code 3: Patch for fileUtils bug in Apache Commons library.

A closer inspection of this code snippet shows that the string
variable filename invokes two methods, namely length and
substring on lines 11 and 13 respectively. JAVA String API
documentation specifies that length does not throw any runtime
exceptions. The only exception that this invoke statement
can throw is when the receiver object referenced by filename

is null. However, the check on line 7 indicates that this
situation would not arise. The method substring may throw
IndexOutOfBoundsException exception that can potentially crash
the program. A good patch to handle this failure should take into
account all of these observations.

Code 3 presents the patch automatically generated by CLOTHO.
This patch replaces the invoke statement on line 13 in Code 2,
which is now wrapped within a try-catch block. The catch

corresponding to IndexOutOfBoundsException ensures that control
passes to the catch block only when the exception is thrown. Line
20 shows two method calls namely getStart and getEnd that are
inserted by CLOTHO. These methods, using the knowledge about
the length of filename acquired with the help of the code on line
17, compute legally correct indexes required by substring method
to satisfy the constraint related to beginIndex and endIndex.
Method substring can now regenerate the substring ensuring that
the method call will not fail. The actual patch provided by
the developers is semantically similar to the one developed by
CLOTHO, and both versions of the code generate the same output.

3. PROBLEM DEFINITION
Let the behavior B of program P for input I be a sequence

of data values < b1, . . . , bn > shared with the environment, where
these values may be used to print information on screen, access
and manipulate files and databases, and exchange data with other
processes or threads. For brevity, we assume that the program
is sequential. However, our formalization and arguments can be
extended to multi-threaded programs and their behaviors.

Consider the behavior B to be composed of Bnc = < b1c
, . . . , bnc

> andBn = < b1n
, . . . , bnn

>, where elements inBc consist of critical

556

Find program

points for

patching

Static

constraint

analysis

Input

program
Patching

Dynamic constraint

analysis

Repaired

program
Run

Figure 1: CLOTHO workflow.

values that form core functionality of the program, while elements
in Bn are noncritical values with respect to the core functionality
of the program. If Bθ is the behavior for P under failure input θ,
then our approach attempts to develop a program patch to convert
P to P′, such that P′ does not violate the core behavior of P under
failure, i.e., B′

θc
is same as the intended behavior Bθc . Note that

resulting behavior B′
θn

may not be equivalent to Bθn .
In this work, we restrict our approach to string data values. We

identify the broad design goals for a technique to automatically
repair malformed strings or incorrect handling of strings as follows:
(I) HIGH PATCH FIDELITY. We require that the patched program
must preserve the intended program behavior, i.e., the patch must
be precise, and should not induce any undesirable control flows in
the repaired program. This goal naturally follows from the problem
definition. However, we set two more goals associated with the
security and performance of the technique.
(II) NON-INVASIVE INSTRUMENTATION. We require that
the technique must ensure no side-effects (aside from optimally
repairing objects) during normal program execution, and activate
patches only when the program is guaranteed to crash.
(III) LOW SYSTEM OVERHEAD. We desire that the patched
program must incur no runtime overhead during normal program
execution, and only negligible overhead in case of failures.

4. CLOTHO
KEY IDEA. CLOTHO leverages a combination of program analysis
techniques to precisely identify program instrumentation points,
and builds upon custom algorithms to generate targeted, high
quality patches for repairing programs with potential runtime
exceptions, while still satisfying goals mentioned in § 3.

Figure 1 shows CLOTHO’s workflow, which involves three
main stages. First, CLOTHO uses program analysis techniques to
precisely identify points of interest, i.e., string objects or API
arguments that must be repaired to prevent runtime exceptions. In
the second stage, CLOTHO leverages custom algorithms to generate
relevant patches. Specifically, CLOTHO performs intra-procedural
static and dynamic analyses to identify and evaluate constraints
on the string objects under consideration. Third, CLOTHO uses
the constraints evaluated in the earlier stage to programatically
generate and embed patches inside catch blocks to ensure that
they do not get activated during normal program execution.

4.1 Identification of Instrumentation Points
In this stage, CLOTHO leverages a combination of program

analyses to accurately determine the minimum set of points of
interest where instrumentation is required to repair. We list several
techniques below that help CLOTHO achieve precision.
(I) TAINT ANALYSIS. The main purpose of taint analysis is
to precisely identify which program statements can be patched
(possibly even suboptimally) without affecting the program’s
control flow, i.e., affect only objects that are generated and stay
within the application throughout their lifetime. While this
principle is not a binding constraint, it ensures that CLOTHO’s
repairing mechanism does not adversely affect critical program
behavior. We specify a generic set of sensitive sources and sinks
for each input program, to identify critical program paths where
repaired String objects must not flow. For example, CLOTHO does

Table 1: Common sensitive sources in JAVA.

Class Source

java.io.InputStream read

java.io.BufferedReader readLine

java.net.URL openConnection

java.util.Scanner next

javax.servlet.ServletRequest getParameter

org.apache.http.HttpResponse getEntity

org.apache.http.util.EntityUtils toString

org.apache.http.util.EntityUtils toByteArray

org.apache.http.util.EntityUtils getContentCharSet

Table 2: Common sensitive sinks in JAVA.

Class Sink

java.io.FileOutputStream write

java.io.OutputStream write

java.io.PrintStream printf

java.net.Socket connect

java.io.Writer write

not repair statements that lie along a control flow path leading to an
I/O sink such as file system, console, network, and GUI.

The taint analysis module takes as input the compiled byte
code intended to be repaired, and generates a control flow graph
identifying program statements that lie along paths from sensitive
sources to sensitive sinks. Since, CLOTHO targets String objects
in particular, it must support taint propagation for all JAVA

APIs that support string manipulation, including StringBuffer

and StringBuilder. CLOTHO makes a default, conservative
assumption that all objects leaving the system have potential to
trigger unintended behavior. Thus, all String objects (whether
generated or assigned) that lie along the tainted path from a
sensitive source to a sensitive sink are marked as unsafe to patch.
Subsequently, CLOTHO does not repair such String objects.

CLOTHO’s configuration further enables developers to specify
their own sets of sensitive sources and sinks, and exclude specific
tainted paths. Tables 1 and 2 list common sensitive sources and
sinks for several classes in JAVA.
(II) CALL GRAPH ANALYSIS. CLOTHO leverages call
graph analysis to further improve the precision for finding
instrumentation points. Although unlikely, it is possible that
the developers may themselves handle code that raises runtime
exceptions. CLOTHO must not instrument program points that
are explicitly handled by the developers, since repairing such
statements would definitely alter the intended control flow.

Checked runtime exceptions may be placed in the (i) same
method, or (ii) upstream in the call chain. While handling the
former scenario is trivial, CLOTHO handles the latter case by
identifying all possible call chains (in the call graph) involving
the concerned method using reverse breadth first search, and
determining ancestor methods where the call site was wrapped in
try-catch block of compatible exception type.
(III) REACHING DEFINITIONS ANALYSIS. Taint and call
graph analyses together provide a set of program points to be
instrumented with the patch. However, this set can be further
pruned. CLOTHO performs reaching definitions analysis to skip
marked statements if (i) the String variables contained in such
statements have already been patched upstream in the method,
and (ii) the variables have not been redefined along any path
that originates from the patched statement. This analysis further
reduces instrumentation points in a program.

4.2 Patch Generation
The output from the first stage is essentially a set of

program points, typically bytecodes or some other intermediate
representation, denoting String objects or APIs that are safe to
repair. Once these instrumentation points have been identified,

557

Table 3: Constraints involving Strings.

Min length(L) Max length(L) Prefix 1 . . . PrefixL Contain 1 . . . Contain L

Data: Control flow graph CFG for program P

Result: Patched program P′

begin

for ∀ node N ∈ CFG do
Statement S in node N

if S contains String API call then

str ←− String reference on S

if S can throw RuntimeException then

Exception class EC ←− RuntimeException of S

CES str ←− all conditional statement in P on str

/* Constraint collection for str */

CS str ←− output of Algorithm 3(CES str)
if str have sufficient constraints in CS str then

/* Constraint evaluation for str */

str ←− output of Algorithm 4(CS str)
else

/*Repair by parameter tweaking*/

str ←− output of Algorithm 5(S)
S ′ ←−Modify S with str

Put S in try block
Put S ′ with patched str in catch block
with the exception class ECend

end

Algorithm 1: Static patching strategy for String objects.

CLOTHO determines the possible patches that can be applied to
each of them. Specifically, a program patch constitutes a set of
constraints on either the String object or the parameters to the
String API under consideration, such that the new repaired String

object that is generated satisfies all constraints. Thus the patched
program does not throw any runtime exceptions.

CLOTHO’s patch generation mechanism involves two main parts
(i) constraint collection and evaluation, and (ii) code generation.
We now describe CLOTHO’s patch generation mechanism in detail.
CONSTRAINT COLLECTION AND EVALUATION. CLOTHO

leverages a hybrid approach to collect all possible constraints that
must be satisfied, and thus generates a high quality patch to repair
the program. A constraint on a String object is defined as a set of
permissible values that uniquely define the string. CLOTHO uses
a constraint store to maintain a set that includes constraints on
minimum and maximum lengths, along with a set of permissible
prefixes and substrings, as shown in Table 3.

The hybrid approach has a static component that makes a
forward pass over the program to collect constraints on String

objects, such as their length or prefix. CLOTHO invokes the
dynamic component if there are constraints such that the constraint
set cannot be evaluated. In such scenarios, CLOTHO (i) generates
a patch that itself dynamically collects constraint information, (ii)
augments it with the previously collected static constraint details,
and (iii) evaluates these constraints on the fly to generate repaired
String objects, which do not cause the program to throw runtime
exceptions. CLOTHO propagates constraints to ensure that the static
constraint collection works correctly if the conditional statements
involve any variables that are redefined during the collection and
can be calculated statically. CLOTHO only collects constraints that
are directly associated to String objects. Algorithms 1 and 2 give
an overview of this hybrid approach.

(1) Static constraint collection: CLOTHO’s static constraint
collection phase identifies all constraints. Algorithm 3 briefly
describes the steps to populate the constraint store. Specifically,
CLOTHO identifies and analyzes conditional statements involving
string objects such as if (st.length() == 5). It considers only
those constraints that the object must satisfy to ensure control flows
through one of the normal branches of the conditional. A normal
branch is one that does not represent an erroneous control flow. For

Data: Control flow graph CFG for program P

Result: Patched program P′

begin

for ∀ node N ∈ CFG do
Statement S in node N

if S contains String API call then

str ←− String reference on S

if S can throw RuntimeException then

CES str ←− all conditional statement in P on str

/* Constraint collection for str */

CS str ←− output of Algorithm 3(CES str)
if S encountered exception then

if str have sufficient constraints in CS str then

/* Constraint solving for str */

str ←− output of Algorithm 4(CS str)
else

/* Parameter tweaking */

str ←− output of Algorithm 5(S)
end

end

Algorithm 2: Dynamic patching strategy for String objects.

Data: Set of conditional statement on string str

Result: Constraint set CS str

begin

for Conditional statement← i, ∀i ∈ CS str do
i⇒ str ∗ OP /*where ∗ is the binary operator*/

if ∗ is == then

maxlengthstr ←− OP

minlengthstr ←− OP

else if ∗ is > OR ∗ is ≥ then minlengthstr ←− OP

else if ∗ is < OR ∗ is ≤ then maxlengthstr ←− OP

else if ∗ is Prefix Check then PrefixSetstr ∪ OP

else if ∗ is Contains Check then ContainSetstr ∪ OP

end

end

Algorithm 3: Constraint collection for String objects.

example, a branch that encounters a statement System.err.print()
would represent an erroneous control flow. Code 4 shows a string
variable with several constraints as defined by the if statements on
lines 2-5. The first three constraints are static as all of them can be
evaluated at the compilation time. By analyzing these statements,
CLOTHO populates the constraint store depicted in Figure 2.

(2) Dynamic constraint collection: The constraint set is
populated at the end of the static phase. CLOTHO leverages
Algorithm 4 to evaluate these constraints and determine the
potential safe values of the String object under consideration.
However, there are scenarios where there exist potentially
conflicting constraints or no permissible values of the constraints
can be calculated statically.

For example, function foo in Code 4 performs a series of checks
on a user-entered string st before computing a substring on it.
Since the constraints on st cannot be completely collected and
evaluated statically, CLOTHO instruments the code with statements
to dynamically collect constraint information, augments them with
previously known static constraints, and evaluates these constraints
at runtime. Specifically, CLOTHO instruments the bytecode with
constraint collection code just before the conditional statements
under consideration. Code 5 depicts the example in Code 4 after
CLOTHO’s instrumentation. When the constraints in the source are
complex, CLOTHO relies on its base framework to simplify them
and then evaluates only the ones that are related to strings.

4.3 Code Generation
Code generation is done either statically or dynamically

depending on how the constraints are evaluated. In either
scenario, a key component of code generation is object repairing.
Additionally, in certain cases where constraints cannot be satisfied,
either statically or dynamically or both, CLOTHO resorts to
parameter tweaking.

558

1 void foo(){

2 String st = "test String";

3 if(st.length == 5) {/*do something*/}

4 if(st.startsWith("ab")) {/*do something*/}

5 if(st.startsWith("abcd")) {/*do something*/}

6 /*userInput() accepts String input from console*/

7 if(st.contains(userInput())){/*do something*/}

8 st = st.substring(7, 10); /*Potential failure*/

9 }

Code 4: Static and dynamic constraint collection example

Figure 2: Constraint store for Code 4

1 String st = "test String";

2 ConstraintStore.updateLength("<foo()>", st, 5);

3 /*Executes if there is an exception over st*/

4 st = GenerateStringStatic.init("<foo()>", st);

5 if(st.length == 5) {}

6 if(st.startsWith("ab")) {/*do something*/}

7 ConstraintStore.updatePrefix("<foo()>", st, "ab");

8 st = GenerateStringStatic.init("<foo()>", st);

9 ConstraintStore.updatePrefix("<foo()>", st, "abcd");

10 st = GenerateStringStatic.init("<foo()>", st);

11 if(st.startsWith("abcd")) {/*do something*/}

12 String temp = Input();

13 ConstraintStore.updateSet("<foo()>", st, temp);

14 st = GenerateStringDynamic.init("<foo()>", st);

15 if(st.contains(temp){/*do something*/}

Code 5: Dynamic constraint collection and evaluation for code 4.

(1) Object repairing: CLOTHO generates the code for the
repaired object under consideration after all the constraints have
been collected and evaluated. If the constraints are resolved
statically, then CLOTHO updates its constraint data store and
instruments the corresponding bytecodes appropriately. However,
in case the patch requires dynamic constraint collection, CLOTHO

embeds the code to dynamically collect constraints and generates
the patch as well. Lines 4, 8, 10 and 14 in Code 5 update the
constraint set and generate the repaired object.

(2) Parameter tweaking: It is possible that as a side-effect of
object repairing, the newly patched object may throw runtime
errors when invoked with certain String APIs. The snippet c =

s.charAt(4) may still throw runtime errors even if s has been
repaired. This is possible if the repaired s has a length less than
4. In such scenarios, CLOTHO patches the code with a try-catch

block around the offending API call, and appropriately inserts
the repaired code in the catch block but with tweaks to the API
arguments to ensure that no further runtime exception is thrown
(see Code 6). For example, if the length of the string is greater than
4, then the API works similar to default charAt API. However, if
the length is 3, then line 4 is invoked with both arguments equal
to string length, i.e., 3. Note that parameter tweaking is leveraged
to counter a potentially suboptimal object repair that may throw
cascading exceptions. Algorithm 5 briefly outlines the mechanism
to correctly set the parameters for the offending string API.

4.4 Instrumentation
CLOTHO embeds the repair in a try-catch ladder to ensure that

the patches do not get activated during normal program execution,
thereby minimizing any side-effects of repairing and preventing
any inadvertent changes to the program’s intended control flow.

Data: String object Str and constraint set CS .
Result: String object Str such that ∀i ∈ CS , S tr satisfies i

begin
CS Str ←− Get the constraint set for Str

MinLength←− CS Str[0]
MaxLength←− CS Str[1]
PrefixSetStr ←− CS Str[2→ MaxLength + 1]
ContainSetStr ←− CS Str[MaxLength + 2→ 2 ∗ MaxLength + 1]
for C ∈ PrefixSetStr do

if C is Empty then

continue
PrefixLength←− LENGTH OF C

if PrefixLength is Maximum ∈ PrefixSetStr then

Use C to construct Str

end

for C ∈ ContainSetStr do
if C is Empty OR C ∈ Str then

continue
Str← Str APPEND C

end

return Str
end

Algorithm 4: String object constraint evaluation.

Data: String object Str and index set IS which contains i or i, j.
Result: Repaired index set containing Ri or Ri,R j based on input IS

begin
Length←− length of Str

if Length == 0 then

Ri,R j ←− 0
else if i > j then

Ri ←− j − 1
if i > Length OR j > Length then

Ri ←− Length − 1 or R j ←− Length − 1 based on condition
/* more conditions possible */

if i < 0 OR j < 0 then

Ri ←− 0 or R j ←− 0 based on condition
/* more conditions possible */

end

Algorithm 5: Parameter tweaking based String patching.

An important task in the instrumentation stage is to determine
the kind of exceptions that may be thrown, and appropriately
construct the catch blocks. While most APIs throw only a single
subclass of RuntimeException, it is possible that a statement may
throw more than one subclasses, such as NullPointerException

and StringIndexOutOfBoundsException. CLOTHO generates a
catch ladder for each kind of exception, which facilitates
exception-specific repairing as well. In other words, a single patch
may get distributed over multiple catch blocks, which is achieved
with the help of a constraint representation model.
CONSTRAINT REPRESENTATION MODEL. We use a finite
state machine (FSM) to model the behavior of JAVA String API,
and apply it to drive the generation of exception-specific catch

blocks. This model is precomputed based on the JAVA Strings API
documentation. Formally, we define the constraint representation
FSM model (Q,Σ, δ, q0, F) as follows:

• Q: Set of legal (safe) and illegal (error) states, where |Q| = 2.

• Σ: Set of symbols. Each symbol is defined as a tuple (ζ, η, Λ),
where ζ is a String API operation, η is the type of an exception and
Λ = {λ1, . . . , λn} is the set of constraints. A constraint λi is defined
as a constraint on a string that must be satisfied to allow successful
execution of ζ.

• δ: Transition function. sa f e → sa f e is a safe transition and
sa f e→ error corresponds to the constraint violation.

• q0: Starting state, here q0 = sa f e.

• F: Singleton set of accept states which contains q0.

A partial constraint representation model is depicted in Figure 3.
It essentially specifies the constraints that are associated with
substring method and IndexOutofBoundException exception that
can be thrown by the method. A complete model would have

559

1 try{

2 c = s.chatAt(4);

3 } catch(IndexOutOfBoundException ex) {

4 c = s.failSafeCharAt(4, s.length());

5 }

Code 6: Example of parameter tweaking.

safe error

ሺ݃݊݅ݎݐݏܾݑݏሺ݅, ݆ሻ,�݊݀݁��݃݊݅ݎݐݏ},݊݅ݐ݁ܿ��݀݊ݑ�݂�ݐݑ ℎݐ݃݊݁� > ݅, ݆ 0, ݅ ݆}ሻ
ݎℎ݁ݐ

Figure 3: Partial constraint representation model.

several such self-looping transitions corresponding to other JAVA

String API methods. The repairing mechanism gets triggered
when an exception is thrown while performing a string operation
after at least one of the constraints on the structure of the associated
string is violated. This is represented by the transition labeled
by other. The patches essentially support the same semantics
identified by the transitions with the help of catch blocks.

5. IMPLEMENTATION
We implemented a prototype of CLOTHO as described in § 4

for repairing runtime exceptions originating from unhandled JAVA

String APIs. Our end-to-end toolchain is completely automated
and was written in ∼12.7K lines of JAVA. We leveraged the
SOOT [50] framework for bytecode analysis and instrumentation,
and INFOFLOW [51] for static taint analysis. We now briefly
describe a few salient features of our implementation.

5.1 Taint Analysis
INFOFLOW performs taint propagation over Units, which are

SOOT’s intermediate representation of the JAVA source code.
We extended the INFOFLOW framework to (a) enable seamless
coupling with SOOT, and (b) determine whether it is safe to
patch a given SOOT Unit. Specifically, we added a mapping
that retrieves Units for statements to be patched given a specified
method signature. This is relevant since the same statement, say
int x = 1; has the exact same representation even if it appears
more than once in a same method. We also added a utility method
to determine if a Unit must be patched if it lies along the path
between a source and sink in the call graph generated by SOOT.

5.2 Call Graph Analysis
CLOTHO leverages the SOOT generated call graph to determine

both inter- and intra-method checked runtime exceptions. SOOT

uses the Trap class to manage exception handling for both classes
of exceptions discussed above. Each Trap object has start, end and
handler Unit. We tagged every Unit in a HashMap if it belonged to
an existing Trap, so as to exclude it from instrumentation during
the repairing phase.
FORCED PATCHING. Some scenarios, like cascaded exceptions,
may require CLOTHO to force patch the code, i.e., disable the
exception analysis and patch the code irrespective of whether
the exception was handled or not. A cascaded exception is an
exception thrown in response to another exception originating from
some other program point.

5.3 Constraint Analysis
CLOTHO makes a forward pass over the Units identified by the

taint analysis and other program analysis in the first phase to gather

constrains over string literals of interest, and builds a HashMap of
ConstraintDataType, a custom data type to store and evaluate
these constrains. Specifically, each ConstraintDataType entry
stores four key parameters—the permissible prefixes, substrings,
minimum and maximum length—that specify constraints
corresponding to a String literal. Constraint evaluation over these
ConstraintDataType entries is done as described in Algorithm 4.
However, if the gathered constraints can not be satisfied statically,
e.g., if(str.contains(userInput())), CLOTHO instruments the
bytecode before the conditional statement with a static invocation
to i) populate the corresponding ConstraintDataType entry, and ii)
recompute the permissible values of the string object with already
existing constraints (see Code snippet 5).

5.4 Optimizations
CLOTHO performs a few other optimizations to reduce total

number of instrumentation which directly contributes to improved
precision and quality of the patches.

(1) Minimize constraint analysis CLOTHO collects constraints
only for string literals involved in a runtime exception. If a
String object does not involve API methods that can throw runtime
exception, then it is not required to collect and evaluate constraints
on them. This significantly reduces the number of statements
analyzed for instrumentation.

(2) Minimize patch instrumentation CLOTHO makes a forward
pass over all program points to determine if the String object under
consideration is modified after it has been patched. The rationale
behind this is that all constraints remain valid as long as the object
has not changed between program points. Similarly, when the API
usage is same and none of the method parameters have changed,
then no further patching would be required in later program
point. Assume two statements S 1:String x = st.subString(i,j)

and S 2:String p = st.subString(i,j) in two different program
points and st gets repaired by CLOTHO before S 1. As long as st

remains unchanged between S 1 and S 2 and the method invoked
in these program points are identical along with their parameters,
CLOTHO will skip instrumenting S 2.This further reduces the total
number of possible instrumentation points.

6. EVALUATION
We now present an evaluation of CLOTHO. In § 6.1, we

evaluate CLOTHO’s effectiveness by measuring the quality of
patches and related instrumentation required. We use the test suites
bundled with the library itself to determine if CLOTHO generated
patches violate any test case. We also measure how the several
optimizations (as described in § 5.4) affect the patches generated
by CLOTHO. In § 6.2, we measure the relative performance and
resource penalties incurred with CLOTHO. In § 6.3, we describe
our experiences with some of the major bugs from our data set.
DATA SET. We mined bug repositories of several open-source
JAVA-based applications and libraries, and selected 30 most recent
String-related bugs affecting the libraries, which are widely used
across several products. All bugs except one were rated either
major, critical or blocker. These bugs involved usage of over 64
APIs from JAVA’s String, StringBuffer, StringBuilder, Apache
StringUtils and Google Guava StringUtils classes.
EXPERIMENTAL SETUP. All our experiments were performed
on a laptop with 2.9 GHz dual core Intel i5 CPU, 8 GB RAM
and running Microsoft Windows 8.1. The JDK (v1.7) itself was
provisioned with 2 GB heap space. We used INFOFLOW (snapshot
from May 2014) for static taint analysis, and SOOT v2.5.0 for
bytecode analysis and instrumentation.

560

Table 4: CLOTHO’s accuracy results when applied to 30 bugs in popular open-source libraries.

NCG # nodes in call graph FU # failed tests in unpatched FCI Flow Consistency Index
NUnit # Unit analyzed FP # failed tests in patched version w/o forced patching ICNO Instrumentation w/o optimization (recall § 5.4)
T # total cases in test suite F ∗

P
failed tests in patched version w/ forced patching ICWO Instrumentation w/ optimization (recall § 5.4)

SU # successful tests in unpatched PPI Patch Precision Index RSCE Cascaded exception exists

API BugID Priority NCG NUnit T SU FU FP F ∗
P

PPI FCI ICNO ICWO RSCE

Aries [5] Major 3.5K 129 20 18 2 0.83 42 5
Commons CLI1.x [9] Critical 3.2K 53 16 14 2 0.74 19 19
Commons CLI2.x [8] Major 3.2K 21 16 13 3 3 1 0.62 1 13 2 X

Commons Compress [10] Blocker 4.0K 134 33 32 1 0.74 46 4
Commons IO [29] Major 3.3K 125 28 27 1 0.77 76 1
Commons Lang [33] Major 5.1K 240 18 16 2 0.59 168 8
Commons Math [37] Major 3.4K 300 21 19 2 2 0.89 1 36 2
Commons Net [39] Major 3.3K 14 23 22 1 0.84 6 1
Commons VFS [55] Major 4.5K 37 19 18 1 0.65 20 2
Derby [16] Major 4.4K 40 32 30 2 0.46 47 6
Eclipse AJ Weaver [19] Major 20.6K 50 19 17 2 2 2 0.98 4 1 X

Eclipse AJ [18] Major 25.0K 39 16 14 2 0.87 6 1
FlexDK 3.4 [45] Minor 6.3K 600 15 13 2 0.74 207 25
Hama 0.2.0 [25] Critical 3.7K 35 14 13 1 0.55 28 5
HBase 0.92.0 [26] Critical 4.8K 61 25 24 1 0.83 13 2
Hive [27] Trivial 4.4K 23 19 18 1 0.75 8 1
HttpClient [28] Major 3.3K 14 23 20 3 0.89 6 1
jUDDI [30] Major 3.2K 70 29 28 1 0.85 10 2
Log4j [34] Major 3.2K 17 11 8 3 0.74 6 1
MyFaces Core [38] Major 4.5K 50 14 11 3 0.83 4 2
Nutch [40] Major 4.5K 90 11 8 3 0.68 8 1
Ofbiz [41] Minor 4.4K 28 23 20 3 3 0.45 1 6 1
PDFBox [42] Major 4.4K 23 18 15 3 0.87 8 1
Sling Eclipse IDE [47] Major 4.5K 58 6 5 1 0.59 39 6
SOAP [48] Major 5.0K 165 21 18 3 3 0.84 1 32 5
SOLR 1.2 [49] Major 11.0K 200 14 12 2 0.89 25 4
Struts2 [59] Major 16.0K 80 13 11 2 0.76 25 2
Tapestry 5 [53] Major 6.2K 71 20 17 3 0.70 31 5
Wicket [58] Major 70.0K 68 23 20 3 0.81 16 1
XalanJ2 [60] Major 3.3K 33 14 11 3 0.72 13 2

6.1 Accuracy
We evaluate the precision and effectiveness of CLOTHO

generated patch as described below.

(1) Effectiveness of the patch: A software patch is effective if
it does not violate any existing test case from the software’s test
suite. Thus, we determined the effectiveness of CLOTHO generated
patches by running them against the benchmark’s existing test
suites. Table 4 lists 30 real-world bugs mined from bug repositories
of popular open-source libraries. Column T lists the total number
of cases in the test suite, while SU and FU lists the number
of successful and failed cases in unpatched version, respectively.
Columns Fp and F ∗p represent the count of failed test cases without
and with CLOTHO’s forced patching, respectively.

We wrote a driver program to recreate the bug, and then applied
CLOTHO on the library to patch it. We observed that CLOTHO

without any optimizations patched 25 of the 30 offending bugs
in our benchmarks, an effectiveness of over 83%. With forced
patching enabled, CLOTHO successfully patches all but two
benchmarks, thereby raising its effectiveness to over 93%. Note
that even the force patched versions of Commons CLI2.x and
Eclipse AJ Weaver fail test cases. We observed that in both
benchmarks the failed test case throws a non-String related
cascaded exception that CLOTHO could not patch.

(2) Precision of the patch: Precision of a patch is governed by the
similarity between a CLOTHO generated patch and the developer’s
fix for the same bug. We define Patch Precision Index (PPI) as a
measure of the precision of the patch.

PPI =
ConstraintsCLOTHO

ConstraintsDeveloper

Specifically, PPI compares the similarities in constraints in
CLOTHO’s patch against the developer’s version, thereby

considering the core logic to construct an effective patch. CLOTHO

analyzes and registers the constraints that are related to only String

objects, thereby ensuring that PPI is also influenced by constraints
on String objects alone.

If CLOTHO’s patch has fewer constraints than the developer’s
fix, the PPI will be less than 1. In contrast, PPI greater than
1 indicates that CLOTHO generates many more constraints than
those in the developer’s fix. Thus, a PPI closer to 1 is desirable.
However, for several benchmarks, we found the PPI value <1.
This observation stems from the fact that the buggy version of
the benchmark contains lesser constrains than the developer’s fix
version. Thus, CLOTHO analyzed fewer number of constrains in
the buggy benchmark than developer’s fix, thereby causing PPI <
1. PPI can also be computed automatically since CLOTHO already
generates a list of constraints (in the form of bytecodes), and static
analysis of the developer’s patch can provide the same.

Table 4 lists the PPI for the benchmarks in our set. We note that
PPI is > 0.7 for over 73% of the benchmarks. This high PPI across
several benchmarks indicates the number of String constraints
considered by CLOTHO is close to that of the developer’s fix. This
is a direct evidence that CLOTHO generates patch closer to program
specification and hence comparable to an actual patch. PPI for the
remainder of the benchmarks was observed to be lower, i.e., < 0.7.
On manual investigation, we found that for some benchmarks the
developers significantly changed the code structure and introduced
several new sets of constraints in the patched version, which
resulted in low PPI (< 0.7) for those benchmarks.

Note that the taint analysis works only when sources and sinks are
defined. Since our library benchmarks have no notion of sources or
sinks, CLOTHO’s bytecode analysis of the libraries does not involve
the taint analysis phase. However, even without taint analysis,
CLOTHO’s patches are of high quality, as indicated by the high PPI.

561

Table 5: Precision results for taint analysis.

Application KLOC Total paths Tainted paths

Checkstyle 58.0 1977 88
Jazzy Core 4.9 270 26
JEdit 4.3 185 22

(3) Precision of taint analysis: CLOTHO leverages off-the-shelf
tools (INFOFLOW) to perform the taint analysis. We measure
precision of our choice of tool by measuring the number of
statements in the analyzed code that are deemed unsafe to patch.
Since we could not measure the precision of taint analysis on the
library benchmarks (for reasons discussed earlier), we select 3
diverse applications and apply CLOTHO in its entirety to obtain
a measure of the precision of the taint analysis. Specifically, for
each application we provided a set of sources, sinks and taint
propagators to INFOFLOW, which listed the total number of tainted
paths, i.e., paths from a sensitive source to a sink and thus must
not be patched. Table 5 lists the results. We observe that the total
number of tainted paths is less than 12% across the applications.

THREATS TO VALIDITY. Note that CLOTHO is dependent
on INFOFLOW for achieving precision about the points of
instrumentation. However, INFOFLOW currently has a major
limitation—it does not support taint analysis for multi-threaded
programs. Moreover, since it is still under active development,
we observed that when applied to certain applications, INFOFLOW

consumed inordinate amounts of memory and crashed. Thus,
CLOTHO’s precision is limited by the accuracy of its dependencies.

(4) Already handled exceptions: CLOTHO analyzes the call
graph to determine if a potential runtime exception throwing
statement is handled higher up in the call chain or in the same
method. In such cases CLOTHO must abort the patching effort
considering that the exception is caught with exact exception type
or its base type. This is required else patching will disrupt the
normal control flow of the program.

We measure the extent of this optimization, which prevents
disruption of the control flow, using the Flow Consistency Index

(FCI) that is calculated as FCI = n, where n is the number of
exceptions in the application that must be ignored CLOTHO for
forced patching of the bug. Note that FCI ≥ 0, and a lower value
of FCI is desirable. We observe that patching four bugs required
CLOTHO to ignore at most one exception; rest required no changes.

(5) Cascaded exceptions: A cascaded exception arises if the
CLOTHO-generated patch creates objects that when used as inputs
to other JAVA APIs result in further exceptions. CLOTHO

is prone to cascading exceptions because of the limitation of
its intra-procedural analysis and a simple constraint evaluation
mechanism. However, CLOTHO’s constraint solver is pluggable
and a more sophisticated third party solvers can easily be
integrated. Specifically, cascaded exceptions may arise if the
patch generates String objects that represent a malformed string.
Further, if we keep the optimization in § 5.4, then cascaded
failures may occur even for subsequent String APIs handling the
malformed string following the point of patching.

If the above optimization is turned off, CLOTHO will automatically
patch the relevant APIs and handle all cascaded failures involving
malformed String objects. We observed that two benchmarks
throw cascaded exceptions even after patching. The cascading was
one level deep and triggered exception in non-String code (and
thus unpatched), thereby causing the application to crash.

6.2 Overhead
We measure the overhead of CLOTHO across different metrics

identified below.

(1) Execution overhead: We randomly selected and patched
5 libraries (Apache Tapestry, Apache Wicket, Eclipse AspectJ
Weaver, Hive and Nutch) from Table 4 to determine the execution
overhead of the patched class files. We observed that CLOTHO

reports an average overhead of ∼2.32µs per call across the 5
benchmarks for 50K runs of the patched functionality in both the
developer’s version and CLOTHO’s patched library. The maximum
absolute overhead was observed for Hive at ∼3.96µs per call. The
above overhead is imperceptible at human response time scales.

(2) Call graph: The size of the call graph directly governs the
time and memory consumption for CLOTHO. Figure 4a shows
the results for the benchmarks analyzed from our data set. The
overall analysis time was under a minute for all the benchmarks.
We observed that even for a call graph of ∼70K nodes (for Wicket),
CLOTHO required just 52.4s and 210MB memory.

(3) Constraint set: CLOTHO performs an exhaustive multi-pass
analysis to gather and evaluate the set of constraints for generating
patches. A higher number of constraints and their complexity
increases the duration of CLOTHO’s analysis. Figure 4b compares
the time required for static constraint collection and evaluation with
an increasing number of constraints for the benchmarks used in our
data set. We observe that across all the benchmarks used, CLOTHO

required at most ∼5s for collecting and evaluating the constraints.

(4) Instrumentation overhead: CLOTHO performs bytecode
instrumentation for actual patching. Figure 4c shows the variation
in instrumentation time with increasing number of Units to be
patched. We observe that even without optimization discussed in
§ 5.4, CLOTHO takes under 4s to instrument all Units across all
benchmarks. We believe that this time would be even less with the
optimizations enabled, which significantly decrease the number of
Units to be instrumented, and is evident in Table 4 where column
ICWO is much less than ICNO.

6.3 Case Studies
We now report on experiences gained when using CLOTHO to

patch several of the bugs reported in Table 4.

(1) The bug [5] as reported in the repository for Apache Aries
cited String related issues. However, our investigation showed that
the bug was actually in the ASM framework that was invoked by
Aries, and not in the Aries framework as originally reported. Thus,
we patched the particular ASM methods containing the bugs, and
retested it with the Aries framework to ensure conformance.

(2) The bug in Commons Math [37] had a bug related to
incorrect formatting of the input string. However, it threw
a completely irrelevant exception (IndexOutOfBound) instead of
the NumberFormatException, which contains the information of
the malformed string. The CLOTHO-generated patch fixes the
undesirable behavior.

(3) The bug in OfBiz [41] throws a custom shutdown exception,
when in fact it should throw a StringIndexOutOfBoundsException

due to a substring invocation with incorrect bounds. This
ultimately causes the library to throw some high priority exception
and ultimately crash if not handed properly by the application. The
patched version of the library catches the correct exception.

(4) The code to trigger bugs in some libraries, including Apache
Commons Compress, Commons Lang, Commons Math and Ofbiz,
each had string operations wrapped in try-catch block that were
handled by Exception class, i.e., the base type of all exceptions.
However, CLOTHO checks for already handled runtime exceptions
during its call graph analysis, and thus did not patch the bugs.

562

0

10

20

30

40

50

60

0 20 40 60 80

C
a

ll
 g

ra
p

h
 a

n
a

ly
si

s
ti

m
e

 (
se

c)

Call graph size (K)

(a) Variation in call graph analysis time with size of

call graph.

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

C
o
n
st
ra
in
t a

n
a
ly
si
s t
im

e
 (s
e
c)

No. of constraints

(b) Variation in static constraint analysis time with

number of constraints.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250

In
st

ru
m

e
n

ta
ti

o
n

 T
im

e
 (

se
c)

Units instrumented

(c) Variation in instrumentation time with Units

to be instrumented.

Figure 4: CLOTHO evaluation.

We turned off the call graph analysis module to force CLOTHO to
generate the relevant patch for the bug.

(5) We also noticed several instances where the developer code
does not follow proper programming practices regarding exception
handling. For example, the SOAP bug [48] was reported for a faulty
substring call that threw a StringIndexOutOfBoundsException.
The entire method was wrapped in a try-catch that included the
faulty substring call along with other servlet operations. However,
the catch block handled the generic Exception, which is the base
class for all exceptions. Thus, both the servlet exceptions and the
IndexOutOfBoundException from the substring call were handled
in a generic fashion. CLOTHO’s patched library ensures that
exceptions originating from substring are handled properly.

7. DISCUSSION AND FUTURE WORK

(1) FOCUS ON STRING APIS. In its present form, CLOTHO is
primarily targeted towards repairing String objects and handling
API exceptions. While this may seem to be a limitation, we believe
that CLOTHO’s strength lies in the fact that it mines contextual data
about runtime exceptions related to String objects, which helps
development of intelligent patches. Further, CLOTHO’s technique
is generic and can be ported to other classes of JAVA APIs. This
requires extensive study of the characteristics and constraints of
other object types. We leave this extension for the future.

(2) PATCH CORRECTNESS. CLOTHO attempts to generate
precise patches considering the program context that avoids
cascading exceptions to a great extent and producing the intended
behavior in cases of failure. However, it sill cannot give guarantees
about elimination of cascading exception, particularly when there
are heavy object dependencies in the program. In the future,
we plan to support CLOTHO with program invariants that would
ensure acceptable behavior. The invariants can be specified by a
programmer or can be automatically generated with the help of
training runs and later used as assertion at the time of execution
to ensure certain conditions remain true.

(3) HANDLING OF LIMITED CONSTRAINTS. CLOTHO’s
constraint data store is easy to build as it captures limited number
of fairly simple String characteristics, which are subsequently
used to generate patches for String objects. This approach
may not be adequate particularly if the program contains a large
number of complex constraints. The quality of CLOTHO’s patches
would generally depend on the nature of its constraint solver,
which is pluggable. CLOTHO’s current solver is simple and can
efficiently handle a limited number of simple constraints. A more

sophisticated off-the-shelf solver may improve the repair quality.
However, the current evaluation of the tool on several library APIs
described in § 6 indicates that the constraints that exist in practice
are normally less complex and are limited in number.

8. RELATED WORK
Automated program repairing has been an active area over past

decade. The approaches that have been proposed by the researchers
broadly fall into two categories namely, static and dynamic.

8.1 Static Approaches
COUNTER-EXAMPLE DRIVEN. Some of the static approaches
work based on a counter-example or a violated invariant that
is reported from the field. These approaches then repair the
program by automatically developing a patch and then ensuring
its correctness using computationally intensive techniques such as
model-checking [7,56]. Static techniques are effective in producing
accurate patches. However, shutting down the system to produce
and apply patches is not always a feasible or a desirable option.
The motivation for our technique comes from the fact that for some
applications fixing the bug after a program crash is not an option.

In concurrent work, Long and Rinard [35] propose a technique
that takes as input a test suite consisting both, positive as well
as negative test cases, and synthesizes program conditions that
allow the program to pass all the test cases. The conditions are
synthesized based on the values that related program variables hold
during the execution of the test suite. In comparison, our technique
deals with unexpected and undesirable situations that arise during
a program execution, and hence, does not need a test suite.
STRING GENERATION. A key to effective program repairing is to
reduce the problem by targeting a specific domain, or specific data
structures such as arrays, or data types such as strings, and then
use specialized transformation and solving techniques for repairing
that can exploit the constrained environment.

Gulwani [24] considered Microsoft Excel programs as the use
case scenario and identified string transformation as the major class
of programming problem. The author designed an algorithm for
learning a string expression that is consistent with input-output
examples. An input-output example is generated from a mapping
that maps a set of strings to a string defining a operation such
as concatenation. Singh and Gulwani [46] deal with semantic
transformation of a string that need to be interpreted as more than
a sequence of characters. Their approach may complement our
approach by improving our string generation process.

563

Samimi et al. present a tool PHPQuickFix based on the static
analysis approach and that targets a special case of printing related
bug in HTML [44]. Compared to their technique our approach
addresses much wider range of problems related to Java strings and
can be extended to other systems that have support for exceptions.
Tatlock et al. focus on the JAVA database API and related query
string [54]. They propose a solution of type errors that is caused
due to a type mismatch in the database and the type assigned in the
program. The authors also propose a solution for refactoring where
changing a class name associated with some queries will reflect all
the strings system wide. This approach is based on type-checking
and addresses different class of repairing problems.
STATIC DATA REPAIR. Demsky et al. propose repair strategy
by goal-directed reasoning [15]. This involves translating the
data-structure to an abstract model by a set of model definition
rules. The actual repair involves model reconstruction and
statically mapping it to a data structure update. Elkarablieh et al.
propose an idea to statically analyze a data structure to access the
information like recurrent fields and local fields [20]. They use their
technique to some well known data structures like singly linked list,
sorted list, doubly linked list, N-ary tree, AVL tree, binary search
tree, disjoint set, red-black tree, and Fibonacci heap. Overall, these
approaches are complementary to our approach.

8.2 Dynamic Approaches
Static approaches cannot exactly predict when the failure can

happen. However, dynamic approaches have a complete visibility
to the program under execution and can have a precise knowledge
of its state. In order to overcome some limitations of static
approaches and exploit the execution knowledge, several promising
dynamic approaches have been proposed.
DYNAMIC DATA REPAIR. Demsky and Rinard present techniques
that mostly concentrate on specific data-structures like FAT-32,
ext2, CTAS (a set of air-traffic control tools developed at the
NASA Ames research center) and repairing them [11–14]. The
authors present a specification language using that they detect and
check consistency properties in these data-structures and repair
them. For a violation, they replace the error condition with correct
proposition. These approaches develop either suboptimal patches
or isolate the data structure that is damaged that allows at least
part of the system to be functional. In contrast, our approach
tries to provide support to the entire application in the context of
string-related failures by trying to keep the system behavior as close
as possible to the intended. The advantage of these approaches is
that they are light-weight and like our approach, can fix a system
on-the-fly potentially allowing some sub-optimal behavior for a
finite time until the systems self-stabilizes.

Long et al. [36] present a technique that repairs a crashing system
RCV on-the-fly. The technique deals with two types of system
violations, namely, divide-by-zero and null-deference errors. Their
tool replaces SIGFPE and SIGSEGV signal handler with its own
handler. The approach works by assigning zero at the time of
divide-by-zero error, read zero and ignores write at the time of
null-deference error. Their implementation is on x86 and x86 − 64
binaries. They also implement a dynamic taint analysis to see the
effect of their patching until the program stabilizes that they called
as error shepherding. However, unlike CLOTHO, this technique
requires a special runtime that is built into the operating system.
GENETIC PROGRAMMING. The researchers have also tried
genetic programming approach for repairing. Goues et al. use
genetic programming technique that is a stochastic search method
inspired by biological evolution [23]. The technique generates
program patch by using already existing test cases to deal with

bugs such as infinite loop, null string, segmentation fault, and
buffer overflow. Similar approach has been presented by Weimer
et al. [57]. Goues et al. present study to understand the
real life feasibility and the fraction of the bugs their genetic
programming-based tool can repair as well as the cost associated
with it [22]. These approaches are test-driven and rely on the
availability and completeness of test-suites. In contrast, our
approach is completely independent of a test-suite.
STRINGS RELATED. Samimi et al. present a dynamic repairing
technique for PHP applications [44]. They present PHPRepair,
a tool to repair auto-generated malformed HTML codes from the
PHP scrips. Often the HTML codes do not have proper tags that are
silently corrected by the browser but the result is different across
browsers. The authors employ an efficient SAT solver using cost
optimization to find an efficient repair.
OTHER DYNAMIC APPROACHES. Perkins et al. present a system
named Clear view that works on windows x86 binaries without
requiring any source code [43]. They use invariants analysis for that
they use Daikon [21]. They mostly patched security vulnerabilities
by some candidate repair patches. Unlike CLOTHO, Clear view

requires a test-suite to develop the knowledge about the invariants.

8.3 CLOTHO’s Main Contrasting Features
Our approach targets only string objects for repairing allowing

it generate highly precise and intelligent program patches that
generate very few or none cascading exceptional events and
produces a program behavior that is very close to the expected
behavior under the event of crashing. In addition, our approach is
hybrid with a heavy static component that enables all the analysis
including the side-effect analysis based on a taint analysis to
perform dynamically. It incurs negligible overhead even in the
event of crashing. Moreover, CLOTHO works at the application
level, and hence is easily portable.

Many of the repairing approaches as described above have
been found to be effective on various problems that are scoped
appropriately. We believe that ours is the first generic approach that
targets string objects and repairs program on-the-fly by generating
precise patches using the properties of string objects and leveraging
contextual information.

9. CONCLUSION
Running programs may crash unexpectedly due to vulnerabilities

in the code and malformed data. The cost associated with such
crashes can vary with the criticality of the applications. In this
work, we present a novel program repairing technique, and a
prototype tool CLOTHO based on it, which employs hybrid program
analysis to protect a running program from failures originating
from string-handling errors leading to a program crash.

Our choice of JAVA String APIs is driven mainly by the
popular usage of string objects and bugs associated with them. By
focusing on a specific data type, and taking the program context
into account, CLOTHO can develop patches that are precise and
semantically close to the ones created by the developers. Hence,
when the patches are activated, the program exhibits a behavior
close to the intended program behavior. Our evaluation shows
that CLOTHO can handle programs that are real, and can produce
patches efficiently.

10. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their

valuable comments. We are also grateful to Steven Arzt for his
help with SOOT related issues in CLOTHO.

564

11. REFERENCES
[1] Amazon sellers hit by nightmare before Christmas as glitch cuts

prices to 1p.
http://www.theguardian.com/money/2014/dec/14/

amazon-glitch-prices-penny-repricerexpress.

[2] Nike Rebounds: How (and Why) Nike Recovered from Its Supply
Chain Disaster.
http://www.cio.com/article/2439601/supply-

chain-management/nike-rebounds--how--and-

why--nike-recovered-from-its-supply-chain-

disaster.html.

[3] Supply Chain: Hershey’s Bittersweet Lesson.
http://www.cio.com/article/2440386/supply-

chain-management/supply-chain---hershey-s-

bittersweet-lesson.html.

[4] When Bad Things Happen to Good Projects.
http://www.cio.com/article/2439385/project-

management/when-bad-things-happen-to-good-

projects.html.

[5] ARIES-1204. Stringindexoutofbounds for blueprint apps that have
constructors with multiple exceptions.
https://issues.apache.org/jira/browse/ARIES-

1204, 2014.

[6] Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C.
Rinard. Detecting and escaping infinite loops with jolt. In
Proceedings of the 25th European Conference on Object-oriented

Programming, ECOOP’11, pages 609–633, Berlin, Heidelberg,
2011. Springer-Verlag.

[7] Pavol Cerny, ThomasA. Henzinger, Arjun Radhakrishna, Leonid
Ryzhyk, and Thorsten Tarrach. Regression-free synthesis for
concurrency. In Armin Biere and Roderick Bloem, editors, Computer

Aided Verification, volume 8559 of Lecture Notes in Computer

Science, pages 568–584. Springer International Publishing, 2014.

[8] CLI-46. java.lang.stringindexoutofboundsexception.
https://issues.apache.org/jira/browse/CLI-46,
2007.

[9] CLI193. Stringindexoutofboundsexception in
helpformatter.findwrappos.
https://issues.apache.org/jira/browse/CLI-193,
2010.

[10] COMPRESS-26. Tararchiveentry(file) now crashes on file system
roots. https://issues.apache.org/jira/browse/
COMPRESS-26, 2009.

[11] Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen McCamant,
Jeff H. Perkins, and Martin C. Rinard. Inference and enforcement of
data structure consistency specifications. In Proceedings of the

ACM/SIGSOFT International Symposium on Software Testing and

Analysis, ISSTA 2006, Portland, Maine, USA, July 17-20, 2006,
pages 233–244, 2006.

[12] Brian Demsky and Martin Rinard. Automatic data structure repair for
self-healing systems. In In Proceedings of the 1 st Workshop on

Algorithms and Architectures for Self-Managing Systems, 2003.

[13] Brian Demsky and Martin C. Rinard. Automatic detection and repair
of errors in data structures. In Proceedings of the 2003 ACM

SIGPLAN Conference on Object-Oriented Programming Systems,

Languages and Applications, OOPSLA 2003, October 26-30, 2003,

Anaheim, CA, USA, pages 78–95, 2003.

[14] Brian Demsky and Martin C. Rinard. Static specification analysis for
termination of specification-based data structure repair. In 14th

International Symposium on Software Reliability Engineering (ISSRE

2003), 17-20 November 2003, Denver, CO, USA, pages 71–84, 2003.

[15] Brian Demsky and Martin C. Rinard. Data structure repair using
goal-directed reasoning. In 27th International Conference on

Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis,

Missouri, USA, pages 176–185, 2005.

[16] DERBY-4748. Stringindexoutofboundsexception on syntax error
(invalid commit).
https://issues.apache.org/jira/browse/DERBY-

4748, 2010.

[17] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N.
Nguyen. A Large-scale Empirical Study of Java Language Feature
Usage.

http://lib.dr.iastate.edu/cgi/viewcontent.cgi?

article=1284&context=cs_techreports.

[18] Eclipse Bug 333066. Bug 333066 - stringindexoutofboundsexception
during compilation. https://bugs.eclipse.org/bugs/
show_bug.cgi?id=333066, 2014.

[19] Eclipse Bug 432874. Bug 432874 - stringindexoutofboundsexception
after adding project to inpath. https://bugs.eclipse.org/
bugs/show_bug.cgi?id=432874, 2014.

[20] Bassem Elkarablieh, Sarfraz Khurshid, Duy Vu, and Kathryn S.
McKinley. Starc: static analysis for efficient repair of complex data.
In Proceedings of the 22nd Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA 2007, October 21-25, 2007, Montreal,

Quebec, Canada, pages 387–404, 2007.

[21] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon
system for dynamic detection of likely invariants. Sci. Comput.

Program., 69(1-3):35–45, 2007.

[22] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and
Westley Weimer. A systematic study of automated program repair:
Fixing 55 out of 105 bugs for $8 each. In 34th International

Conference on Software Engineering, ICSE 2012, June 2-9, 2012,

Zurich, Switzerland, pages 3–13, 2012.

[23] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. Genprog: A generic method for automatic software repair.
IEEE Trans. Software Eng., 38(1):54–72, 2012.

[24] Sumit Gulwani. Automating string processing in spreadsheets using
input-output examples. In Proceedings of the 38th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’11, pages 317–330, New York, NY, USA, 2011.
ACM.

[25] HAMA-212. When the index is zero, bytesutil.getrowindex will
throws the indexoutofbound.
https://issues.apache.org/jira/browse/HAMA-

212, 2009.

[26] HBASE-4481. Testmergetool failed in 0.92 build 20.
https://issues.apache.org/jira/browse/HBASE-

4481, 2011.

[27] HIVE-6986. Matchpath fails with small resultexprstring.
https://issues.apache.org/jira/browse/HIVE-

6986, 2014.

[28] HTTPCLIENT-150. Stringindexoutofbound exception in rfc2109
cookie validate when host name contains no domain information and
is short in length than the cookie domain. https://issues.
apache.org/jira/browse/HTTPCLIENT-150, 2003.

[29] IO-179. Stringindexoutofbounds exception on
filenameutils.getpathnoendseparator.
https://issues.apache.org/jira/browse/IO-179,
2008.

[30] JUDDI-292. <faultstring>string index out of range: 35</faultstring>.
https://issues.apache.org/jira/browse/JUDDI-

292, 2011.

[31] Kiyokuni Kawachiya, Kazunori Ogata, and Tamiya Onodera. A
Quantitative Analysis of Space Waste from Java Strings and its
Elimination at Garbage Collection Time.
http://domino.watson.ibm.com/library/cyberdig.

nsf/papers/F2BBE159220ADDF3852573990006DBF2/

$File/RT0750.pdf.

[32] Kiyokuni Kawachiya, Kazunori Ogata, and Tamiya Onodera.
Analysis and reduction of memory inefficiencies in java strings. In
Proceedings of the 23rd ACM SIGPLAN Conference on

Object-oriented Programming Systems Languages and Applications,
OOPSLA ’08, pages 385–402, New York, NY, USA, 2008. ACM.

[33] LANG-457. Numberutils createnumber thows a
stringindexoutofboundsexception when only an "l" is passed in.
https://issues.apache.org/jira/browse/LANG-

457, 2008.

[34] LOG4J2-448. [log4j2-448] stringindexoutofbounds when using
property substitution - asf jira.
https://issues.apache.org/jira/browse/LOG4J2-

448, 2013.

565

[35] Fan Long and Martin Rinard. Staged Program Repair in SPR.
http://dspace.mit.edu/handle/1721.1/95963.

[36] Fan Long, Stelios Sidiroglou-Douskos, and Martin C. Rinard.
Automatic runtime error repair and containment via recovery
shepherding. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’14, Edinburgh, United

Kingdom - June 09 - 11, 2014, page 26, 2014.

[37] MATH-198. java.lang.stringindexoutofboundsexception in
complexformat.parse(string source, parseposition pos).
https://issues.apache.org/jira/browse/MATH-

198, 2008.

[38] MYFACES-416. Stringindexoutofboundsexception in addresource.
https://issues.apache.org/jira/browse/MYFACES-

416, 2005.

[39] NET-442. Stringindexoutofboundsexception: String index out of
range: -1 if server respond with root is current directory.
https://issues.apache.org/jira/browse/NET-442,
2012.

[40] NUTCH-1547. Basicindexingfilter - problem to index full title.
https://issues.apache.org/jira/browse/NUTCH-

1547, 2013.

[41] OFBIZ-4237. shutdown exception if invalid string entered.
https://issues.apache.org/jira/browse/OFBIZ-

4237, 2011.

[42] PDFBOX-467. index out of bounds exception.
https://issues.apache.org/jira/browse/PDFBOX-

467, 2009.

[43] Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P.
Amarasinghe, Jonathan Bachrach, Michael Carbin, Carlos Pacheco,
Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong,
Yoav Zibin, Michael D. Ernst, and Martin C. Rinard. Automatically
patching errors in deployed software. In Proceedings of the 22nd

ACM Symposium on Operating Systems Principles 2009, SOSP 2009,

Big Sky, Montana, USA, October 11-14, 2009, pages 87–102, 2009.

[44] Hesam Samimi, Max Schäfer, Shay Artzi, Todd D. Millstein, Frank
Tip, and Laurie J. Hendren. Automated repair of HTML generation
errors in PHP applications using string constraint solving. In 34th

International Conference on Software Engineering, ICSE 2012, June

2-9, 2012, Zurich, Switzerland, pages 277–287, 2012.

[45] SDK-14417. Stringindexoutofboundsexception when using a
properties-file.
http://bugs.adobe.com/jira/browse/SDK-

14417,https://issues.apache.org/jira/browse/

FLEX-13823, 2008.

[46] Rishabh Singh and Sumit Gulwani. Learning semantic string
transformations from examples. Proc. VLDB Endow., 5(8):740–751,
April 2012.

[47] SLING-3095. Stringindexoutofboundsexception within
contentxmlhandler.java:210.

https://issues.apache.org/jira/browse/SLING-

3095, 2013.

[48] SOAP-130. String indexoutofbounds in soapcontext.
https://issues.apache.org/jira/browse/SOAP-

130, 2004.

[49] SOLR-331. Stringindexoutofboundsexception when using synonyms
and highlighting.
https://issues.apache.org/jira/browse/SOLR-

331, 2007.

[50] Soot. Soot: a java optimization framework.
http://www.sable.mcgill.ca/soot/.

[51] Soot-infoflow. secure-software-engineering/soot-infoflow.
https://github.com/secure-software-

engineering/soot-infoflow.

[52] StackOverflow. Stack exchange data dump : Stack exchange, inc. :
Free download & streaming : Internet archive.
https://archive.org/details/stackexchange, 2013.

[53] TAP5-1770. Pagetester causes stringindexoutofboundsexception for
any page request path with query parameter.
https://issues.apache.org/jira/browse/TAP5-

1770, 2011.

[54] Zachary Tatlock, Chris Tucker, David Shuffelton, Ranjit Jhala, and
Sorin Lerner. Deep typechecking and refactoring. SIGPLAN Not.,
43(10):37–52, October 2008.

[55] VFS-338. Possible crash in extractwindowsrootprefix method.
https://issues.apache.org/jira/browse/VFS-338,
2010.

[56] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz,
Bertrand Meyer, and Andreas Zeller. Automated fixing of programs
with contracts. In ISSTA 2010: Proceedings of the 19th international

symposium on Software testing and analysis, pages 61–72, New
York, NY, July 2010. ACM.

[57] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu
Nguyen. Automatic program repair with evolutionary computation.
Commun. ACM, 53(5):109–116, 2010.

[58] WICKET-4387. Stringindexoutofboundsexception when forwarding
requests.
https://issues.apache.org/jira/browse/WICKET-

4387, 2012.

[59] WW-650. Cooluriservletdispatcher throws
stringindexoutofboundsexception.
https://issues.apache.org/jira/browse/WW-650,
2005.

[60] XALANJ-836. Exception in
org.apache.xalan.xsltc.compiler.util.util.tojavaname(string).
https://issues.apache.org/jira/browse/XALANJ-

836, 2004.

566

