
Clone-Based and Interactive Recommendation for
Modifying Pasted Code

Yun Lin
12

, Xin Peng
12

, Zhenchang Xing
3

, Diwen Zheng
12

, and Wenyun Zhao
12

1School of Computer Science, Fudan University, China
2Shanghai Key Laboratory of Data Science, Fudan University, China

3School of Computer Engineering, Nanyang Technological University, Singapore

ABSTRACT
Developers often need to modify pasted code when programming
with copy-and-paste practice. Some modifications on pasted code
could involve lots of editing efforts, and any missing or wrong edit
could incur bugs. In this paper, we propose a clone-based and
interactive approach to recommending where and how to modify
the pasted code. In our approach, we regard clones of the pasted
code as the results of historical copy-and-paste operations and their
differences as historical modifications on the same piece of code.
Our approach first retrieves clones of the pasted code from a clone
repository and detects syntactically complete differences among
them. Then our approach transfers each clone difference into a
modification slot on the pasted code, suggests options for each
slot, and further mines modifying regulations from the clone dif-
ferences. Based on the mined modifying regulations, our approach
dynamically updates the suggested options and their ranking in
each slot according to developer’s modifications on the pasted code.
We implement a proof-of-concept tool CCDemon based on our ap-
proach and evaluate its effectiveness based on code clones detected
from five open source projects. The results show that our approach
can identify 96.9% of the to-be-modified positions in pasted code
and suggest 75.0% of the required modifications. Our human study
further confirms that CCDemon can help developers to accomplish
their modifications of pasted code more efficiently.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Maintenance

General Terms
Algorithms, Human Factors

Keywords
copy and paste, code clone, recommendation, differencing, reuse

1. INTRODUCTION
Researchers have shown that cloned code takes up 5%∼20% of

the code base in both open source and industrial systems [17, 28].

It indicates that copy-and-paste operation is developers’ common
programming practice. Although copy-and-paste practice seems to
be harmful [3, 21, 22, 27], researchers have shown its legitimacy in
many cases [5, 13, 15, 16, 35]. Contrary to the conceived reason of
laziness, developers usually copy code out of language limitation,
delayed code refactoring, or even design decision [15]. Thus, in
many cases, copy-and-paste operation is regarded as an efficient
and practical way of code reuse.

Developers usually need to modify pasted code to meet their
needs [26]. Some modifications on pasted code could involve lots
of editing efforts, and any missing or wrong edit could incur bugs.
Techniques [7, 12] have been proposed to assist developers in quick-
fixing syntax errors or consistently renaming variables in pasted
code. However, what developers need to modify is often beyond
fixing syntax errors or renaming variables. Kerr et al. [14] pro-
posed some heuristic rules to summarize relations between copied
code and its context, which can be used to suggest modifications
on pasted code. Although potentially useful, the proposed heuris-
tic rules were not systematically evaluated. Furthermore, manually
enumerating and maintaining heuristic rules incurs extra efforts.
Meng et al. [23] proposed a technique to learn editing scripts from
code change examples for modifying similar code systematically.
Their technique requires code change history recorded in version
control systems, which is usually unavailable in cloning practice
because developers’ copy-paste-modify operations will rarely be
recorded in separate revisions. To the best of our knowledge, ex-
isting techniques can only support copy-past-modify practice in a
limited way.

In this paper, we propose a clone-based and interactive approach
to recommending where and how to modify pasted code. In our ap-
proach, we regard existing clones of a pasted code as the results of
historical copy-and-paste operations, and clone differences as his-
torical modifications on the same piece of code. We first search
clones of the pasted code in a clone repository and detect syntacti-
cally complete differences among code clones. Then, we transfer
each clone difference into a slot on the pasted code with a list of
suggested options (i.e., code modifications). We further mine two
types of implicit modifying regulations from clones. First, we infer
naming rules that require consistent modifications of several corre-
lated slots and context. Second, we infer the likelihood to select an
option under different conditions. Based on these regulations, the
suggested options in each slot are dynamically adjusted during the
process of developers’ modification on the pasted code.

We implement our approach as an Eclipse plugin named CCDe-
mon (Code Cloning Demon) and evaluate it based on code clones
detected from five open source projects. The results show that 1)
the copy-and-paste scenarios when our technique is applicable, i.e.,
when the pasted code has clones with differences, can happen with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786871

520

Table 1: Cloned Code Samples� �
0 class JavaxDOMOutput
1 implements DOMOutput{
2 private XMLElement current ;
3 . . .
4 public void addAttribute (double value){
5 String s t r = Double . toString (value) ;
6 parseDoubleElement(s t r) ;
7 ((Element)current) . setAttr ibute (s t r) ;

8
9 double v = transLog (value) ;

10 LoggerUtil .
11 logAddDoubleAttr(v ,
12 JDOM. class) ;
13 }
14 }

�� �

� �
class NanoXMLDOMOutput

implements DOMOutput{
private XMLElement current ;
. . .
public void addAttribute (double value){

String s t r = Double . toString (value) ;
parseDoubleElement(s t r) ;
current . setAttr ibute (s t r) ;
String msg = ExecHandler.check(current);
double v = transLog (value) ;
LoggerUtil .

logAddDoubleAttr(v ,
MicroDOM. class, msg) ;

}
}

�� �

� �
class NanoXMLLiteDOMOutput

implements DOMOutput{
private XMLElement current ;
. . .
public void addAttribute (f loat value){

String s t r = Float . toString (value) ;
parseFloatElement (s t r) ;
current . setAttr ibute (s t r) ;
String msg = ExecHandler.check(current);
float v = transLog (value) ;
LoggerUtil .

logAddFloatAttr (v ,
LesDOM. class, msg) ;

}
}

�� �

considerable likelihood (the likelihood is 29.8%); and 2) our ap-
proach can identify 96.9% of the to-be-modified positions in pasted
cloned code and suggest 75.0% of the required modifications. In
addition, our human study with two groups of students further con-
firms that CCDemon can help developers to accomplish their mod-
ifications of pasted code more efficiently.

This paper makes the following contributions:

• We design a new clone differencing algorithm, which can de-
tect syntactically complete differences among multiple code
clones.

• We propose an accurate and scalable approach to recom-
mending modifications on pasted cloned code.

• We develop a proof-of-concept tool, CCDemon, for the prac-
tical use of our recommendation approach.

• We evaluate both our approach and tool and the results show
that our approach is accurate and useful in practice.

The rest of the paper is structured as follows. Section 2 presents
a motivating example of our work. Section 3 describes our ap-
proach. Section 4 presents the implementation of CCDemon. Sec-
tion 5 evaluates the effectiveness of our approach with an automatic
experiment. Section 6 evaluates the usefulness of CCDemon with a
human study. Section 7 reviews related work. Section 8 discusses
related issues and concludes the paper.

2. MOTIVATING EXAMPLE
Table 2 shows a scenario where a developer needs to add a new

feature by referencing existing code in a drawing application. The
application can output user’s drawn graph into a XML file in dif-
ferent ways. As shown in Table 1, different ways for outputting
graph have been realized in several Java classes implementing DO-
MOutput interface. As the developer is not privileged to refactor
existing code (a common constraint in industrial settings), he needs
to develop a new DOMOutput implementation class (e.g., the Cus-
DOMOutput class in Table 2), when he wants to output the graph
in a new way. In such case, he can reuse existing implementations
in code base. For example, he can copy the addAttribute() method
from one of the existing DOMOutput classes shown in Table 1,
paste it in the implementation of the CusDOMOutput class (e.g.,
line 3 of Table 2), and modify the copied code by his needs.

Table 2: A Code Cloning Scenario
0 class CusDOMOutput implements DOMOutput{
1 private XMLElement element ;
2 . . .
3 / / code is to be pasted here
4 }

In this case, the developer is very prone to missing some impor-
tant modifications or even introducing bugs. Assume that the de-

veloper copies and pastes the addAttribute() of the class JavaDO-
MOutput in Table 1 without being aware of the other two classes,
the following scenarios are likely to happen. First, some impor-
tant programming conventions may be overlooked. For example,
when the developer wants to adapt the parameter type from dou-
ble (line 4) to float or long, he needs to change the Double (line
5), parseDoubleElement (line 6), double (line 9) and logAddDou-
bleAttr (line 11) accordingly. Any miss of the relevant changes
can cause bugs. Second, some alternative implementations could
be missed. For example, the developer will be unaware of invok-
ing the check() method of the ExecHandler class, i.e., “String msg
= ExecHandler.check(current)” at the line 8 of the addAttribute()
method of the NanoXMLDOMOutput and NanoXMLLiteDOMOut-
put classes. This is an important method call if the developer wants
to check and log the status message of the current element. Third,
some implicit application-specific rules could be missed. Table 1
indicates that the different addAttribute() methods should use dif-
ferent class literals sharing same super class, e.g., JDOM, Micro-
DOM and LesDOM, when invoking the logging method of the Log-
gerUtil class (line 12). Thus, the developer may need to modify the
pasted code with an existing new different class literal sharing same
super class, e.g., CusDOM in this case.

To avoid the above mistakes, the developer must be aware of the
differences among the existing similar implementations of the ad-
dAttribute() method being copied. Table 1 highlights all the differ-
ences among the three addAttribute() methods. The inferred pro-
gramming conventions and rules are summarized as follows.

• The parameter type of the addAttribute() method is strongly
correlated to several statements in the method, e.g., the dou-
ble type corresponds to the “Double” or “double” component
in the Double in line 5, the parseDoubleElement in line 6, the
double type in line 9, and the logAddDoubleAttr in line 11.

• When invoking the setAttribute() method in line 7 on the cur-
rent element, the variable current can be optionally cast to
the Element type.

• The statement “String msg = ExecHandler.check(current)”
in line 8 can be optionally executed.

• When the optional statement in line 8 exists, the logging
method (line 11) will be invoked with an additional parame-
ter msg (line 12).

• The addAttribute() method in different DOMOutput class may
use different class literal respectively (e.g., JDOM, Micro-
DOM and LesDOM in line 12).

To generate the above summarization of programming conven-
tions and rules, the developer must: 1) identify all the differences
among the three addAttribute() methods in Table 1; 2) compare all
the possible associations among these differences and context; and

521

3) infer all the potential naming rules that summarize the correla-
tions of different places. Clearly, manually performing the above
steps is not only time-consuming but also mentally challenging.

In this paper, we propose a clone-based and interactive approach
to addressing the above issues. In our approach, we use available
clone information to identify the slots potentially to be modified
in pasted code, and infer some modifying regulations the user may
consider to follow. Moreover, based on the inferred modifying reg-
ulations, our recommendations will be dynamically adjusted ac-
cording to what the user edits on the pasted code.

We illustrate a typical usage scenario of our tool (CCDemon) as
follows. After the developer pastes the addAttribute() method of
the JavaxDOMOutput class to the CusDOMOutput class, CCDe-
mon will identify and highlight the to-be-modified slots on the past-
ed code, e.g., the parameter type double, the data type Double.
Afterwards, a list of two options (double and float) appears for
the parameter type double. The developer may either select an
option from the list or type new code such as long. Suppose he
types a new code long, CCDemon will dynamically generate name-
consistent option for Double (line 5), parseDoubleElement (line 6),
double (line 9), and logAddDoubleAttr (line 11) respectively, such
as Long, parseLongElement, long, and logAddLongAttr. CCDemon
will gradually guide the developer to modify other slot such as ((El-
ement)current). Finally, the developer will be suggested to modify
the JDOM with the new suggested class literal CusDOM, which
shares a super class with JDOM class based on inferred regulation.

3. APPROACH
In this section, we first present an overview of the approach and

then detail its key steps. In this paper, a clone set is a set consisting
of similar code fragments as its elements, and each of its element
is called a clone instance.

3.1 Overview
Our approach to recommending modification on pasted code is

triggered when a developer copies a code fragment from the code
base and pastes it in a target location. Our assumption lies in that
there exists a clone repository maintaining clone information of the
code base. It can be satisfied in practice when the code base is
equipped with an incremental clone detector.

Differencing

Option
Generation

Code
Editing

Context
Analysis

Clone
Retrieval

Rule
Mining

Option
Ranking

Diffs

Naming
Rule

Pasted Code
Fragment

Target
Context

Option
Set

Ranked
Option List

Code
Edits

Interactive Recommendation

Clone Analysis

Context Analysis

Clone
Repository

Clone Set &
Context

Figure 1: Approach Overview

The overview is presented in Figure 1, in which each ellipse rep-
resents a step and each parallelogram represents an input or output
of a step. The whole process can be divided into three parts, i.e.,
clone analysis, context analysis, and interactive recommendation.

Clone analysis aims to identify the slots on the pasted code and
mine naming rules. Once a copy-and-paste operation is detected,
our approach retrieves a clone set with one of its clone instances
overlapping the copied code. If more than one such clone sets are
found, we choose the one with a clone instance most overlapping

the copied code. If found, we difference the clone set and its con-
text (i.e., class name, method name, method return type). Each dif-
ference of the clone set will be transferred into a slot on the pasted
code, and the code variants for such difference will be initially used
as options of the slot. Afterwards, we mine naming rules from dif-
ferencing results of the clone set as well as its context.

Context analysis aims to identify program elements as new op-
tions from the context of target location. These program elements
include: 1) declaration elements, i.e., the class or method where the
pasted code resides, and 2) accessible elements, i.e., the code that
can potentially be used in slots. Declaration elements include class
name, method name, and method return type, which will be used
when applying naming rules for option generation. Accessible ele-
ments include the variables, fields, methods, classes and interfaces
accessible from the pasted code.

Interactive recommendation recommends options for each slot in
an interactive process. During the process, the developer edits the
pasted code by choosing recommended options or directly modify-
ing the code. Based on the code edits, our approach dynamically
generates new options in each slot and adjusts their rank orders.
This interactive process is repeated iteratively until the developer
finishes editing the pasted code.

3.2 Differencing
We represent each difference of a clone set (or its context) as a

multiset, which consists of correspondent differential code of clone
instances (or their context) as its elements. For example, we rep-
resent the difference in line 4 of Table 1 as the multiset {double,
double, float}. Note that a multiset can contain ε (i.e., empty code)
as its element, which indicates a “gap difference” in a clone set. We
call the multiset representing a difference among the code bodies of
a clone set as a clone differential multiset, and the one represent-
ing a difference of the context of a clone set (i.e., the declaration
elements such as class name, method name and method return type)
as a contextual differential multiset.

It is straightforward to identify the contextual differential multi-
sets of a clone set because different declaration elements (e.g., class
name) of the clone instances are naturally corresponded. How-
ever, identifying the clone differential multisets of a clone set is
more challenging. The natural correspondence as what the con-
text of a clone set has is not obvious. Moreover, the differencing
results needed in our recommendation approach require intuitive-
ness, in other words, the differencing results should be syntacti-
cally complete. For example, the clone difference in line 7 of Ta-
ble 1 should be reported as a syntactically complete difference, e.g.,
{((Element)current), current, current} instead of two isolated dif-
ferences, diff1={((Element), ε, ε}, diff2={), ε, ε}. Note that the
latter result often appears because the token current is located in
the LCS (Longest Common Subsequence) of the cloned code.

To the best of our knowledge, existing clone differencing tech-
niques [6, 8, 18, 20, 32, 33] can hardly meet the needs as they are
only designed for pairwise code comparison. The closest technique
is our previous work, MCIDiff [20], which is used to detect differ-
ences among multiple cloned code fragments. However, MCIDiff
is mainly designed for visualizing clone differences. Its results are
inappropriate to feed our recommendation approach for two rea-
sons. First, MCIDiff reports clone differences as token-based mul-
tisets, but we need syntactically complete differences for recom-
mendation. Second, as other token-based techniques, the results of
MCIDiff may sometimes break syntactic boundary. For the exam-
ple in Table 1, it is possible for MCIDiff to match the semicolon
(“;”) in line 9 of the first fragment with the semicolon in line 8 of
the second fragment because syntactic boundary information is lost

522

when parsing source code into token sequences. Such results will
not affect human observation much, but they significantly affect the
accuracy and intuitiveness of our recommendation for modifying
the pasted code.

Therefore, we develop a new clone differencing algorithm to ad-
dress the above issues. The algorithm takes as input multiple cloned
code fragments, and generates as output sequence-based multisets
representing clone differences. Each element in a multiset is a to-
ken sequence representing a syntactic unit as complete as possible.
In the new differencing algorithm, each cloned code fragment is
parsed into a token sequence first. Then, the algorithm matches an
optimal common subsequence from multiple token sequences with
regard to code syntactic boundaries. Next, the algorithm identifies
differential ranges among the token sequences against the matched
optimal common subsequence. Finally, the algorithm splits and
merges these differential ranges with regard to their related Ab-
stract Syntax Tree (AST) to ensure that the differencing results are
syntactically complete.

3.2.1 Matching Optimal Common Subsequence
Given a clone set, we parse each of its clone instance into a token

sequence. We aim to compute an optimal common subsequence
from multiple token sequences, which 1) regards code syntactic
boundaries and 2) is as long as possible. In the following, we first
discuss matching optimal common subsequence between two token
sequences, and then proceed to matching multiple token sequences.

Given two token sequences, seq1 = <t11, t12, ..., t1m> and seq2
= <t21, t22, ..., t2n>, their common subsequence seqcom is con-
structed by sequentially matching one token t1i (i ≤ m) in seq1
with a synonymous token t2j in seq2 (j ≤ n). We represent the
match implied by token tk in seqcom as match(tk) whose value
is a pair (t1i, t2j), t1i and t2j are the supporting tokens of tk
in seq1 and seq2 respectively. Matching a common subsequence
from two token sequences means generating one of their common
subsequences as well as the matches of its tokens.

We regard the minimal AST node containing a token as its code
context. For example, the code context of the token “;” in the line
9 of the first fragment in Table 1 is a variable declaration statement.
Our rationale is that synonymous tokens with similar code context
(especially for delimiters or separators such as “;” and “.”) are more
likely to be matched. We evaluate the fitness of a match in a com-
mon subsequence by the similarity of code context of its supporting
tokens. Given a potential match match(tk) whose value is a pair
of token (t1i, t2j), we parse the code context (i.e., AST) of its sup-
porting tokens into two token sequences seqcon1 and seqcon2 and
the fitness is computed as:

fit(match(tk)) = simc(t1i, t2j) =
2LCS(seqcon1, seqcon2)

len(seqcon1) + len(seqcon2)
(1)

LCS(seqcon1, seqcon2) is the LCS of seqcon1 and seqcon2, and
len(seq) is the length of a token sequence seq. Thus, we quantify
the matching fitness of a common subsequence seqcom as:

matching_fitness(seqcom) =
∑

tk∈seqcom

fit(match(tk)) (2)

Thus, computing optimal common subsequence between two to-
ken sequences is to determine a common subsequence with the best
matching fitness. We apply the dynamic algorithm for solving the
LCS problem [11] to compute optimal common subsequence be-
tween two token sequences in O(mn) time.

Similar to computing the global LCS of multiple sequences, com-
puting a global optimal common subsequence between multiple to-
ken sequences is also an NP-complete problem [31]. Therefore, we

adopt progressive alignment strategy to compute the optimal com-
mon subsequence between multiple token sequences. Progressive
alignment approach has been widely applied to align multiple DNA
sequences [9]. In this work, we first compute the optimal common
subsequence of the two longest token sequences, and then match
the resulting common subsequence with the third longest token se-
quence, and so on till all token sequences are considered.

As a result, the match of each token in the optimal common sub-
sequence will be reported as a common multiset. For the example
in Table 1, the multisets will be {public, public, public}, {void,
void, void}, and so on. By this means, we compute the optimal
common subsequence of multiple token sequences with regard to
syntactic completeness.

3.2.2 Splitting and Merging Differential Ranges
Reported common multisets have inherent order, and any gap be-

tween two consecutive common multisets is a differential range
of token sequences, as the dashed rectangle shown in Figure 2. As
shown in the figure, those differential ranges could still be across
syntactic boundary or be syntactically incomplete. Therefore, we
split and merge those differential ranges to achieve intuitive differ-
encing results for better modification recommendation.

Splitting Differential Ranges.
Figure 2 partially shows the token sequences of the three clone

instances presented in line 8 and line 9 of Table 1. The differential
ranges between two consecutive common multisets can be regarded
as a range multiset. Each element of a range multiset is a differ-
ential token sequence such as “String msg ... ; double”.

;

String

msg

...

;

double

v

;

double

v

String

msg

...

;

float

v

;

consecutive
common
multisets

String

msg

...

;

doubledouble

String

msg

...

;

float

range
multiset
(differential
ranges)

vv v

; ; ;

syntactic
boundary

Instance 1 Instance 2 Instance 3

differential
sequence

Figure 2: Example for Splitting Differential Ranges

We split each differential sequence in a range multiset into at
most three subsequences with regard to syntactic boundary: one
body subsequence for (consecutive) complete program statements,
one head subsequence for tokens before the body subsequence, and
one tail subsequence for tokens after the body subsequence. For
example, the second differential sequence in Figure 2 will be split
into two subsequences: “String msg ... ;” (body) and “double”
(tail). In practice, any of the head, body, and tail subsequence could
be missing. If the body subsequence is missing, the head and tail
subsequences are split by statement boundary (e.g., “;”, “}”).

Then, we match the split head, body and tail subsequences in a
range multiset. They are matched according to their similarity and
order. As for similarity, we first apply our MCIDiff algorithm [20]
to report a list of token-based multisets. Each multiset represents
the correspondence between the tokens of multiple clone instances.
For example, {ε, String, String} is a token-based multiset in the
differential ranges in Figure 2. Given two differential subsequences
s1, s2, and let the number of their shared corresponding tokens be
k, their similarity is 2k/(len(s1) + len(s2)). As for order, we
will not match subsequences in switching order. For example, if
we match the head subsequence in s1 to the tail subsequence in
s2, we will no longer match the tail subsequence in s1 to the head

523

subsequence in s2. Instead, both the tail subsequence in s1 and the
head subsequence in s2 will be matched to ε. Thus, a range multiset
will be split into ordered differential sequence-based multisets. For
the example in Figure 2, the differential ranges will be split into two
differential multisets, {ε, “String msg ... ;”, “String msg ... ;”} and
{double, double, float}.

Merging Differential Ranges.
Figure 3 partially shows the token sequences in the line 7 of Ta-

ble 1. We can see that some differential sequences in split multisets
are still partially complete, e.g., “((Element)”. In this case, merg-
ing some syntactically incomplete multisets can give rise to a better
syntactically complete multiset. For example, the merged multiset
{“((Element)current)”, “current”, “current”} is a more intuitive re-
sult than the two separated multisets {“((Element)”, ε, ε} and {“)”,
ε, ε} for modification recommendation.

consecutive
differential
multisetscommon

multiset

(

(

Element

)

current

)

current current

ε ε

ε ε) ε ε

. . .

; ; ;
common
multiset

common
multiset

Instance 1 Instance 2 Instance 3

Figure 3: Example for Merging Differential Ranges

We aim to merge two consecutive differential ranges when the
two adjacent and syntactically incomplete consecutive differential
multisets can form a new syntactically complete multiset. As for
adjacency, we require that the number of in-between common mul-
tisets be smaller than a user-defined threshold tm. As for syntactic
completeness, we require that 1) any token sequence in the merged
multiset represent a complete syntactic unit (i.e., a complete AST
subtree) and 2) any differential sequence in two consecutive differ-
ential multisets not represent a complete syntactic unit.

3.2.3 Determining Slots
Thus, we generate clone differencing results in terms of sequence-

based differential multisets (e.g., {ε, “String msg ... ;”, “String msg
... ;”}, {“((Element)current)”, “current”, “current”}). Note that the
code developers copy may overlap with cloned code. Thus, we only
consider the differential multisets involved in the overlapped code
area. Given a pasted code codep and its corresponding copied code
codec, for each differential token sequence in codec, the location
of its corresponding token sequences in codep is a slot in codep. In
addition, the differential multiset for generating a slot is called as
associated differential multiset of the slot.

3.3 Rule Mining
A naming rule specifies a possible regulation of consistent mod-

ification among slots and their context. For example, the clone
differences in line 4, 5, 6, 9, and 11 in Table 1 indicate that the
slots on the code pasted from any of the clone instances may need
modifying “double” or “float” component consistently.

We mine naming rules from a clone set from both its clone differ-
ential multisets and contextual differential multisets. We align the
elements in multiple differential multisets by clone instances (ver-
tically) and multisets (horizontally), as shown in Figure 4. Then,
we generate naming rules as follows.

MS 1

Instance 1 Instance 2 Instance 3

Double

parse Double Element

((Element) current)

Double

parse Double Element

current

Float

parse Float Element

current

MS 2

MS 3

parse Element

* current

*

*

*

Abstract Component List:

Abstract Component List:

Abstract Component List:

Figure 4: An Example of Naming Rules Mining
First, we split the elements (i.e., token sequence) in each dif-

ferential multiset into identifiers (e.g., “parseDoubleElement”) and
delimiters such as brackets and dots. Then we further split identi-
fiers into components by code conventions such as case switching,
underscores, and dashes. In addition, consecutive delimiters are
also treated as components. Thus, each element in a multiset is split
into a list of components. For example, in Figure 4, the component
list of the first element in the third multiset is <“((”, “Element”, “)”,
“current”, “)”>.

Next, we abstract the component lists of the elements in a mul-
tiset into a pattern called abstract component list. For example in
Figure 4, the elements of the first multiset can be abstracted into
an abstract component list (dashed rectangle) <“parse”, “*”, “El-
ement”>. To this end, for each multiset we align its component
lists by computing their LCS. The common component in LCS will
be aligned first, afterwards, the adjacent differential components
will be merged and further aligned against the LCS. Finally, we
derive an abstract component list for each multiset by abstracting
the aligned components into an abstract component. The aligned
components of an abstract component are called its instances. For
example, for the third multiset in Figure 4, “((”, “Element”, and “)”
in its first element will be merged together and aligned with ε in the
second and third elements. They will be abstracted into an abstract
component (“*”) in the abstract component list.

Finally, we mine naming rules among different multisets by clus-
tering their abstract components. Given two abstract components
c1 and c2, let n be the number of all the clone instances and m be
the number of clone instances where the instances of c1 and c2 are
case-insensitively the same, their similarity is computed as m/n.
For example, in Figure 4, the similarity of the second abstract com-
ponent of the first multiset with the abstract component of the sec-
ond multiset is 3/3 = 1. Then given a similarity threshold, we
perform hierarchical clustering on all the abstract components with
mean-linkage criteria [30]. The abstract components in the same
cluster are considered as equivalent, which derives a naming rule
specifying a possible regulation of consistent modification.

As a result, we produce an abstract component list for each dif-
ferential multiset and a set of naming rules among them.

3.4 Option Generation
The recommended options for each slot are generated from three

sources: historical code, compatible elements, and naming rules.
The options recommended from the previous two sources can be
considered as static, as these options are generated before the user
edits the pasted code. In contrast, the options recommended from
the source of naming rules can be considered as dynamic, as they
are dynamically recommended in some slots based on the user’s
edits on the code in other slots.

The options sourced from historical code (or historical options)
of a slot are the distinct elements of its associated differential mul-
tiset. For example, the slot corresponding to the clone difference in
line 4 of Table 1 has two historical options: “double” and “float”.

The options sourced from compatible element (or compatible op-
tions) of a slot are the distinct program elements syntactically com-

524

patible with one of its historical options. For each historical option
v that is a syntactically complete token sequence, we identify its
compatible elements by the following criteria:

1. if v is a type (e.g., “Double”), its compatible elements are all
the types sharing its direct super type.

2. if v is a variable/field (e.g., “((Element) current))”), its com-
patible elements are all the variables/fields (accessible from
v’s slot) of the same type or sharing its direct super type.

3. if v is a method (e.g., “parseDoubleElement()”), its compat-
ible elements are all the methods (accessible from v’s slot)
with the same or compatible return types and parameters with
the same number, order and type.

For example, the slot corresponding to the clone difference in line 7
of Table 1, if pasted in Table 2, has a compatible option “element”.

The options sourced from naming rules (or rule options) of a
slot are the code synthesized from the values of other slots or the
context according to naming rules. In our approach, when a clone
instance is pasted and modified, each clone/contextual differential
multiset of its clone set can correspond to a piece of code in the
pasted code or its context. More specifically, a clone one can corre-
spond to new edited code in a slot, meanwhile, a contextual one can
correspond to a declaration element (i.e., class name, method name,
or method return type) of the pasted code. We call such corre-
sponded code to a differential multiset as its application value. As
mentioned in Section 3.3, each clone/contextual differential multi-
set has an abstract component list. Thus, after the code is pasted,
for each differential multiset diff , we split its application value
into a component list, and match it with the abstract component list
of diff . We call the code (i.e., component) matched to an abstract
component compab as the value of compab. The values of the ab-
stract components in clone differential multisets are initialized by
the pasted code, meanwhile, the values of those in contextual dif-
ferential multisets are assigned as the declaration elements of the
pasted code. When the value of an abstract component in one dif-
ferential multiset is updated by code c, the values of all its equiva-
lent components in other clone differential multiset will be updated
to c accordingly. Thus, concatenating the values of abstract com-
ponents will give rise to new options in the corresponding slots.

For example, if a user copies the first clone instance in Table 1
and pastes it in the place shown in Table 2, the abstract compo-
nent list for clone difference in line 4 of Table 1 contains one ab-
stract component, i.e., “<*>”, and its value is initialized to “dou-
ble”. When the user modifies the “double” into “long”, the value
of the abstract component will be updated to “long”, which propa-
gates the value to its equivalent abstract component (represented by
*) in the abstract component list of other clone differential multi-
sets, e.g., <parse, *, Element>, <log, Add, *, Attr>. By this means,
new options such as “parseLongElement” and “logAddLongAttr”
are generated in other slots.

3.5 Option Ranking
Once the options of a slot are generated, we rank the options

according to their possibility of being chosen by the user. As an
option op in slot s can have multiple sources (i.e., historical code,
compatible elements, and naming rules), we estimate op’s possibil-
ity of being chosen by considering all the three sources in Equa-
tion 3.

S(op) = wh · Sh(op) + wc · Sc(op) + wr · Sr(op) (3)

In Equation 3, Sh(op), Sc(op), Sr(op) represent the estimated
possibilities of op from the source of historical code, compatible
elements, and naming rules; wh, wc, wr represent corresponding

weights, satisfying wh, wc, wr ∈ (0, 1) and wh + wc + wr = 1.
Given a slot s, we use HisV al(s), ComEle(s), and EqiRul(s)
to denote its historical, compatible and rule option sets respectively.

Equation 4 estimates the possibility from the source of historical
code, which considers historical occurrence and confidence. The
first part of the equation measures the historical occurrence of op,
in which T (s) represents the size of associated multiset of s and
T (s, op) represents the number of times when op appears in the as-
sociated multiset of s. The second part of the equation measures the
chosen confidence of op when some historical options in other slots
are determined. Suppose there are k slots, s1, s2, ..., sk, which
have been determined by user, and opi ∈ HisV al(s) (1 ≤ i ≤ k)
is the chosen option in si, P ((op, s)|(opi, si)) is the confidence,
i.e., conditional probability, of op to appear in s when opi appears
in si. The confidence can be induced from historical co-occurrence
of op and opi. For example, after user copies a cloned code frag-
ment from Table 1 and pastes it in Table 2, if the slot correspond-
ing to the clone difference at line 4 is the only slot determined by
user with option “double”, then for the slot for line 5, there are
Sh(“Double”) = 1

2
× 2

3
+ 1

2
× 1 = 5

6
and Sh(“Float”) =

1
2
× 1

3
+ 1

2
× 0 = 1

6
.

Sh(op) =
1

2
× T (s, op)

T (s)
+

1

2
×

∑k
i=1 P ((s, op)|(si, opi))

k
(4)

Equation 5 estimates the possibility from the source of compati-
ble elements. That is, if op is a compatible element of s, Sc(op) is
1; otherwise, it is 0.

Sc(op) =

{
1, op ∈ ComEle(s)
0, elsewise

(5)

Equation 6 estimates the possibility from the source of naming
rules, which measures the average similarity between abstract com-
ponents of s and their equivalent abstract components involved in
the generation of op. In Equation 6, m is the number of abstract
components of s that have been updated in the generation of op;
ack (1 ≤ k ≤ m) is the kth updated abstract component; ES(ack)
is the set of equivalent abstract components of ack that have been
involved in the generation of op; sim(ack, e) is the similarity be-
tween ack and an equivalent abstract component e.

Sc(op) =

⎧⎨
⎩ 1

m ×
m∑

k=1

∑

e∈ES(ack)
sim(ack,e)

|ES(ack)| , op ∈ EqiRul(s)

0, elsewise

(6)

We set the weights based on the following two principles. First,
rule options are more likely to be chosen than historical and com-
patible options. Second, compatible options are more likely to be
chosen than historical options if the elements of associated multi-
set of the slot are diversified, and vice versa. More specifically, the
diversity of a clone differential multiset means that almost each his-
torical copy-paste-modify operation of the code gives rise to a new
option in the same slot, therefore, the corresponding slot is more
likely to have a new different option. We evaluate the diversity of
the associated multiset of a slot s with information entropy [29], as
shown in Equation 7. In Equation 7, P (oph) is the frequency of
oph appearing in the associated multiset of s.

H(s) = −
∑

oph∈HisV al(s)

P (oph) lnP (oph) (7)

Therefore, we express the two principles as follows.

1. wh + wc < wr .

2. If H(s) ≥ ln |HisV al(s)|
2

, wc > wh; otherwise, wh > wc.

525

Note that the information entropy ranges from 0 to ln |HisV al(s)|,
so we take the median as the threshold to determine whether the
historical options are diversified enough.

The three weights (i.e., wh, wc, wr) in Equation 3 can be set
based on the above two principles. For example, in our imple-
mentation (see Section 4), we use the following weight settings:

wr = 0.6; wh = 0.1 and wc = 0.3 if H(s) ≥ ln |HisV al(s)|
2

,
otherwise, wh = 0.3 and wc = 0.1.

4. TOOL SUPPORT
We implement our approach as a proof-of-concept tool named

CCDemon, which is an Eclipse plugin. Figure 5 shows how CCDe-
mon helps a developer when he copies the code fragment in the
JavaxDOMOutput class in Table 1. After the developer pastes the
code, CCDemon will enclose some parts of the pasted code as
transparent rectangles, each of which represents a slot. The code
inside slots is syntactically complete in general. When the devel-
oper is to modify the code in a slot, CCDemon will show a combo
containing a list of ranked options. The developer can either se-
lect an option or enter new code in the slot. He can press Enter to
choose an option; press Tab to move forward to the next slot; or
press Shift+Tab to go back to the previous slot. After a slot is mod-
ified, the options and their ranking in other slots will be updated
accordingly. For example, in Figure 5, the developer’s edits on
previous slots generate new options containing long/Long in other
slots, e.g., “logAddLongAttr”.

Figure 5: Screenshot of CCDemon

5. AUTOMATIC EXPERIMENT
We conduct an experimental study to answer the following re-

search questions:

• Q1: How accurately can the to-be-modified positions be iden-
tified as slots?

• Q2: How much of the required modifications can be gener-
ated as options?

• Q3: How are the required modifications ranked in slots?

5.1 Design
To answer the above questions, we simulated a set of code copy,

paste, and modification cases based on code clones detected from
source code. We chose five open source projects (shown in Ta-
ble 3) as the subject systems and used an AST-based clone detector
JCCD [4] to detect code clones in each system.

For each clone set, we simulated a series of cases of code copy,
paste, and modification in the following way: we take one of its
clone instances cc as the copied code and another one mp as the
modified pasted code; we use cc as the initial pasted code in the

location of mp and use the code in the to-be-modified positions of
mp as golden set; we use all its clone instances except mp as the
code clones for modification recommendation; we simulate code
edit for each identified slot on the pasted code in sequential order
by choosing an option or directly modifying the code based on the
golden set. Note that each time after a slot is simulatively edited,
the options and their ranking in the other slots can be updated. We
call a simulation of copy-paste-modify operation as a case. For a
clone set with n instances, we can simulate n× (n− 1) cases.

Among all the 4,209 detected clone sets that are larger than five
lines of code, we filtered out two types of clone sets: Type-I clone
sets, i.e., clone sets whose instances are all identical; clone sets that
have only two instances. The reason is that, when simulating code
copy, paste, and modification with these two types of clone sets,
we have only one or several identical clone instances for modifica-
tion recommendation and our approach cannot identify modifica-
tion slots from past differences. So finally 1,255 out of 4,209 clone
sets were used in our experimental study. This implies a rough esti-
mation that our clone-based approach is applicable in about 29.8%
of all the cases of code copy, paste, and modification.

We run all the 52,168 cases on a server with Intel Xeon CPU
of 2.12GHz and 32G RAM. It took 0.48 seconds for each case on
average.

Table 3: Subject Systems and Simulated Cases
Project LOC #Applicable Clone Set #Case
TWE 5.0.1 90,160 157 5,104

OSWorkflow 2.8.0 47,945 71 2,544

JFreeChart 1.0.14 222,821 323 13,566

JHotDraw 7.0.6 57,049 74 2,084

JasperReport 6.0.0 496,891 630 28,870

5.2 Results
To answer Q1, we evaluate the precision (Q1: P) and recall (Q1:

R) of slot identification in each case. For a case with cc as the
copied code and mp as the modified pasted code, let IS be the set
of identified slots, TP be the set of to-be-modified positions in mp,

we compute the precision as
|IS ⋂

TP |
|IS| and recall as

|IS ⋂
TP |

|TP | . To

answer Q2, we compute the percentage of the to-be-modified posi-
tions that were identified as slots and had their required modifica-
tions suggested as options (Q2: RMO). To answer Q3, we compute
the percentage of the slots where the required modifications were
ranked top three (Q3: PFT). Table 4 shows the results of the cases
for the five subject systems.

Table 4: Results of Automatic Experiment
Project TWE OSWorkflow JFreeChart JHotDraw JasperReport Overall

Q1: P (%) 62.76 77.77 72.1 61.07 64.49 67.92

Q1: R (%) 95.36 96.53 97.76 93.99 96.87 96.85

Q2: RMO (%) 68.33 84.13 82.94 74.86 71.33 75.04

Q3: PFT (%) 91.26 85.20 92.40 93.99 93.18 92.37

5.2.1 Q1: Slot Identification
Our approach identified slots with an overall precision of 67.92%

and an overall recall of 96.85%. In some cases (about 32%), an
identified slot did not need to be modified, i.e., its value in the
golden set is the same with that in the copied code. Such false
positives usually have little influence, since the developer can sim-
ply keep the default code in the slot. In very few cases (about 3%),
a to-be-modified position cannot be identified as a slot. In other
words, clone difference cannot help predict to-be-modified posi-
tions in these cases.

5.2.2 Q2: Option Generation
Our approach generated the required modifications as options

for most (75.04% overall) of the to-be-modified positions in all the

526

cases. For the other positions (less than 25% overall), the code need
to be modified by the “simulated user”. The reasons for failing
to recommend correct options lie in that 1) our sources for iden-
tifying options is limited in some cases and 2) some code nam-
ing is inconsistent in those projects. For the example of limited
sources, when an unprecedented complicated expression appear in
the pasted code, none of the sources in this work could help predi-
cate it. We leave such more complicated issues in our future work.
For an interesting example of inconsistent code naming, we found
that most clone instances of a clone set in JasperReport system have
two variables with naming rule as “*” and “*Drawer” (e.g., “rect-
angle” vs “rectangleDrawer”; “ellipse” vs “ellipseDrawer”). In
a case of this clone set, our approach recommend a “textElement-
Drawer” option in one slot when we simulatively input “textEle-
ment” in its previous slot. However, the “correct” option according
to original source code is “textDrawer”, which lowers the RMO
value to 0 in this case. In fact, our recommended modification in-
cur no bugs and even improve clone consistency in this case.

5.2.3 Q3: Option Ranking
In most of the cases, the required modifications were ranked high

in the corresponding slots. Overall, the required modifications in
92.37% slots were ranked top three in the option lists of their slots.

5.3 Further Analysis
We investigated the contributions of the three sources (i.e., his-

torical code, compatible elements, and naming rules) to generate
the required modifications as options in slots. The results show
that 38.25% of the required modifications were generated from his-
torical code, 35.50% from compatible elements, and 26.25% from
naming rules. Clearly, all the three sources played an important role
in generating required modifications as options in identified slots.

Table 5: Distribution of Different Case Types
Type Q1: R Q2: RMO Num Percentage (%)
Type#1 1 1 24144 46.28

Type#2 1 (0, 1) 14999 28.75

Type#3 1 0 3073 5.89

Type#4 (0, 1) 1 415 0.80

Type#5 (0, 1) (0, 1) 769 1.47

Type#6 (0, 1) 0 451 0.86

Type#7 0 - 783 1.50

Type#8 - - 7534 14.44

We classified the cases into eight types according to two criteria:
how much of the to-be-modified positions were identified as slots
(Q1: R); how much of the required modifications were generated
as options (Q2: RMO). Table 5 shows the details. Type#1 cases are
those having all their to-be-modified positions identified as slots
and all the required modifications generated as options. For these
cases, the developer can finish his code modification without any
keystroke. Type#2 cases are those having all their to-be-modified
positions identified as slots but some required modifications miss-
ing. For these cases, the developer needs to modify the code in
some slots. These two types make up 75.03% of the cases. Type#3
cases are those having all their to-be-modified positions identified
as slots but all the required modifications missing. For these cases,
the developer needs to modify the code of all the slots. Type#4,
Type#5, Type#6, and Type#7 cases are those having to-be-modified
positions missing. These four types are only a small proportion of
the cases. Type#8 cases are those having no to-be-modified posi-
tions, i.e., the copied code is identical with the golden set.

6. HUMAN STUDY
We conducted a human study on our tool, CCDemon, to investi-

gate whether our technique can help developers in practice.

6.1 Study Design
In this study, we asked programmers to finish 6 programming

tasks that can be accomplished by copying, pasting and modify-
ing existing code. We aim to check the developers’ efficiency to
accomplish tasks when our recommendation is and is not avail-
able. We choose MCIDiff [20] as the baseline tool to compare with
CCDemon. CCDemon can learn multiple clone instances to recom-
mend modifications, while MCIDiff can help developers compare
multiple clone instances by visualizing clone differences, but with-
out automatic recommendation for code modification.

Sixteen graduate students from School of Software, Fudan Uni-
versity, participated in this study. We surveyed all the participants
and divided them into two equivalent groups based on their pro-
gramming experience. Participants were matched in pairs by their
capability and each pair was randomly allocated to experimental
group or control group. Experimental group used CCDemon and
control group used MCIDiff to accomplish same tasks in the study.
We gave tutorials of both tools three hours before the study and
asked the participants to familiarize themselves with some exam-
ple tasks with the respective tool.

We selected 6 cases generated from the JFreeChart and Jasper-
Report system (one case per Type#1∼#6) as the experimental tasks
assigned to the participants. In each task, we deleted the code of
the target clone instance in projects and asked participants to com-
plete the code based on the existing clones of the removed code. As
showed in Table 6, the tasks varies from different complexity and
details, in terms of number of clone instances to check, number of
places to modify and the extra knowledge to learn for modification.
We asked the participants to accomplish tasks from low complexity
to high complexity.

Table 6: Task Description
Task Type Project Gen. Desc Complexity

#1 #1 JasperReport 3 clones for reference; 7 places to
consistently modify;

low

#2 #4 JFree-Chart 2 clones for reference; 6 places to
consistently modify

low

#3 #3 JasperReport 2 clones for reference; 3 places to
customize

medium

#4 #5 JFree-Chart 3 clones for reference; 8 places to
customize

medium

#5 #2 JFree-Chart 5 clones for reference; 25 places to
consistently modify

high

#6 #6 JasperReport 2 clones for reference; 3 places to
customize

high

Before the study, we briefly introduced each task and ask partici-
pants to accomplish them in a test-driven way. That is, we provided
test cases for each tasks so that the participants can check whether
their code is correct. To ensure the completeness of test cases, we
manually go through all the data and control flow to design test
cases for each deleted code. In addition, the participants were re-
quired to run a full-screen recorder throughout experiment session,
which enables us to analyze their behaviors afterwards.

6.2 Results
In this study, all the participants in both groups successfully ac-

complished the tasks by passing all the test cases. Therefore, we
evaluated their task completion time and the number of test case
failures in the course of completing the tasks.

Table 7 and Table 8 show the performance of CCDemon group
and MCIDiff group in terms of task completion time and the num-
ber of test case failures. Overall, CCDemon group accomplished 3
tasks (i.e., Task#1, Task#2, and Task#5) in shorter time compared
with MCIDiff group, while the two groups had a tie in the number
of test case failures.

Hypotheses: We introduced the following null and alternative

527

Table 7: Performance of CCDemon Group
Par Time (s) Test Case Failures

#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6
P1 74 41 485 265 156 219 0 0 0 1 0 2

P2 81 125 159 203 77 262 0 0 0 0 0 0

P3 36 38 408 288 99 316 0 0 3 0 0 2

P4 80 71 581 190 33 518 0 0 0 0 0 8

P5 31 180 204 223 197 295 0 0 1 1 0 1

P6 61 90 236 200 170 330 0 0 0 0 0 3

P7 51 110 175 750 298 340 0 0 0 0 3 0

P8 100 78 873 183 105 495 0 0 5 0 0 2

Avg 64.25 91.63 390.13 287.75 141.88 346.88 0.00 0.00 1.13 0.25 0.38 2.25

Dev 22.34 43.75 233.72 178.11 77.19 99.22 0.00 0.00 1.76 0.43 0.99 2.38

Table 8: Performance of MCIDiff Group
Par Time(s) Test Case Failures

#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6
P9 75 60 255 130 190 325 0 0 1 0 0 0

P10 190 145 1410 285 460 390 0 0 13 0 0 1

P11 130 135 560 170 200 520 0 0 1 0 0 0

P12 340 230 460 375 315 215 0 1 1 4 0 0

P13 120 150 255 180 210 680 0 0 0 0 0 0

P14 65 250 215 290 170 455 0 0 0 0 0 3

P15 130 280 305 430 315 330 0 0 1 1 0 1

P16 130 200 245 220 370 325 0 0 0 0 0 3

Avg 147.50 181.25 463.13 260.00 278.75 405.00 0.00 0.13 2.13 0.63 0.00 1.00

Dev 81.09 67.40 375.29 97.88 96.46 135.14 0.00 0.33 4.14 1.32 0.00 1.22

hypotheses to evaluate how different the performance of experi-
mental and control group is.

• H0: The primary null hypothesis is that there is no significant
difference between the performance of both groups.

• H1: An alternative hypothesis to H0 is that there is signifi-
cant difference between the performance of both groups.

We used Wilcoxon’s matched-pairs signed-ranked tests to eval-
uate the null hypothesis H0 in terms of the task completion time
and the number of test case failures on each task at a 0.05 level
of significance. Table 9 shows the results. Based on the results,
we reject the null hypothesis for the task completion time of the
Task#1, Task#2, and Task#5, and accept the null hypothesis for the
task completion time of the Task#3, Task#4, and Task#6; We ac-
cept all the null hypothesis for the number of test case failures of
all the tasks. Therefore, there is a significant difference between
two groups in the task completion time of the Task#1, Task#2, and
Task#5. Table 9 shows that CCDemon group complete those tasks
in shorter average time. Hence, we conclude the results as follows:

• CCDemon group accomplish the Task#1, Task#2, and Task#5
in significantly shorter time, while there is no significant dif-
ference between CCDemon group and MCIDiff group in the
task completion time of the Task#3, Task#4, and Task#6.

• There is no significant difference between both goups in the
number of test case failures in all the tasks.

6.3 Results Analysis
We analyzed the participants’ task videos and interviewed the

participants to uncover the underlying reasons of the above results.

When CCDemon group completed with shorter time?.
We observed that the tasks in which CCDemon group completed

with shorter time (i.e., Task#1, Task#2, and Task#5) shares com-
mon features. As described in Table 6, in the Task#1, Task#2 and
Task#5, there are implicit naming rules crosscutting most of to-
be-modified parts in the pasted code and their context. In addi-
tion, historical code and program context can assist in providing
some reasonable options. CCDemon can summarize those modi-
fying regulations, and propose accurate recommendations in these
three tasks. After the participants in CCDemon group pasted a code

fragment in these tasks, they can almost complete the correct mod-
ification within several keystrokes with the help of CCDemon. In
contrast, the participants in MCIDiff group had to spend time on
1) manually summarizing those regulations from clone differences,
2) locating plausible places to be modified on the pasted code, and
3) modifying the code slot one by another. As showed in Table 9,
the mean task completion time used by CCDemon group was only
half of that used by MCIDiff group. In addition, the more to-be-
modified parts on the pasted code are (7 for Task#1, 6 for Task#2,
and 25 for Task#5), the larger the time gap of the two groups is.
Noteworthy, Table 5 shows that such cases account for the majority
of copy-paste-modify operations of the cloned code (75.0%).

On the other hand, when the modifying regulations are not obvi-
ous in the tasks (i.e., Task#3, Task#4, and Task#6), the advantage of
CCDemon group diminished. Based on the task videos, we found
that when clone differencing cannot indicated any regulation, both
groups began to gain other hints by reading code comments and
checking relevant code. However, both CCDemon and MCIDiff
are not designed for program comprehension. Thus, the task com-
pletion time in the Task#3, Task#4 and Task#6 relied mainly on
personal programming capability. As participants are divided into
equivalent groups, there is no significant difference in these tasks.

The tie in test case failure times.
In this experiment, even if we introduced the tasks before the

study, the participants were still unfamiliar with subjective systems.
In addition, the participants accomplished the tasks in a test-driven
way. We observed that all the participants adopted an error-and-
trial strategy in the study. For the tasks with modifying regulations
(Task#1, Task#2, and Task#5), successful summarizing these regu-
lations can help both groups accomplish tasks. As Table 9 shows,
the mean number of test case failures in both groups are almost 0.
As the task videos indicated, although MCIDiff group took more
time, most of the MCIDiff users can have an accurate summariza-
tion due to MCIDiff ’s intuitive visualizing facility for comparing
clone instances. In contrast, for the tasks without modifying regu-
lations (Task#3, Task#4, and Task#6), the failures happened when
the participants run test cases before fully understanding the code.
Therefore, both groups shared similar test-failure performance as
they all suffered from unfamiliarity with the subjective system.

We concluded that CCDemon can improve the efficiency of mod-
ifying a pasted cloned code when the implicit modifying regula-
tions exist, while its capability is limited when the regulations dis-
appear. When there are no obvious modifying regulation, project
knowledge is a dominant factor to accomplish the tasks. We deem
that CCDemon is useful in general because the former case account
for the majority of copy-paste-modify operations on the cloned
code (see Table 5). Furthermore, although MCIDiff can help de-
velopers summarize rules, our post-survey on the MCIDiff partici-
pants reveals their unwillingness to choose MCIDiff when pasting
the code. Their feedbacks suggest that they will be distracted when
switching from the working code to comparing clone differences in
a different viewer. In contrast, CCDemon had more positive feed-
backs for its light-weighted usage manner. Therefore, we deem that
it is more practical to run a “demon” in IDE to make recommenda-
tions to developers when they are modifying the pasted code.

6.4 Threats to Validity
There are mainly three threats in our human study. First, we used

six tasks in this study, which may not be representative for all the
cases. In order to mitigate this threat, we selected tasks based on
different types of cases to make these tasks as representative as pos-
sible. Second, our recruited participants are graduate students who

528

Table 9: Results of Wilcoxon’s test hypotheses, for the variable completion time (time) and test case failure time (fails). Measurements
are reported in the following columns: mean, standard deviation (Std. Dev), Z statistics (Z), statistical significance (p-value).

T1-time T2-time T3-time T4-time T5-time T6-time T1-fails T2-fails T3-fails T4-fails T5-fails T6-fails
Group EG CG EG CG EG CG EG CG EG CG EG CG EG CG EG CG EG CG EG CG EG CG EG CG

Samples 8

Mean 64.25 147.50 91.63 181.25 390.13 463.13 287.75 260.00 141.88 278.75 346.88 405.00 0.00 0.00 0.00 0.13 1.13 2.13 0.25 0.63 0.38 0.00 2.25 1.00

Std.Dev 22.34 81.09 43.75 67.40 233.72 375.29 178.11 97.88 77.19 96.46 99.22 135.14 0.00 0.00 0.00 0.33 1.76 4.14 0.43 1.32 0.99 0.00 2.38 1.22

Z -2.52 -2.10 -0.14 -0.42 -2.34 -0.70 0.00 -1.00 -0.09 -0.38 -1.00 -1.12

p-value 0.01 0.04 0.89 0.67 0.02 0.48 1.00 0.32 0.93 0.71 0.32 0.26

Decision Reject Reject Accept Accept Reject Accept Accept Accept Accept Accept Accept Accept

were not very familiar with the subject systems. Further studies are
required to generalize our findings in large-scale industrial systems
and with developers familiar with the subject systems. Third, we
assume that the experimental group is equivalent with the control
group in their capability and experience, which may be threatened
by the actual differences between the two groups. To mitigate this
threat, we allocated participants with comparable capability and ex-
perience into different groups based on our pre-study survey.

7. RELATED WORK
Program Differencing: Program differencing techniques [6, 8,

18, 20, 32, 33] are widely used in software maintenance tasks. Most
of the existing differencing techniques can only differentiate two
programs. For example, Cottrell et al. [6] developed a pairwise dif-
ferencing technique to detect correspondences between two pieces
of code for code generalization. Our previous technique MCID-
iff [20] is designed to detect differences among multiple clone in-
stances. However, its results does not fit for this recommendation
technique. Thus, we developed a new clone differencing technique
as a part of our recommendation technique to address the issues. Its
main technical difference with MCIDiff lies in two folders: 1) this
work defines and uses optimal common subsequence of multiple to-
ken sequences regarding program syntax, instead of the traditional
LCS used in MCIDiff, to identify common part of clones; and 2)
this work merges and splits differential ranges to report sequence-
based multisets, in contrast, MCIDiff iteratively computes the LCS
across differential ranges and heuristically match tokens in differ-
ential ranges to report token-based multisets.

Code Completion: Nguyen et al. [24] proposed a graph-based
code completion technique by matching half-developed code with
the mined API usage pattern. Zhang et al. [34] proposed a tech-
nique to recommend method parameters by learning from existing
parameter usage examples in source code. Asaduzzaman et al. [2]
improved API method call completion by analyzing the associated
relation between contextual information and method call. Apart
from the above traditional completion techniques, Hindle et al. [10]
shows that statistical language model is suitable to model code for
code completion. Based on their findings, Allamanis et al. [1] de-
veloped a framework NATRUALIZE based on statistical language
model to suggest natural identifier names and formatting conven-
tions for developers. Our work is different from these existing
work. What we recommend is the intended modification on exist-
ing pasted code, in contrast, what the above techniques recommend
is either the intended unwritten code or the ranking adjustment of
API method call completion.

Code Modification: Kim et al. [15] conducted an ethnographic
study to understand programmers’ copy-paste programming prac-
tices and summarize a number of taxonomy of copy-paste patterns.
Doerner et al. [7] developed a tool called EUKLAS to help quick-fix
syntax errors of the pasted Javascript code. Kerr et al. [14] further
proposed a set of heuristic rules about building the syntactic rela-
tion between copied code and its context in order to suggest mod-

ifications on the pasted code with the rules. Jablonski et al. [12]
developed a tool to consistently modify synonymous variables on
the pasted code. Meng et al. [23]’s LASE tool learns editing script
from changes of several code examples to change the similar code
systematically. Our approach does not require change history. In
addition, we provide recommendations incrementally and interac-
tively for developer to modify the pasted code.

8. DISCUSSION AND CONCLUSION
Kim et al. [15] found that developers usually employ their copy-

and-paste memory when changing code, but such memory is in-
stant, inaccurate, and difficult to transfer from person to person.
Our study not only statistically supports their findings, but also
makes a further conclusion that, when a copied code is involved in
code clones, the clone differences can generally help to recommend
the modification on the pasted code. The interactive modification
recommendation can not only improve the efficiency of copy-and-
paste based code reuse, but also improve code quality by reducing
bugs and inconsistent naming conventions caused by incomplete or
inconsistent code modifications.

The practical use of our approach involves the integration with
existing clone management techniques such as incremental clone
detection [25] and quick clone searching [19]. It is also possible
to integrate our approach with Internet code search engines. Some
code search engines allow a developer to search code from Inter-
net by writing a query and get returned code snippets inside the
IDE. Instead of returning one most relevant code snippet, the code
search engine can return multiple similar code snippets for interac-
tive modification recommendation. Then the developer can edit the
code with the support of interactive modification recommendation
based on returned similar code snippets.

In summary, we have proposed a clone-based and interactive rec-
ommendation approach to modifying pasted code. Once a code
copy-and-paste operation is detected, our approach retrieves from
an existing clone repository a related clone set and detects syn-
tactically complete differences among clone instances. The ap-
proach transfers each clone difference into a slot on the pasted
code and generates an initial set of options for the slot based on
historical code, compatible contextual elements and mined nam-
ing rules. Then the approach supports the developer to modify the
pasted code by interactively updating recommended options and
their ranking along with developers’ code editing. We have im-
plemented our approach in a proof-of-concept tool and evaluated
the effectiveness and usefulness of our approach and tool with an
automatic experiment and a human study.

9. ACKNOWLEDGE
This work was supported by the National Natural Science Foun-

dation of China under Grant No. 61370079, National High Tech-
nology Development 863 Program of China under Grant No. 2013
AA01A605, Shanghai Science and Technology Development Funds
under Grant No. 13dz2260200, 13511504300.

529

10. REFERENCES
[1] M. Allamanis, E. T. Barr, C. Bird, and C. A. Sutton.

Learning natural coding convention. In Proceedings of the
International Symposium on Foundations of Software
Engineering, pages 281–293, 2014.

[2] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou.
CSCC: Simple, efficient, context sensitive code completion.
In Proceedings of the International Conference on Software
Maintenance and Evolution, pages 71–80, 2014.

[3] T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells in
software evolution. In Proceedings of the International
Conference on Software Maintenance, pages 24–33, 2007.

[4] B. Biegel and S. Diehl. JCCD: a flexible and extensible api
for implementing custom code clone detectors. In
Proceedings of the International Conference on Automated
Software Engineering, 2010.

[5] D. Cai and M. Kim. An empirical study of long-lived code
clones. In Proceedings of the International Conference on
Fundamental Approaches to Software Engineering: Part of
the Joint European Conferences on Theory and Practice of
Software, pages 432–446. 2011.

[6] R. Cottrell, J. J. Chang, R. J. Walker, and J. Denzinger.
Determining detailed structural correspondence for
generalization tasks. In Proceedings of the the joint meeting
of the European software engineering conference and the
symposium on the foundations of software engineering,
pages 165–174, 2007.

[7] C. Doerner, A. R. Faulring, and B. A. Myers. EUKLAS:
Supporting copy-and-paste strategies for integrating example
code. In Proceedings of the Workshop on Evaluation and
Usability of Programming Languages and Tools, pages
13–20, 2014.

[8] B. Fluri, M. Wursch, M. PInzger, and H. C. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. Transaction on Software Engineering,
33(11):725–743, 2007.

[9] D. G. Higgins and P. M. Sharp. Clustal: a package for
performing multiple sequence alignment on a
microcomputer. Gene, 73(1):237–244, 1988.

[10] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On
the naturalness of software. In Proceedings of the
International Conference on Software Engineering, pages
837–847, 2012.

[11] D. S. Hirschberg. A linear space algorithm for computing
maximal common subsequences. Communications of the
ACM, 18(6):341–343, 1975.

[12] P. Jablonski and D. Hou. CReN: a tool for tracking
copy-and-paste code clones and renaming identifiers
consistently in the ide. In Proceedings of the OOPSLA
workshop on eclipse technology eXchange, pages 16–20.
ACM, 2007.

[13] C. J. Kapser and M. W. Godfrey. “Cloning considered
harmful” considered harmful: patterns of cloning in
software. Empirical Software Engineering, 13(6):645–692,
2008.

[14] R. Kerr and W. Stuerzlinger. Context-sensitive cut, copy, and
paste. In Proceedings of the International C* Conference on
Computer Science and Software Engineering, pages
159–166, 2008.

[15] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming practices
in oopl. In Proceedings of the International Symposium on

Empirical Software Engineering, pages 83–92, 2004.

[16] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. In Proceedings of
the joint meeting of the European software engineering
conference and the symposium on the foundations of
software engineering, pages 187–196, 2005.

[17] R. Koschke. Survey of research on software clones. In
Duplication, Redundancy, and Similarity in Software, 2006.

[18] G. P. Krishnan and N. Tsantalis. Unification and refactoring
of clones. In Proceedings of the Software Evolution
Week-IEEE Conference on Software Maintenance,
Reengineering and Reverse Engineering, pages 104–113,
2014.

[19] M.-W. Lee, J.-W. Roh, S.-w. Hwang, and S. Kim. Instant
code clone search. In Proceedings of the international
symposium on Foundations of software engineering, pages
167–176, 2010.

[20] Y. Lin, Z. Xing, Y. Xue, Y. Liu, X. Peng, J. Sun, and
W. Zhao. Detecting differences across multiple instances of
code clones. In Proceedings of the International Conference
on Software Engineering, pages 164–174, 2014.

[21] H. Liu, Z. Ma, W. Shao, and Z. Niu. Schedule of bad smell
detection and resolution: A new way to save effort.
Transaction on Software Engineering, 38(1):220–235, 2012.

[22] M. Mantyla, J. Vanhanen, and C. Lassenius. A taxonomy and
an initial empirical study of bad smells in code. In
Proceedings of the International Conference on Software
Maintenance, pages 381–384, 2003.

[23] N. Meng, M. Kim, and K. S. McKinley. LASE: locating and
applying systematic edits by learning from examples. In
Proceedings of the International Conference on Software
Engineering, pages 502–511, 2013.

[24] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi,
H. V. Nguyen, J. Al-Kofahi, and T. N. Nguyen. Graph-based
pattern-oriented, context-sensitive source code completion.
In Proceedings of the International Conference on Software
Engineering, pages 69–79, 2012.

[25] T. T. Nguyen, H. A. Nguyen, J. M. Al-Kofahi, N. H. Pham,
and T. N. Nguyen. Scalable and incremental clone detection
for evolving software. In Proceedings of the International
Conference on Software Maintenance, pages 491–494. IEEE,
2009.

[26] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and
T. N. Nguyen. Recurring bug fixes in object-oriented
programs. In Proceedings of the International Conference on
Software Engineering, pages 315–324, 2010.

[27] F. Rahman, C. Bird, and P. Devanbu. Clones: What is that
smell? Empirical Software Engineering, 17(4-5):503–530,
2012.

[28] C. K. Roy and J. R. Cordy. A survey on software clone
detection research. Technical Report 2007-541, School of
Computing, Queen’s University, Canada, 2007.

[29] C. E. Shannon. A mathematical theory of communication.
Mobile Computing and Communications Review, 5(1):3–55,
2001.

[30] G. J. Szekely and M. L. Rizzo. Hierarchical clustering via
joint between-within distances: Extending ward’s minimum
variance method. Journal of classification, 22(2):151–183,
2005.

[31] L. Wang and T. Jiang. On the complexity of multiple
sequence alignment. Journal of computational biology,
1(4):337–348, 1994.

530

[32] Z. Xing. Model comparison with genericdiff. In Proceedings
of the International Conference on Automated Software
Engineering, pages 135–138, 2010.

[33] Z. Xing and E. Stroulia. Differencing logical uml models.
Proceedings of the International Conference on Automated
Software Engineering, 14(2):215–259, 2007.

[34] C. Zhang, J. Yang, Y. Zhang, J. Fan, X. Zhang, J. Zhao, and

P. Ou. Automatic parameter recommendation for practical
API usage. In Proceedings of the International Conference
on Software Engineering, pages 826–836, 2012.

[35] G. Zhang, X. Peng, Z. Xing, and W. Zhao. Cloning practices:
Why developers clone and what can be changed. In
Proceedings of the International Conference on Software
Maintenance, pages 285–294, 2012.

531

