
Responsive Designs in a Snap

Nishant Sinha
IBM Research, India

nishant.sinha@in.ibm.com

Rezwana Karim
Rutgers University, USA

rkarim@cs.rutgers.edu

ABSTRACT
With the massive adoption of mobile devices with different form-
factors, UI designers face the challenge of designing responsive UIs
which are visually appealing across a wide range of devices. De-
signing responsive UIs requires a deep knowledge of HTML/CSS
as well as responsive patterns - juggling through various design
configurations and re-designing for multiple devices is laborious
and time-consuming. We present DECOR, a recommendation tool
for creating multi-device responsive UIs. Given an initial UI de-
sign, user-specified design constraints and a list of devices, DECOR
provides ranked, device-specific recommendations to the designer
for approval. Design space exploration involves a combinatorial
explosion: we formulate it as a design repair problem and devise sev-
eral design space pruning techniques to enable efficient repair. An
evaluation over real-life designs shows that DECOR is able to com-
pute the desired recommendations, involving a variety of responsive
design patterns, in less than a minute.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User Interfaces, CASE

General Terms
Algorithms, Design

Keywords
Responsive Layout inference, Constraint-based Design, HTML,
CSS

1. INTRODUCTION
The massive growth of mobile and tablet devices has compelled

both enterprises and individual developers to create UIs viewable on
multiple devices. The solution is to create responsive designs [31,
34], which adapt to device environments, e.g., different form-factors.
They provide optimal viewing experience across devices by allowing
users to read and navigate a page easily and minimizing the effort
spent on window resizing, panning, and scrolling. Indeed, 2013 was
named the year of responsive design1 [16].
1The term responsive may have multiple informal meanings; here,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org. ESEC/FSE’15, August
31-September 04, 2015, Bergamo, Italy c©2015 ACM. ISBN 978-1-4503-
3675-8/15/08 $15.00 DOI: http://dx.doi.org/10.1145/2786805.2786808

HTML and CSS are the de-facto web design languages; off-
the-shelf browsers can render such designs for mobile platforms.
HTML/CSS designing requires deep expertise, both for (i) encod-
ing layouts in CSS and (ii) various layout transformation patterns
that lead to responsive designs. Non-experts, instead, may prefer
either programming-by-demonstration, constraint-based design or a
combination of these approaches. A design demonstration consists
of a set of UI elements or widgets laid out on a canvas, e.g., of
a WYSIWYG editor [1, 11, 2]; nested layouts are specified using
container boxes. Design synthesis engines [27, 33] are used to create
renderable HTML/CSS files from the specification.

Alternatively, the designer may specify a partial UI layout on a
canvas and then add constraints on the alignment, positioning and
relative sizes of UI elements [18, 35, 26], e.g., min-width of a text
box, max-margin between two adjacent elements. Constraint-based
UI design has a rich history [21, 19, 18, 27, 24, 35, 26]: by enabling
the designer to focus on the desired design properties instead of
how to encode them, constraints reduce the layout specification
burden. These constraints are finally used by a layout engine to
render a device-specific design. Desktop UIs have a dedicated
layout engine [10] which solves the constraints and renders design
on-the-fly. In contrast, for web UIs, a browser’s layout engine
understands only HTML/CSS natively; hence, the page synthesis
engine should transform the design constraints into CSS rules.

Creating responsive layouts which adapt smoothly to different
devices is non-trivial. A naive approach to adapt UI designs to
devices is by creating so-called fluid designs, where UI elements
shrink or expand in a fixed ratio to their parent. However, such
re-sizing leads to cluttered appearance and overlapping elements
as devices become smaller. Instead, responsive layouts employ
multiple transformations on UI elements: rearrange, resize, replace,
change visibility, move elements across pages, etc. Further, to
enable efficient encoding in HTML/CSS, the layouts cannot be
rearranged arbitrarily: horizontal/vertical alignment of elements
may change freely, e.g. rows transformed to columns, but the parent-
child relationships are generally preserved across layouts.

Visual tools like Adobe Reflow [2] assist users in adapting a
particular design to different form-factors using direct manipula-
tion. However, the designer must juggle through a large number
of possible designs manually, fixing designs through a laborious
trial-and-error process. Further, the tool does not provide any layout
recommendations. Grid-based CSS libraries, e.g., Bootstrap [7],
allow designers to annotate UI elements with CSS classes having
pre-defined responsive behaviors, e.g., a 2x2 grid will transform to
4x1 grid at the mobile form-factor. Manual annotation is laborious
and error-prone: it is easy to specify wrong annotations which are
hard to debug without a deep knowledge of the library and CSS

we refer to designs whose layouts adapt to different form-factors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786808

544

Figure 1: (top) Real-world example of a responsive site. (below)
DECOR: A responsive design recommendation tool.

layouts.
Constraint-based design holds the promise of reducing the man-

ual design effort. However, existing constraint-based approaches
are ineffective for responsive design because they search over a re-
stricted design space. For example, most techniques try to preserve
the UI element alignments (from the original design) during adap-
tation and do not explore designs having grid-based rearrangments
during solution discovery. Consider the original design layout in
Fig. 2(top) which is adapted to the small tablet (STP) form-factor
in Fig. 2(bottom-left). Current approaches can shrink the original
layout to the one shown in the STP (left) area, but cannot produce
the desired layout (STP (right)) which requires changing the align-
ment of multiple elements from horizontal to vertical. Because
of their reduced search space, these techniques are forced to de-
clare the constraint set inconsistent or drop inconsistent constraints
arbitrarily [10] to keep the layout aesthetic.

We present a constraint-based design recommender tool, DECOR,
to assist the designer in creating multi-device responsive UIs (Fig. 1(b)).
Given an initial UI design, user-specified constraints on elements,
e.g., width or margin, and a list of device form-factors, DECOR
provides ranked, device-specific recommendations to the designer
for approval. Intuitively, DECOR is to responsive design, as content-
assist tools are to programming: the latter improve developer pro-
ductivity by providing features like auto-completion and ranked
suggestions, while DECOR provides design recommendations to
enable rapid multi-device design. The designer may specify con-
straints for each form-factor and let the tool provide suggestions for
each form-factor. If the designer does not approve of any suggestion,
she may refine the constraints and query the tool again. To our
knowledge, DECOR is the first tool to provide multiple responsive
design recommendations.

The design of DECOR relies on two main observations. First, we
observe that UI designs are essentially labeled trees, and responsive
designs may be obtained by one or more tree transformations. Con-
sider a design D with the design tree T , containing an UI element
node n with children c1 and c2 laid out horizontally on being ren-
dered (n is a HBox). Suppose c1 and c2 appear too narrow on the
tablet device. We can fix D by transforming the orientation of n to
VBox where c1 and c2 align vertically and hence appear sufficiently

wide. We formalize responsive design as a design repair problem:
given a UI design, and a set of design constraints C, compute the set
of fixes, so that the fixed design satisfies C for each desired device.
The notion of a fix is at the core of our approach: a fix effectively
characterizes the designer’s actions as she goes about adapting the
design for different devices.

Our second observation is that although the total number of po-
tential tree transformations (space of designs) is huge, only a few
transformation patterns are used in practice. However, trying out all
permutations of even this smaller set of transformations on real UI
design trees leads to a combinatorial explosion. To build a practical
tool, we devise several pruning heuristics which exploit the indepen-
dence of fixes, similar to partial order reduction methods [25, 23],
and bias the search towards more general and ordered fix sequences
to prune the search space (cf. Sec. 5).

We evaluate DECOR over a representative set of synthetic and
real-life UI designs. Our results show that DECOR is able to com-
pute several design recommendations, involving a variety of respon-
sive design patterns, in less than a minute. The recommendations
obtained are realistic, i.e., they precisely mimic the responsive behav-
iors created manually by experienced designers of real-life respon-
sive sites. In some cases, DECOR is also able to suggest alternative
design repairs which require fewer fixes as compared to the original
responsive site. The paper makes the following contributions.

• We formalize the responsive design problem as a constraint-
based repair problem over labeled design trees. We present
a new specification language to specify constraints over UI
elements for multi-device designs.

• We model the space of design transformations using a design
tree graph (DTG), whose nodes are design trees and transi-
tions are repairs. An algorithm is presented to search over a
DTG systematically to find designs satisfying constraints.

• We present efficient pruning heuristics to avoid combinatorial
explosion during DTG exploration by avoiding redundant
fixes, exploiting mutual independence of fixes and enforcing
a tree-based ordering on fix sequences.

• We describe an implementation and an evaluation of DECOR,
a tool for creating multi-device responsive designs. We demon-
strate that DECOR is able to provide realistic recommenda-
tions for real-life designs within a minute. We conduct a
study to compare the user experience with DECOR against a
commercial responsive design tool.

2. OVERVIEW OF THE APPROACH

Consider the UI design D shown in Fig. 2(top-left), based on a
real-life responsive website [6]. Suppose designer uses a WYSI-
WYG design tool [2] or a mockup builder [3, 9] to create this
design for the desktop form-factor (width > 1200px). Now, she
wishes to adapt D to be visually appealing for the following devices
(form-factors): (i) tablet landscape (width < 1024px) (ii) small
tablet portrait (width < 600px) and (iii) mobile-portrait (width <
320px). Instead of manually tweaking D for each form factor, the
designer uses DECOR to obtain desired designs. First, she provides
a set of design constraints on attributes of UI elements, e.g., min-
width, min-margin, font-size or their combinations (cf. Sec. 4.1).
DECOR then generates ranked design recommendations for each
desired form-factor, that satisfy the above constraints. Now, the
designer picks one of the designs if she approves of it; otherwise,
she adds more constraints and asks DECOR to come up with bet-
ter recommendations. Once the designer approves all the designs,

545

Figure 2: An illustrative responsive design example, for tablet, small tablet portrait (STP) and mobile portrait (MOP) form factors.
Dotted borders mark visually unappealing UI elements, solid borders show the fixed versions.

DECOR generates faithful HTML/CSS files encoding the designs,
which may be viewed in any off-the-shelf mobile/desktop browser
and responds to form factor changes.

To adapt the original designD, the tool first extracts a hierarchical,
annotated, design tree (DT) T fromD (cf. Sec. 3 for details), shown
in Fig. 2(top-right), and then repairs T to satisfy all constraints for
each form-factor (FF) f . Repairing T for each f involves computing
one or more sequence of fixes, called fix-chains. Each fix-chain
transforms T to a visually appealing tree T ′ for f . These fix-chains
are then ranked and the designs encoding the repaired trees are
shown as recommendations.

We describe how DECOR works for the tablet-landscape (tl) FF.
DECOR starts with most obvious repair: it shrinks the original
design (preserving relative sizes of elements) to the width of tl FF.
This design is not visually pleasant, e.g., the following elements
appear too narrow: email input and subscribe button under the
newsbar, the navbar1, sidebar and the four ipi (1 ≤ i ≤ 4) elements
(Fig. 2, Tablet). To eliminate these issues, the designer specifies
constraints: (a) min-width(navbar1) = 200px, which applies to

navbar1 in all FFs. Further, she determines that the sidebar should
now be invisible and specifies constraint (b) hidden(sidebar) for
all FFs less than tl. Similarly, (c) min-width constraints for input,
button and ipi elements are specified.

Now, DECOR uses these constraints to fix the design: it applies
fixes from its fix library (cf. Sec. 4.2) to repair the design. Here,
the computed fix-chain has 3 fixes. First, the fix hide-element is
applied on the sidebar. Then, the fix reduce column (red-col) is
applied on the body element: body has two columns (div1 and div2
boxes) in the original design, this fix converts body into a single
column, i.e., it stacks div1 over div2. The resulting design is shown
in Fig. 2, Tablet (middle): elements fs-image and navbar1 appear too
wide again, making the design unpleasant. The designer specifies
a max-width for navbar1; the tool then applies the fix red-row to
obtain the desired design (Fig. 2, Tablet (right)). Note how the min-
width constraints for input and button elements (inside newsbar) are
satisfied, without applying fix directly on them; fixing the higher
(closer to root) tree nodes often obviates the need for fixing specific
lower nodes and leads to short fixes.

546

For small tablet portrait (stp) FF, DECOR again shrinks the pre-
vious design to stp’s width (Fig. 2(STP)). Now, the unpleasant
elements are: navbar2, email, subscribe and ipi. Suppose the de-
signer decides to hide navbar2 for stp and adds constraints for above
elements. Now, DECOR tries to satisfy all given constraints for
stp: it applies red-col on newsbar (move input and button to a new
row) and red-col on content, i.e., convert from 4-column, 1-row
box to 2-column, 2-row box, to obtain the desired design for stp
(STP(right)). On shrinking this design to mobile portrait (mop) FF
(Fig. 2(MOP)), navbar1 and ipi appear squished. DECOR applies
red-col on both topbar (navbar1 gets a new row) and content (switch
to 1-column, 4-rows) to repair this design.
Discussion. Note that a designer may not conceive of all constraints
upfront; she may need to add constraints interactively and re-run the
tool multiple times. Constraints and fixes are not related one-to-one:
a single constraint may determine fixes for multiple FFs, which
saves the designer from re-applying the multiple fixes manually.
To fix designs manually without constraints, the designer must be
able to visualize the design hierarchy and various fix interactions
mentally and adapt the design by trial-and-error, which becomes
unduly hard with complex designs and longer fix-chains.

3. PRELIMINARIES
Designing UIs. Static UI design involves defining the UI elements,
the layout, e.g., left-to-right alignment of elements, and the styling,
e.g., color, font-size of elements. Either direct manipulation tools,
e.g., Adobe Photoshop, or UI programming frameworks [8, 5] or
a combination of them [1, 10] may be used. For creating web UIs,
HTML [8] and CSS [4, 5] are the de-facto languages (JavaScript
is used for the dynamic behavior). Web UI programming involves
a significant learning curve: most direct manipulation tools do not
generate good-quality code and end-users or unskilled designers
struggle to encode their designs in HTML/CSS [28, 33].
Devices and Form-Factors. Recently, a variety of mobile devices
have become available. These devices are distinguished by their
display form-factors, i.e., width-height ratio (in pixels), denoted
as widthxheight) Devices may be categorized into following major
categories: desktop, tablet, phone having widths 1200px or more,
500px - 800px and 320px - 480px, respectively. Further, phones and
tablets typically support both portrait and landscape modes.
Breakpoints, Viewports. A breakpoint is, intuitively, a transition
point for the design and is specified by its width, e.g., 700px; transi-
tion points affect noticeable discrete visual changes in the design (cf.
Fig. 1(a)). A designer picks breakpoints in order to ensure visual
appeal on a small subset of devices: each breakpoint bp corresponds
to one or more devices having width close to bp. In this paper, we
use the term device or form-factor to specify device properties, view-
port to denote the design container or renderer, e.g., the browser,
and breakpoint to specify the viewport width at which the design
changes. Viewport may correspond either to the entire device screen
or the reduced width of a resized browser.
Responsive designs. A declarative specification in HTML/CSS,
may be rendered on different devices or viewports in completely
different ways. Although the underlying structure (HTML) remains
same, the layout, positioning, styling and visibility of elements may
be changed via CSS3 rules specific to devices or viewports. These
rules can be specified using media-query directives [12]: based on a
combination of device and viewport properties, different CSS rules
may be triggered. For the example in Fig. 2, we write

media (min-width: 1200px) { #sidebar {display: block;} }
media (min-width: 1024px) and (max-width: 1200px) {

#sidebar {display: none;}
}

to make sidebar element visible for viewports of width > 1200px
and hide it for lower width viewports. Media queries can be complex
Boolean combinations of various device properties [12] and allow
designs to adapt to devices in non-trivial ways.
UI Designs Formally. A design D consists of a collection of UI
elements B (basic widgets, containers), represented as rectangular
objects (also called boxes). Non-rectangular UI objects, e.g., images,
are represented by their bounding boxes.
Design tree (DT). We represent a design formally using a design
tree T = (N, ch, orn, σ) which consists of a set of nodes N , and
maps ch, orn and σ. We use root(T) and leaves(T) to represent
the root node and the set of leaves of T , respectively. Given a node
n ∈ N , ch(n) denotes the ordered list of children of n in T . The
leaves of T correspond to basic UI widgets, e.g., button, selection,
image, section, and intermediate nodes are containers. Functions
orn and σ capture the design features of T : orn(n) denotes the
layout of children of n and σ(n) denotes the styling, positioning
and other attributes of n, as explained below.
Styling. Each node n ∈ N is labeled with a set of attributes which
determine the size, position and visual appearance of n on being
rendered. Given a set of attributes A drawing values from set VA,
the attribute map σ : N → A → VA, which maps a node n
and an attribute a ∈ A to a value v ∈ VA. Attribute values may
be specified either using absolute measures, e.g., in pixels (px) or
relative to parent of n, using percentages. Percentage values allow
the design to be fluid. For example, suppose a child node n has
width 40% of its parent, the root element r. Now, if we reduce
the (rendered) width of r, n’s width will also shrink in the same
ratio. Although responsive designs are fluid in general, fluidity is
not enough: elements typically are rearranged to adapt to devices.
Hierarchical Layouts: Grids, HVBoxes. A DT is rendered as a
nested collection of boxes; different layouts are obtained by aligning
children boxes vertically or horizontally inside the parent (container)
box. We specify the orientation of each non-leaf node p using a
generic grid box primitive; orn(p) = (k, l) means that the children
of p are aligned into a grid with k rows and l columns, and p is
said to be a (k, l)-box. When k = 1 (l = 1) we say that p is a
HBox (VBox), i.e., contains a single row (column) of elements. As
we will see later, the grid box notation allows us to capture layout
transformations conveniently.
Rendering Design Trees. A DT T may be visualized using a suit-
able renderer, e.g., an off-the-shelf browser. The renderer interprets
T and projects it on to a 2-D plane, as a flat design D = (B, σr),
where B is a set of visible UI boxes corresponding to nodes in T and
the attribute map σr is defined for each b ∈ B. For a box bn ∈ B
corresponding to n ∈ N , σr(bn) = σ(n) and σr(bn)(p) is defined
in absolute pixel values for all position and size attributes p, e.g.,
left, top, height, width. Given a device of form-factor f = WxH, we
say that a tree T fits the device if the rendered box broot for root(T)
is narrower than W , i.e., σr(broot, width) < W .

4. CONSTRAINT-BASED DESIGN REPAIR
Given an initial DT T drawn for a breakpoint bp (e.g., 1200x768),

we want to transform T into a new tree T ′ which is visually ap-
pealing for a lower-width breakpoint, e.g., 800x600. Once T ′ is
obtained, we can encode T and T ′ together into HTML/CSS auto-
matically using media queries and rules presented in [33]. We can
obtain T ′ by shrinking the width of all elements by a fixed ratio;
however, this may lead to visually unpleasant designs, e.g., text may
be unreadable, page elements may overlap or appear cluttered.

To create a repair strategy, we first must define what a good-
looking design is. While it is hard, if not impossible, to quantify
visual appeal precisely, we can often characterize design deficiencies

547

Constants k ∈ {N, true, false, strings, numbers, ..}
Tree nodes n
Node attributes a ∈ A: {width, height, margin, min-width, font-size, ..}
Operators ⊕: {=, <,>,≤,≥, ..}
Breakpoints bp ∈ B: {1024x768, 320x480, tab, stp, mop, all,...}
Constraints C ::= [bpl] φ
bpl ::= bp(, bp)∗

φ ::= (L | N) | φ ∨ φ | φ ∧ φ
L ::= Cx ⊕ k
Cx ::= n.a |∑(k ∗ Cx) k ∈ N
N ::= hidden(n) | halign(n1, n2) | valign(n1, n2)

Table 1: Constraint language for multi-device designs. L = lin-
ear predicate, Cx = constraint expression. Expressions should
be type-correct. bp = all denotes the set of all breakpoints.

in terms of constraints on size, spacing and other attributes, e.g.,
a design is not looking good because an image is too wide, or
a paragraph text is too narrow. Therefore, we ask the designer to
supply a set of design constraints on UI elements: a design satisfying
these constraints is assumed to be visually appealing.

Given a set of constraints C, we can repair T in large number
of ways to satisfy C, e.g., we may fix the size attributes of nodes
or change their orientation or move around subtrees in T . Our key
observation is that designers rely only on a small subset (about
10) of these fixes for creating responsive designs, e.g., converting
rows to columns or vice versa, changing margin sizes, fonts and
hiding optional controls. These patterns are applied carefully only
to a selected set of tree nodes, and are in many cases independent
of each other. These observations allow to devise a systematic
approach to search over the set of possible fixes efficiently. Our
constraint-based repair framework is extensible: both constraints
and fixes can be added, enabled and removed on demand.

4.1 Design Constraints
Formally, design constraints are logical predicates on proper-

ties of tree nodes, e.g., attributes (width, margin), orientation and
the parent-child relationships, e.g. for a paragraph UI element
p, p.width ≤ 600px is an instance of a max-width constraint.
Constraints may refer to multiple elements simultaneously, e.g.,
n1.width + n2.width ≤ 200px, for nodes n1 and n2.

Table 1 shows our constraint language formally. The language
is inspired by, and generalizes, the constrained CSS language [19],
which allows specifying linear constraint rules in addition to CSS
rules. To design for multiple-devices, each constraint may be speci-
fied for one or more breakpoints bpl. For example, ([all]n1.width >
300px) constrains the min-width of n1 to be 300px for all break-
points. Named predicates (N) allow specifying additional con-
straints: hidden(n) constraints n to be invisible, halign(n1, n2)
(valign) constrains sibling nodes n1 and n2 to be horizontally (verti-
cally) aligned.
Trees satisfying constraints. A DT T is said to satisfy a constraint
φ (denoted T |= φ) iff φ evaluates to true given the node attribute
values in T . Given constraints C, we say that T satisfies C for a
breakpoint bp (T |=bp C), iff T |= φ for each constraint of form
([.., bp, ..]φ) ∈ C. Our goal is to find all trees T |=bp C for each
breakpoint bp and allow the designer to select the desired one.

4.2 Design Fixes
A fix is the basic unit of design tree transformation. Given a DT

T = (N, ch, orn, σ), a fix may modify either (i) the set of nodes
N (insert or delete nodes), or (ii) the ordering of children ch, or (iii)
the orientation orn, or (iv) one or more attributes (height, width,

Fix Name Description Fix Description
red-margin Reduce Margin res-child Modify Children Width Ratio
red-row Reduce Rows red-col Reduce Columns
reorder-child Reorder Children nav-to-select Replace list by select
add/del-node Delete/Add Node mod-line Change line-height
mod-img Change Image Size mod-txt Change Text Properties

Table 2: List of common fixes.
margin, font-size, ...) of a node n ∈ N . Multiple fixes may be
required to repair a T , i.e., satisfy constraints C.

Table 2 shows common fixes used in responsive designs [15, 31].
For example, applying red-row fix at node n, orn(n) = (2, 2)
(2x2 grid box, cf. Sec. ??) reduces the number of rows of n,
e.g., orn′(n) = (1, 4) (1x4 grid box) whereas red-col reduces
the columns (increases rows) of n e.g., orn′(n) = (4, 1) (4x1 grid
box). Each fix targets one or more types of constraint violation
distinctly, e.g., red-margin (reduce margin values) targets the con-
straints over min-width or max-margin of elements. DT nodes are
not explicitly added/removed: their visible attribute is toggled.

DECOR takes a fix library F as input and uses fixes from F to
repair T . A combination of these fixes gives rise to popular respon-
sive patterns [15, 31]. For example, the columnflip and mondrian
patterns [31, 15] can be captured by red-col and red-row fixes. Sim-
ilarly, basic gallery, column drop or column flip patterns [15, 31],
are different instances of the red-col fix depending on the number
of elements in the grid.

Formally, a fix is a rewrite rule at a node n of T :

(n, [c1, · · · , cm], ch, orn, σ)⇒ (n, [c1, · · · , cm], ch′, orn′, σ′)

where [c1, · · · , cm]) are the child nodes of n in T and functions
ch, orn and σ (ch′, orn′, σ′) denote the children, orientation and
attributes, resp., for T before (after) transformation.

We describe the fixes red-margin and red-col informally here.
Detailed rules for fixes in Table 2 are omitted to the full version of
the paper [14]. Recall that n is rendered into 3 nested boxes: margin,
border and content boxes. The red-margin fix on n increases n’s
content box width and decreases left/right margins of n, without
changing the margin box width of n. It first computes the margin
value γ that can be deducted from n’s current margin value without
violating the min-margin constraints on n in C (if they exist). Both
left and right margins are then reduced by γ; in turn, the width of
content-box of n is increased by the total reduced margins. This
expands the contents of n (and its children) which now may satisfy
a min-width constraint. Note how a single fix may satisfy/falsify
multiple constraints (min-margin, min-width).

The red-col fix applies to most designs. Suppose n is a (k, l)-box
withm children c1, . . . , cm; red-col reduces the number of columns
l of n (increases k, in turn). Fig. 3 shows two red-col fixes applied in
sequence ((k, l) = (1, 4)→ (2, 2)→ (4, 1)) on a design extracted
from Fig. 2. The fix transforms n into a (k′, l′)-box, where the
columns l′ is the largest factor of m less than l. The new width
and margin values for children ci are as follows: (margins:) the
top (bottom) margin for each ci is set to the maximum of a pre-
defined global-min-margin value and their left (right) margin values
in previous (k, l)-box. For the new rows added to box of n, we
compute an average horizontal (left/right) margin value from the
previous left and right margin values of each child. In case the new
margin value is lower than min-margin constraint γi for ci then we
set it to γi. (widths:) For updating width of each ci, red-col uses
a simple heuristic: the margin-box width for each ci is obtained
by dividing the width of n among each child ci in a row of (k′, l′)
using their relative width ratio. This relative width ratio is computed
from ci’s width in (k, l). Finally, the width of content box of ci is
obtained by deducting already computed left/right margin values for

548

img1 img2 img3 img4

p1 p2 p3 p4

V1 V2 V3 V4

H1

img1 img2

p1 p2

V1 V2

H1

img3 img4

p3 p4

V3 V4

img1

p1

V1

H1

img2

p2

V2

Figure 3: Illustration of the 4-2-1 responsive pattern.

each ci from corresponding margin-box width. Other heuristics for
margin and width computation are also possible; after fix is applied,
the designer can further fine-tune these values.

We have designed most fixes to be local, i.e., a fix on n keeps its
margin box fixed and hence does not affect its non-subtree nodes
in the tree. In general, fixes and constraints interact in complex
ways; applying a fix may lead to satisfaction of some constraints
and violation of others. In other words, fixes may enable or disable
other fixes. Therefore, different permutations of fixes may lead to
different designs. To ensure we obtain multiple satisfying DTs, we
need to explore several permutations of multiple fixes. Because
the number of such fix sequences is huge, we introduce design tree
graphs to explore representative fix sequences systematically.

5. DESIGN TREE GRAPHS
A Design Tree Graph (DTG) G = (Q, ι,Σ, R,Ψ, T) over a

fix library F and constraints C, consists of a set of states Q, set
of initial states ι, a set of transition labels Σ, transition relation
R ⊆ Q × Σ × Q and a mapping function T (·), where T (q) is
the DT T corresponding to state q. The set Ψ ⊆ Q consists of
good states q with satisfying trees, i.e., T (q) |= C. Each transition
label g ∈ Σ is a pair g = (n, f) where n is a node in a DT and
f ∈ F . Given a state q, DT T = T (q) and label g = (n, f) where
n ∈ T (q) and f ∈ F , transition (q, g, q′) ∈ R iff applying f to
node n in T results in T ′ and T (q′) = T ′. The outgoing edges of a
state q in G represent the set of valid fixes (described below) which
may be applied to T (q). We construct a DTG separately for each
breakpoint; each initial state corresponds to a T to be repaired.

Finding responsive designs boils down to exploring paths of G
to find a good state. Alg. 1 shows the algorithm for constructing a
DTG and finding all good fix-chains, which lead to good states. For
a breakpoint bp, the algorithm starts with a satisfying tree T0 from
the previous breakpoint, shrunk to bp’s width. GETVALIDFIXES
computes the set of valid node-fix pairs Σ′ ⊂ Σ at a state q over
library F (cf. Sec. 6). Each node-fix pair in Σ′ is applied iteratively
(using procedure APPLYFIX) to obtain new tree T ′ and state q′. A
DTG G may contain cycles: the algorithm uses a state matching
criterion to detect cycles and avoid loopy fix-chains.
Example. Recall the design D for the 4-2-1 pattern shown in Fig. 3.
We now describe how EXPLOREDTG algorithm constructs the DTG
for D for stp breakpoint, shown in Fig. 4. The algorithm starts with
the initial state containing the DT T0 for D (H1 is a (1, 4)-box).
Suppose after shrinking to stp, the width of imgi in T0 violates C.
Fixing imgi directly may not be useful; instead we may need to fix
one of its ancestors. Let us define the bad nodes in a DT to be all
nodes whose some descendant violates C. Here, bad nodes in T0 are
{imgi, Vi, H1}.

Input: Breakpoint bp, Initial Design Tree T0, Constraints C, Fix Library F
Output: Set Λ of satisfying fix-chains λ

T := {(q0, T0)};R := Ψ := ∅;Q := {q0};G := (Q, q0,Σ, R,Ψ, T);
Λ := ∅ ;
EXPLOREDTG (q0, ε)

EXPLOREDTG (q, λ) // λ is current fix chain
T := T (q)
if T |=bp C) then Λ ∪ = {λ}; Ψ ∪ = {q} return
Σ′ := GETVALIDFIXES (T, F) // Σ′ is an ordered list of pairs (n, f)
if Σ′ is empty then return //Backtrack
foreach g ∈ Σ′ do

T ′ := APPLYFIX(g, T)
Create fresh q′ where T (q′) = T ′

λ′ = (λ→ g);Q ∪ = {q′};R ∪ = {(q, g, q′)}
EXPLOREDTG (q′, λ′)

Algorithm 1: Computing all satisfying fix-chains.

(H1,red-margin)

(V1,red-margin)

(V1,
red-row)red-col)

(V1,

(V2,
red-row)red-col)

(V2,(H1,
red-col)

(H1,
red-col)

(V2,red-margin)q1

q2

q3

q4

q5

q6

q7

q′3

Figure 4: A snippet of the DTG for fixing the original design
(4-columns) for 4-2-1 pattern, shown in Fig. 3.

Suppose EXPLOREDTG picks a bad node V1 to fix and applies
red-margin to V1 (state q4); still imgi is too narrow. The algorithm
continues to apply fixes red-row (which makes V1 single row and
shrinks imgi further), followed by red-col to V1. At this point,
it detects a cycle and backtracks without success. Suppose after
trying to fix V2, V3 and V4 similarly, the algorithm backtracks to q1
without success. Now EXPLOREDTG picks node H1 and applies
fix red-margin to H1 to reach another bad state q2. The red-col fix
is applied to H1, converting it to a (2, 2)-box at state q′3 (tree T ′3).
Because the image widths now satisfy C, we obtain a good fix-chain
(H1, red-margin)→(H1, red-col) for stp. The algorithm will also
find a shorter chain (H1, red-col) for stp leading to tree T3 at q3.
After finishing with stp, EXPLOREDTG computes fix-chains for the
next breakpoint mop, starting from either T3 or T ′3. A satisfying
DT for mop breakpoint is obtained by applying red-col to H1 again,
resulting in all Vi’s being aligned vertically.

EXPLOREDTG is inefficient in multiple ways. (1) The algorithm
tries to fix Vi’s unnecessarily. Although we cannot rule out fixing
Vi’s statically (red-margin may be a valid fix), we can avoid red-row
for Vi because applying red-row will not satisfy the min-width con-
straint. Similarly, we can avoid the large number of fix permutations
on Vi’s because they are tree siblings and can be fixed independent
of each other. (2) The algorithm may try to both fix Vi followed by
H1 and vice versa. In most cases, fixing nodes in the tree order (H1

followed by Vi) is sufficient. We now present a set of optimizations
to explore DTGs more efficiently.

6. EFFICIENT EXPLORATION OF DTGS
Given a tree T with N nodes and fix library F , the number of

fix-chains in the corresponding DTG is O(N ! · pN) where p =
(|F | +1). We present path-pruning heuristics to explore a small

549

Input: Design Tree T , Fix Library F ,
Constraints C
Output: Fix List Σ′

GETVALIDFIXES (T , F)
B := nodes from T violating C;G = []
SortB in decreasing tree height order
foreach n ∈ B do
F ′ := GETVALIDNODEFIXES(n, F)
Σ′ = Σ′ · [(n, f), f ∈ F ′]
return Σ′

Fix Node Properties
red-col VBox
red-row HBox or Root
red-margin No/Min. margin
nav-to-select Non-navbar
red-font No descendant

with text

(a) (b)

Figure 5: (a) The algorithm GETVALIDFIXES (b) A list of in-
valid fixes and their target node properties.

q1

q2q3

B1

B2 B3
B1

B2

B3

B1

B2 B3

Fix f1Fix f2

Fix f2

(red-margin) (red-col)

Fix f1

Figure 6: A DTS fragment illustrating dependent fixes.

representative set of fix-chains in DTG based on (i) pruning the
fixes applied to each node, and (ii) selecting the order of nodes to fix.
The latter may omit some satisfying DTs from exploration; however,
in our evaluation, no desired DTs were eliminated.
Valid and Enabled Fixes. Given a DTG state q with tree T , the set
of valid fixes at q consists of fixes which may be applied to some
node in T because their pre-condition is satisfied. In general, many
fixes are invalid, e.g., we cannot apply red-col on a VBox element,
or red-margin on a node with no margin, or reduce font on non-text
nodes. For each node n, the procedure GETVALIDNODEFIXES
computes only the valid fixes (Tab. 5) and prunes away the rest (e.g.,
red-row in Fig. 4). The procedure GETVALIDFIXES combines these
fixes for the bad nodes in T and ranks them to obtain enabled fixes
Σ′ for q.
Redundant fix pruning. We can prune the valid fix set further by
removing fixes which may not help satisfy any violated constraint
in C. We detect them by relating the constraints violated and the bad
nodes in n’s subtree as follows.

• If n is a bad node but none of descendants are bad, then
fixes red-col and red-row are redundant. This is because both
these fixes modify only n’s descendants, not n, e.g., in Fig. 3,
suppose the min-width for Vis is violated, but its children
imgi and pi are not. Applying (Vi, red-col) does not change
Vi’s width, only its children’s width.

• Applying red-col (red-row) on n is redundant if none of its
descendants is violating min-width (max-width) constraints.

• Applying red-margin if (i) max-width is violated for n, i.e.,
width(n)>max-width(n) (red-margin increases the width of
n), or, (ii) n violates its min-width constraint and maximum
margin reduction is not enough, i.e., width(n) + max-margin-
reduction(n) < min-width(n). (cf. red-margin fix).

The second optimization tries to detect equivalent fix-chains in a
DTG which correspond to re-orderings of independent fixes.
Independent Fixes. Two fixes f1 and f2 on nodes n1 and n2,
respectively, are said to be independent if (i) applying one fix does
not disable the other, and (ii) the T ′ obtained after applying both f1
and f2 does not depend on the order in which the fixes are applied,

i.e., the fixes commute. The notion of independence allows us to
explore only the representative fix-chains of enabled fixes. Most
fixes in Table 2 commute with each other, leading to the same DT
irrespective of the application order. However, depending on the
given constraints, fixes may disable each other. Fig. 6 illustrates a
portion of the DTS for a design with three boxes B1, B2 and B3.
In the initial state q1, the min-width criteria for both B2 and B3

is violated, i.e., bad nodes are {B1, B2, B3}. There are two ways
to fix it: by applying fix f1 (red-col) on B1 or by applying fix f2
(red-margin) on B2 and B3. The two fixes are dependent on each
other: applying f1 leads to q2, with no bad nodes and hence f2 is
disabled. Similarly, applying f2 at q1 disables f1 in q3.

Fixes which only affect the subtree of the target node cannot
disable each other because they apply to non-overlapping subtrees,
e.g., in Fig. 4, fixes red-margin, red-row and red-col can be applied
to each of the nodes V1, V2, V3 and V4 and are independent of each
other. For example, the fix-pair (V2, red-margin) enabled at state q1,
remains enabled at q4 and q5, after applying fixes to V1. Efficient
exploration of graphs with dependent transitions is a hard problem:
several generic partial-order reduction methods [25, 22, 23] for
program state space exploration have been developed. We extend
these methods to our problem by exploiting the fact that states in a
DTG correspond to trees.
Pre-order Fix Chains. A pre-order linearization, pre(T) of a DT
T is a node sequence obtained by traversing T in pre-order. Because
DTs are ordered, a unique linearization, p̂re(T), exists for each DT
T . Given a fix chain s = (n1, f1), · · · , (nk, fk), we define the
node-projection of s, s ↓, as the sequence n′1, n′2, · · ·n′l such that
(i) n1 = n′1 and nk = n′l, (ii) s ↓ preserves the node order of s and
does not stutter, i.e., for all 1 ≤ i < k, n′i 6= n′i+1. A fix chain s
over T is said to be pre-order iff s ↓ is a sub-sequence of p̂re(T).
For example, in Fig. 3, the fix-chains [(H1, red-margin), (H1, red-
col), (V1, red-margin)] and [(V1,red-margin), (V2,red-margin)] are
pre-order but [(V1, red-margin), (H1, red-col)] is not.

We observed that fixes on higher tree nodes affect a large number
of nodes and few such fixes (in contrast to lower node fixes) are
sufficient to yield most desired DTGs. Pre-order fix chains are
biased towards such fixes; fixes are applied on the parent node first,
followed by children. Also, pre-order fix chains process siblings in
a fixed order, allowing us to avoid permutations of independent fixes
and narrow the search space. We therefore constrain EXPLOREDTG
to search only for pre-order fixes by checking on-the-fly if the current
fix-chain is a sub-sequence of the DT linearization. Given a tree T
with N bad nodes, number of sub-sequences of pre(T) is O(N ·p!)
where p =|F | +1. Although still large, this bound is significantly
lower than the earlier bound O(N ! · pN).
Ranking Fix Sequences. DECOR ranks the obtained fix chains Λ
(Alg. 1) as follows. Shorter fix-chains are ranked higher than longer
ones. For fix-chain s and s′ of equal length, s is ranked higher if
between nodes ni and n′i at ith index, resp., ni has a higher tree
height than n′i. We can also shorten fix-chains to remove irrelevant
fixes before ranking them (cf. Sec. 7).
7. IMPLEMENTATION AND EVALUATION

We implemented DECOR as a plugin to Maqetta [11], an open-
source WYSIWYG editor, which allows creating designs by drag-
drop and then specifying CSS properties. The plugin extracts the
design as a JSON file and sends it to a backend server (node.js [13]
application), which provides responsive design suggestions. The
backend takes in user-specified constraints and breakpoints also in
JSON format. We run a simple checker to identify any inconsistency
in the input constraints before running DECOR, e.g., min-width is
higher than the max-width constraint for an element.

DECOR can operate in two modes - default and interactive. In

550

the default mode, DECOR is fully automated: it finds all possible fix
chains for each breakpoint, ranks them, applies the highest ranked
fix-chain to get the repaired design for that breakpoint and proceeds
to the next smaller breakpoint. In the interactive mode, user shrinks
the design up to a certain breakpoint, identifies constraint violations,
adds new constraints and invokes DECOR to get recommendations.
She can add/remove/update constraints and run DECOR again to
get a different set of recommendations. Finally, the set of obtained
design trees, one for each breakpoint, are encoded into a pair of
HTML and CSS files using the technique in [33]: each tree is
encoded into CSS rules separately and then combined using media-
queries [12]. If multiple recommendations exist, each of them gets
its own CSS file. DECOR is 15K lines of JavaScript code (around
6K lines for repair computation).

We evaluate DECOR from two different perspectives. (Q1) What
are the characteristics of recommended fix-chains and how effective
are the pruning strategies (cf. Sec. 6) ? (Q2) To test the overall
usability of the tool, understand the benefits and drawbacks of the
proposed approach. For the first part, we ran DECOR in default
mode and thoroughly study the recommended fix chains and com-
putation times. For the second part of evaluation we conduct a
preliminary user study of the tool in the interactive mode.
Benchmarks. No standardized set of benchmarks for responsive
designs exist. However, several online resources point to the popular
responsive patterns and web-sites implementing them, e.g., Neil’s
slides [15] and the Marcotte’s book [31] provide a comprehensive
overview of responsive design patterns. From these references, we
selected web-sites which implement the popular responsive patterns,
e.g., column-drop, column-flip, feature-items, feature-shuffle, mostly-
fluid, mondrian, tiny-tweak, layout-shifter, gallery, top-nav etc. [15]
All these transformations can be obtained using the set of fixes
implemented in DECOR. We created two sets of benchmarks: (a)
synthetic designs with few boxes, each of which demonstrates one or
two responsive behaviors, and (b) real-world designs. For the latter,
we selected 7 web-sites (Table 3) having multiple responsive patterns
and created mockups in Maqetta faithful to the original web-sites:
we ignored some style annotations and few elements irrelevant to
the responsive behavior. Table 4 shows the benchmarks (synthetic
followed by real). In total we used 20 mockups for evaluating
DECOR in the default mode. Drawing each initial design took about
1-2 hours. All mockups are drawn originally for desktop width
(1400px).
Defining Constraints. For the first part of evaluation, we defined
constraints on properties, e.g., width and margin, for each bad UI
element. Most constraints relate to min/max width or margins of el-
ements and apply to all breakpoints. Breakpoint-specific constraints
are only a few (5%): those for hiding an element and fixing its font-
size. To specify constraints for a breakpoint, we shrink the browser
size to the breakpoint and obtain, say, the current width for a bad
element or its parent. Next, we add constraints to allow DECOR to
provide recommendations which mimic original design transitions.
Constraint specification for synthetic designs to obtain desired be-
haviors was easy. However, constraints for the real designs to mimic

Mockup Name URL
overview http://foodsense.is
portfolio http://www.bradsawicki.com
five-steps http://www.fivesimplesteps.com/
orestis http://www.orestis.nl
modernizr http://modernizr.com/
palantir http://palantir.net
trent-walton http://trentwalton.com/

Table 3: Sources of real responsive pages in benchmarks.

original behaviors required a few iterations to get right. Specifying
constraints for real benchmarks took 3mins (five-steps, portfolio,
palantir) to 10mins (modernizr, overview).

7.1 Tool Performance
We implemented the following fixes in DECOR: red-col, red-

margin, red-row, hide-node, mod-nav, mod-text, and mod-line-height
(cf. Table 2). We conducted all experiments in default mode on
a Mac Snow Leopard with 2.3 GHz Intel Core i5 processor and
4GB memory. To gain insight into the running times, fix-chain
characteristics and effect of optimizations, we implemented three
exploration modes in DECOR.

• Dynamic Depth limit (DDL): Once DECOR finds a fix-chain
of length l, it restricts its search to all fix chains of depth l.
This mode finds at least one fix-chain, if it exists, and then
does not waste time searching for longer chains.

• Bounded exploration: Given a particular bound l, DECOR
restricts its search to all fix-chains of length less than l in
DTG. Multiple bounds are evaluated. In contrast to DDL
mode, a fix-chain may not be found if l is too small.

• Lazy mode: Here, DECOR stops after finding single fix-chain
(as opposed to earlier modes), which is minimized by greedily
removing fixes (in no particular order) and checking if the
remaining chain repairs the tree. This mode aims at finding a
single, short fix-chain quickly.

The number of UI elements (boxes) vary between 7 to 109, and
the tree height between 2 and 6, the number of constraints between 2
to 21 in the benchmarks. Table 4 shows the results on 20 benchmarks
with the DDL mode for each of the 3 breakpoints. For each break-
point, the number of bad nodes and fix-chains (recommendations)
found, the lengths of fix-chains and the time is shown. Although the
number of bad nodes (cf. Sec. 5) is large in many designs, a short
fix-chain is sufficient, e.g., for portfolio, the number of bad nodes
is 19 in stp breakpoint but requires a fix-chain only of length 2 to
repair it. Note that it may be hard for the designer to figure this out
manually: she may perform too many unnecessary fixes for the bad
nodes before realizing that a shorter fix exists. For real benchmarks,
most fix-chains have length 2− 6 except for stp, e.g., 11− 13 for
modernizr. This is because the same fix red-margin is applied on 6
similar images in modernizr.

The ranking heuristics in DECOR perform well on most real
designs in mimicking the original design transitions accurately.
DECOR finds fix-chains that mimic the behavior of all real bench-
marks among five top-ranked recommendations: for all benchmarks
except five-steps (rank 2) and portfolio (rank 4), the top recom-
mendation matched the real behavior. In five-steps and portfolio,
DECOR finds a shorter fix-chain satisfying constraints than the one
that captures the real behavior and ranks it higher.

Overall, DECOR successfully computes multiple possible fix-
chains for multiple breakpoints on realistic mockups with 100
elements, within 30 seconds. Thus, it can be used interactively to
perform multiple design updates. DECOR owes its performance
to a series of optimizations discussed earlier (Sec. 6). Across all
benchmarks, the maximum memory used by DECOR is < 100 MB.

Table 4 shows that with a small set of constraints we are able
to infer realistic fix-chains. For benchmarks portfolio, modern-
izr, palantir, the number of constraints required is larger (>10);
however, this is because of multiple similar elements: the unique
constraints here are 5, 10, and 7 respectively.
Effect of Optimizations. We show the effect of optimizations (cf.
Sec. 6) on a selected set of 4 real benchmarks (other benchmarks

551

Tablet (width 1024px) Small tablet portrait (stp, width 600px) Mobile portrait (mop, width 300px)
Nodes / # Constraints/ # Bad # Fix Chain Len. # Bad # Fix Chain len. # Bad # Fix Chain len. Total

Mockup Height # C-nodes node Chain Min/ Max/ Avg Time node chain Min/Max/Avg Time node chain Min/Max/Avg Time Time
mostly-fluid 12/3 3/3 1 1 1/1/1 0.105 0 3 N/A 0.033 8 2 1/2/1.5 0.206 0.353
column-drop 11/3 2/2 1 1 1/1/1 0.092 4 2 1/2/1.5 0.201 4 2 1/2/1.5 0.187 0.488
tiny-tweak 11/3 3/3 1 1 1/1/1 0.09 4 1 1/1/1 0.093 6 2 1/2/1.5 0.216 0.406
mondrian 7/2 7/4 4 1 1/1/1 0.146 6 2 2/3/2.5 0.188 7 4 2/4/3 0.197 0.562

gallery 11/3 6/6 1 1 1/1/1 0.098 8 2 1/2/1.5 0.146 8 2 1/2/1.5 0.165 0.416
featured-items 15/3 4/4 0 3 N/A 0.078 10 4 1/3/2 0.323 10 4 1/3/2 0.475 0.888

top-nav 19/3 5/5 2 4 1/2/1.5 0.279 10 4 1/3/2 0.482 10 4 1/3/2 0.713 1.483
nav-bar 19/3 5/5 2 4 1/2/1.5 0.277 10 4 1/3/2 0.464 11 7 2/4/3.29 1.177 1.926
hide-3 8/2 6/4 4 1 1/1/1 0.112 5 2 3/4/3.5 0.14 7 4 2/4/3 0.215 0.475
hide-p 11/3 2/2 1 1 1/1/1 0.103 7 1 1/1/1 0.059 6 2 1/2/1.5 0.173 0.345
hide-h 11/3 3/3 2 1 1/1/1 0.113 7 2 2/3/2.5 0.216 2 1 1/1/1 0.073 0.412

hide-n-font 11/3 3/3 1 1 1/1/1 0.09 4 1 1/1/1 0.091 0 3 N/A 0.035 0.223
rpe-mockup 35/5 4/4 5 1 1/1/1 0.166 5 4 2/4/3 0.558 0 3 N/A 0.06 0.794

overview 69/5 9/8 6 2 4/5/4.5 3.462 10 5 3/5/4.2 5.928 11 4 3/5/4 12.402 21.888
portfolio 31/3 16/15 4 1 1/1/1 0.351 19 2 2/3/2.5 0.847 17 2 2/3/2.5 0.64 1.845
five-steps 95/6 8/8 12 6 2/3/2.5 5.926 12 24 3/7/4.83 17.737 5 4 2/4/3 4.067 27.738

orestis 109/6 10/10 1 1 1/1/1 1.021 9 16 5/9/7 22.389 10 1 4/4/4 1.841 25.258
modernizr 62/5 21/16 8 8 3/5/4 5.037 16 4 11/13/12 7.748 19 2 6/7/6.5 3.193 15.986

palantir 62/4 11/8 3 2 2/3/2.5 0.964 11 12 4/8/6 12.975 10 4 5/7/6 2.478 16.428
trent-walton 27/4 5/4 0 3 N/A 0.09 16 1 12/12/12 0.979 12 1 8/8/8 1.254 2.33

Table 4: Fix data for all benchmarks in DDL mode with all optimizations applied. All times in seconds. Column #C-nodes denotes
the number of constrained nodes. 3denotes that the design satisfies constraints and no fix is needed.

show similar results) in Fig. 7(a). Basic column corresponds to
applying hide-node, mod-text fixes initially followed by full DTG
exploration. Basic + preorder corresponds to searching only for
pre-order fix chains (Sec. 6). Basic+rfp stands for combining basic
mode with redundant fix pruning (rfp). Basic+ preorder + rfp stands
for combining all above optimizations, but allowing permutations
of fixes on same node. All column combines all optimization heuris-
tics, i.e., basic, preorder fix-chains, pruning redundant fixes and
eliminating fix permutations on a node. The results show that pre-
order fix-chains and rfp provide the most significant improvement
in run-times. For small benchmarks, the effect of optimizations is
not significant but they are essential for real benchmarks: running
overview example with only basic optimization applied took more
than 3 hours for one breakpoint (stp), whereas it came down to
almost 30s after applying all optimizations.

Figure 7(b) shows the correlation of enabled fixes and run-time
for overview benchmark. We observe that the runtime of DECOR
increases linearly with the number of fixes enabled; optimizations
are able to reduce this value, thus leading to improved performance.
Also observe that preorder fix-chains have a drastic effect in reducing
the number of enabled fixes, from tens of thousands to less than
500; rfp brings it down further. Finally, combining all optimizations
reduces enabled actions to only 128.
Lazy mode. Fig. 7(c) compares the runtime of DDL (find all fix-
chains) and Lazy (find one fix-chain) modes, with all other pruning
optimizations. In most cases, the top-ranked fix-chain in DDL and
the one found by the Lazy mode are of equal lengths. In general,
the Lazy mode returns the first fix much sooner than the DDL mode.
However, for some examples the Lazy mode takes longer: if a fix-
chain is long and has no redundant fix, the minimization time in
Lazy mode outweighs the benefit of searching for only one fix chain.
Although DDL does not minimize fix-chains explicitly, it explores
multiple fix-chains and hence can find short chains also.
Limitations. The current version of DECOR requires users to spec-
ify constraints on individual nodes, not groups. DECOR cannot
extract design trees from existing designs currently. We therefore
specify original designs in Maqetta [11] WYSIWYG editor, which
is time-consuming and laborious. We plan to handle legacy designs
in future. Better support for visualizing the interaction of constraints
with fixes is needed for a better debugging experience. Finally,

DECOR is restricted to its fix library and chosen responsive patterns
during recommendation. While we support the common fix actions,
others are not implemented yet, in particular, those for changing
order of elements and navigation patterns which require complex
JavaScript interaction.

7.2 Preliminary User Study
We conducted a preliminary study to gauge the manual effort

in DECOR and compare with Adobe Edge Reflow (AER) [2], a
commercial tool, which enables creating designs for multiple break-
points by direct manipulation. We created a web UI to specify
constraints (in JSON format), run DECOR on various benchmarks
and view recommendations. We chose 3 participants (1 female,
mean age=26.33, sd=2.52) with minimal expertise in UI program-
ming, i.e., who are familiar with HTML/CSS based design using
WYSIWYG editors but are unfamiliar with responsive design.

The study was conducted in two phases. First, the participants
were given a tutorial on both AER (using web site [2] tutorials) and
DECOR (drawing mockups in Maqetta with direct manipulation,
writing constraints in JSON format, and using browser tools to in-
spect output design features). This was followed by a walk-through
of DECOR on the overview benchmark: drawing mockup, setting
constraints and viewing recommendations. The effect of various
fixes and interaction between constraints and fixes was explained.
The participants could modify the constraints iteratively via the UI,
run DECOR and inspect changes in recommended designs.

In the second phase, we asked the participants to create respon-
sive UIs from an initial design for 3 breakpoints using both AER
and DECOR, in their preferred order. We chose 3 UIs: nav-bar
(simple), portfolio (slightly complex) and modernizr (complex).
Here, complexity is measured using the number of UI elements,
responsive transitions and the number of constraints. At the end
of the task, the participants were asked to answer an evaluation
questionnaire set. The questions included rating the difficulty in
adding constraints and comparison of design effort with DECOR as
opposed to AER. To complete the tasks, the participants take about
10 minutes with DECOR and about 20 minutes with AER. The user
feedback suggested the following benefits of DECOR over AER.
Repeated manual effort. In AER, the participants had to manually
rearrange UI elements for each breakpoint. In contrast, constraints
on elements in DECOR trigger responsive behavior directly. For

552

(a) (b) (c)

Figure 7: (a) Effect of optimizations on runtime. (b) Effect of number of enabled actions on runtime for overview benchmark (c)
Runtime for benchmarks in DDL and lazy modes (all optimizations enabled). Column ’X’ denotes a timeout (5min).

example, in the modernizr benchmark, the team images are arranged
in 2x3 grid initially. Each time a user tries to modify the grid layout
in AER for lower breakpoints, say to 3x2 or 6x1, she has to resize
and rearrange each of the images. On the other hand in DECOR,
the same constraint, e.g., min-width of an image, triggers layout
grid changes for all the breakpoints. Similarly, in portfolio, the grid
contains 12 elements and for each breakpoint, all of them either have
to be relocated, resized or the corresponding CSS property updated
carefully in AER. In DECOR, the constraints for one element in the
grid can be quickly copied to other siblings. Moreover, specifying
constraints on only a subset of elements is often sufficient to obtain
the desired responsive behavior.
Useful Recommendations. In contrast to DECOR, AER provides
no recommendations. The designer bears the onus of choosing
the right responsive patterns in AER, requiring deep knowledge
of responsive designs, e.g., in the nav-bar benchmark (arranged
as a single row grid in the tablet breakpoint), DECOR gave two
recommendations for mop: replace it by select, or reduce the number
of columns and place the navigation anchors in different rows. One
of the participants did not think of the select option with AER and
found the suggestion by DECOR very helpful.
Avoid Trial and Error. Lack of recommendations in AER forced
the participants to try out and undo different design changes one-by-
one, which was time-consuming. For nav-bar, a participant tried to
rearrange the elements in top navbar in different ways, in a single
column or multiple rows and finally replaced them with a select
menu. In contrast, in DECOR, she specified only the min-width con-
straint and obtained all the three recommendations within a minute.
Participant answered that even if each constraint corresponds to
a single fix, it is easier in many cases to specify constraints than
guessing the correct element to fix manually.

Participants remarked that AER’s superior direct manipulation
features (compared to Maqetta) allowed them to create initial de-
signs faster. We also received multiple feature requests for DECOR:
ability to specify non-numerical constraints (too narrow or wide),
constraints on multiple elements simultaneously, tool recommenda-
tions to hide elements. We plan to incorporate these requests in the
tool and conduct a user study over a bigger participant set in future.
Although thinking in terms of constraints required more work for
simple designs, participants were quite enthusiastic about using
DECOR as the design complexity increased. In summary, the partic-
ipants found DECOR’s approach of using constraints and providing
design recommendations more appealing than direct manipulation
based design in AER.

8. RELATED WORK
Constraints are widely used for macro-typography (see [27, 35]

for a detailed survey) to specify UI object sizes and relative align-
ment [21, 18, 24]. Constraints are central to iOS (Auto Layouts) [10],
which also allows visual constraints. However, these systems as-

sume a dedicated layout engine: the solver computes the exact pixel
locations of elements for a particular viewport, which is used on-
the-fly by the renderer. Further (cf. Sec. 1) these systems search
over a narrow design space: fixes proposed by the solver can re-size
(shrink, expand) boxes but not re-arrange them. Annotation-based
libraries, e.g., Bootstrap [7], Zurb foundation [17], have a steep
learning curve and require deep HTML/CSS expertise [30, 33] to
map arbitrary designs to the framework-specific annotations.

Recent work investigates specifying constraints by direct ma-
nipulation [35, 26]. None of these tools provide multiple design
recommendations: [35] provides conflict explanations, but each
explanation may correspond to multiple fixes leading to several
possible designs. Remorph [20] retargets existing web pages by
shrinking element widths based on viewport without user-specified
constraints: this may result in too-wide elements and unaesthetic
designs. Bricolage [29] is a machine learning based approach to
retargeting based on a web-based corpus of designs.

In contrast, we perform constraint-based design tree repair and
provide a small set of recommendations via a set of novel design-
space pruning and ranking techniques. We avoid a fully symbolic
encoding, as the latter requires logical axiomatization of trees (with
quantifiers), making implementing optimizations and browser-based
deployment much more complex. Encoding the solution DTs as a
HTML/CSS file [33] along with media-queries allows us to employ
the off-the-shelf, heavily optimized rendering engines of browsers
to parse and render HTML/CSS for responsive behavior. Adaptive
document layout techniques were presented in [32] based on solving
constraints over user-specified layout templates and a dedicated ren-
dering engine. In contrast, we target HTML/CSS designs based on
nested box layouts (designer only specifies constraints on elements
not templates) and exploit off-the-shelf renderers. Another option
is to use JavaScript for on-the-fly layout computation in browser;
however, this overloads the mobile devices unnecessarily and also
fails to exploit the native optimized renderer.

9. CONCLUSIONS
We presented a systematic approach for inferring multi-device

responsive designs from a given UI design and user-specified con-
straints. Our tool DECOR assists the designer by providing design
recommendations interactively. DECOR aims at improving the pro-
ductivity of experienced designers for creating responsive designs as
well as reducing the learning curve for HTML/CSS and responsive
designs for unskilled designers. DECOR is able to provide realistic
list of recommendations in a short time for real-life designs. We
plan to add constraints for multiple elements, e.g., by direct manipu-
lation, and improve debugging experience. Other planned features
include adding inverse fixes from lower to higher breakpoints, and
fixes which adapt image resolution to devices.

553

References
[1] Adobe Dreamweaver CS6. http://www.adobe.com/

products/dreamweaver.html.

[2] Adobe edge reflow cc. http://html.adobe.com/edge/
reflow/.

[3] Balsamiq. http://www.balsamiq.com/.

[4] Cascading Style Sheets Level 2 Revision 1 (css 2.1) Specification.
http://www.w3.org/TR/CSS21/.

[5] CSS flexible box layout module. http://www.w3.org/TR/
css3-flexbox/.

[6] Food sense website. http://foodsense.is/.

[7] Get bootstrap. http://getbootstrap.com/css/.

[8] Html5. http://www.w3.org/TR/html5/.

[9] Interactive wireframe software and mockup tool. http://www.
axure.com/.

[10] iOS Auto Layouts. https://developer.apple.com/
library/ios/documentation/UserExperience/
Conceptual/AutolayoutPG/Introduction/
Introduction.html.

[11] Maqetta. http://maqetta.org/.

[12] Media queries, Mozilla MDN. https://developer.mozilla.
org/en-US/docs/Web/Guide/CSS/Media_queries.

[13] node.js. http://nodejs.org/.

[14] Responsive designs in a snap (full version). http:
//researcher.watson.ibm.com/researcher/files/
in-nishant.sinha/responsive.pdf.

[15] Theresa Neil: Mobile design strategic solution.
http://www.slideshare.net/theresaneil/
mobile-design-strategic-solutions/.

[16] Why 2013 is the year of responsive web design. http://mashable.
com/2012/12/11/responsive-web-design/.

[17] Zurb foundation. http://foundation.zurb.com/.

[18] G. J. Badros, A. Borning, and P. J. Stuckey. The cassowary linear
arithmetic constraint solving algorithm. ACM Trans. Comput.-Hum.
Interact., 8(4):267–306, December 2001.

[19] Greg J. Badros, Alan Borning, Kim Marriott, and Peter Stuckey. Con-
straint cascading style sheets for the web. UIST ’99, pages 73–82,
1999.

[20] G. L. Bernstein and S. Klemmer. Towards responsive retargeting of
existing websites. UIST’14 Adjunct.

[21] A. Borning, B. N. Freeman-Benson, and M. Wilson. Constraint hierar-
chies. In Over-Constrained Systems, pages 23–62, 1995.

[22] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press.

[23] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In POPL, pages 110–121, 2005.

[24] K. Z. Gajos, D. S. Weld, and J. O. Wobbrock. Automatically generating
personalized user interfaces with supple. Artif. Intell., 174(12-13):910–
950, 2010.

[25] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Springer-
Verlag, Secaucus, NJ, USA, 1996.

[26] T. Hottelier, R. Bodik, and K. Ryokai. Programming by manipulation
for layout. In UIST, 2014.

[27] N. Hurst, W. Li, and K. Marriott. Review of automatic document
formatting. In Proceedings of the 9th ACM symposium on Document
engineering, DocEng ’09, pages 99–108, 2009.

[28] P. M. Marden Jr. and E. V. Munson. Today’s style sheet standards: The
great vision blinded. IEEE Computer, 32(11):123–125, 1999.

[29] R. Kumar, J. O. Talton, S. Ahmad, and S. R. Klemmer. Bricolage:
example-based retargeting for web design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’11, pages 2197–2206, 2011.

[30] H. W. Lie. Cascading style sheets. PhD thesis, University of Oslo,
February 2006.

[31] E. Marcotte. Responsive Web Design. A Book Apart, 2011.

[32] E. Schrier, M. Dontcheva, C. Jacobs, G. Wade, and D. Salesin. Adap-
tive layout for dynamically aggregated documents. In IUI, pages
99–108, 2008.

[33] N. Sinha and R. Karim. Compiling mockups to flexible uis. In ESEC-
FSE, 2013.

[34] L. Wroblewski. Mobile First. A Book Apart, 2011.

[35] Clemens Zeidler, Christof Lutteroth, Wolfgang Sturzlinger, and Gerald
Weber. The auckland layout editor: An improved gui layout specifica-
tion process. UIST ’13, 2013.

554

