
Heterogeneous Defect Prediction

Jaechang Nam and Sunghun Kim
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Hong Kong, China

{jcnam,hunkim}@cse.ust.hk

ABSTRACT
Software defect prediction is one of the most active research
areas in software engineering. We can build a prediction
model with defect data collected from a software project
and predict defects in the same project, i.e. within-project
defect prediction (WPDP). Researchers also proposed cross-
project defect prediction (CPDP) to predict defects for new
projects lacking in defect data by using prediction models
built by other projects. In recent studies, CPDP is proved
to be feasible. However, CPDP requires projects that have
the same metric set, meaning the metric sets should be iden-
tical between projects. As a result, current techniques for
CPDP are difficult to apply across projects with heteroge-
neous metric sets.

To address the limitation, we propose heterogeneous de-
fect prediction (HDP) to predict defects across projects with
heterogeneous metric sets. Our HDP approach conducts
metric selection and metric matching to build a prediction
model between projects with heterogeneous metric sets. Our
empirical study on 28 subjects shows that about 68% of pre-
dictions using our approach outperform or are comparable
to WPDP with statistical significance.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—software qual-
ity assurance

General Terms
Algorithm, Experimentation

Keywords
Defect prediction, quality assurance, heterogeneous metrics

1. INTRODUCTION
Software defect prediction is one of the most active re-

search areas in software engineering [8, 9, 24, 25, 26, 36,

37, 43, 47, 58, 59]. If software quality assurance teams can
predict defects before releasing a software product, they can
effectively allocate limited resources for quality control [36,
38, 43, 58]. For example, Ostrand et al. applied defect pre-
diction in two large software systems of AT&T for effective
and efficient testing activities [38].

Most defect prediction models are based on machine learn-
ing, therefore it is a must to collect defect datasets to train a
prediction model [8, 36]. The defect datasets consist of var-
ious software metrics and labels. Commonly used software
metrics for defect prediction are complexity metrics (such as
lines of code, Halstead metrics, McCabe’s cyclometic com-
plexity, and CK metrics) and process metrics [2, 16, 32, 42].
Labels indicate whether the source code is buggy or clean
for binary classification [24, 37].

Most proposed defect prediction models have been evalu-
ated on within-project defect prediction (WPDP) settings [8,
24, 36]. In Figure 1a, each instance representing a source
code file or function consists of software metric values and is
labeled as buggy or clean. In the WPDP setting, a predic-
tion model is trained using the labeled instances in Project
A and predict unlabeled (‘?’) instances in the same project
as buggy or clean.

However, it is difficult to build a prediction model for new
software projects or projects with little historical informa-
tion [59] since they do not have enough training instances.
Various process metrics and label information can be ex-
tracted from the historical data of software repositories such
as version control and issue tracking systems [42]. Thus, it
is difficult to collect process metrics and instance labels in
new projects or projects that have little historical data [9,
37, 59]. For example, without instances being labeled us-
ing past defect data it is not possible to build a prediction
model.

To address this issue, researchers have proposed cross-
project defect prediction (CPDP) [19, 29, 37, 43, 51, 59].
CPDP approaches predict defects even for new projects lack-
ing in historical data by reusing prediction models built by
other project datasets. As shown in Figure 1b, a prediction
model is trained by labeled instances in Project A (source)
and predicts defects in Project B (target).

However, most CPDP approaches have a serious limita-
tion: CPDP is only feasible for projects which have exactly
the same metric set as shown in Figure 1b. Finding other
projects with exactly the same metric set can be challenging.
Publicly available defect datasets that are widely used in de-
fect prediction literature usually have heterogeneous metric
sets [8, 35, 37]. For example, many NASA datasets in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08...$15.00
http://dx.doi.org/10.1145/2786805.2786814

508

Test

Training

?"

?"

Model

Project A

: Metric value

: Buggy-labeled instance
: Clean-labeled instance

?": Unlabeled instance

(a) Within-Project Defect Prediction (WPDP)

?"

?"

?"

?"
?"

Training

Test

Model

Project A
(source)

Project B
(target)

Same metric set

(b) Cross-Project Defect Prediction (CPDP)

?"

Training

Test

Model

Project A
(source)

Project C
(target)

?"

?"

?"

?"

?"

?"

?

Heterogeneous!metric sets

(c) Heterogeneous Defect Prediction (HDP)

Figure 1: Various Defect Prediction Scenarios

PROMISE repository have 37 metrics but AEEEM datasets
used by D’Ambroas et al. have 61 metrics [8, 35]. The
only common metric between NASA and AEEEM datasets
is lines of code (LOC). CPDP between NASA and AEEEM
datasets with all metric sets is not feasible since they have
completely different metrics [51].

Some CPDP studies use only common metrics when source
and target datasets have heterogeneous metric sets [29, 51].
For example, Turhan et al. use the only 17 common metrics
between the NASA and SOFTLAB datasets that have het-
erogeneous metric sets [51]. However, finding other projects
with multiple common metrics can be challenging. As men-
tioned, there is only one common metric between NASA and
AEEEM. Also, only using common metrics may degrade the
performance of CPDP models. That is because some in-
formative metrics necessary for building a good prediction
model may not be in the common metrics across datasets.
For example, in the study of Turhan et al., the performance
of CPDP (0.35) by their approach did not outperform that
of WPDP (0.39) in terms of the average f-measure [51].

In this paper, we propose the heterogeneous defect predic-
tion (HDP) approach to predict defects across projects even
with heterogeneous metric sets. If the proposed approach is
feasible as in Figure 1c, we could reuse any existing defect
datasets to build a prediction model. For example, many
PROMISE defect datasets even if they have heterogeneous
metric sets [35] could be used as training datasets to predict
defects in any project.

The key idea of our HDP approach is matching metrics
that have similar distributions between source and target
datasets. In addition, we also used metric selection to re-
move less informative metrics of a source dataset for a pre-
diction model before metric matching.

Our empirical study shows that HDP models are feasible
and their prediction performance is promising. About 68%
of HDP predictions outperform or are comparable to WPDP
predictions with statistical significance.

Our contributions are as follows:

• Propose the heterogeneous defect prediction models.

• Conduct an extensive and large-scale empirical study to
evaluate the heterogeneous defect prediction models.

2. BACKGROUND AND RELATED WORK
The CPDP approaches have been studied by many re-

searchers of late [29, 37, 43, 51, 59]. Since the performance
of CPDP is usually very poor [59], researchers have proposed
various techniques to improve CPDP [29, 37, 51, 54].

Watanabe et al. proposed the metric compensation ap-
proach for CPDP [54]. The metric compensation transforms
a target dataset similar to a source dataset by using the av-
erage metric values [54]. To evaluate the performance of the
metric compensation, Watanabe et al. collected two defect
datasets with the same metric set (8 object-oriented metrics)
from two software projects and then conducted CPDP [54].

Rahman et al. evaluated the CPDP performance in terms
of cost-effectiveness and confirmed that the prediction per-
formance of CPDP is comparable to WPDP [43]. For the
empirical study, Rahman et al. collected 9 datasets with the
same process metric set [43].

Fukushima et al. conducted an empirical study of just-in-
time defect prediction in the CPDP setting [9]. They used
16 datasets with the same metric set [9]. The 11 datasets
were provided by Kamei et al. but 5 projects were newly
collected with the same metric set of the 11 datasets [9, 20].

However, collecting datasets with the same metric set
might limit CPDP. For example, if existing defect datasets
contain object-oriented metrics such as CK metrics [2], col-
lecting the same object-oriented metrics is impossible for
projects that are written in non-object-oriented languages.

Turhan et al. proposed the nearest-neighbour (NN) filter
to improve the performance of CPDP [51]. The basic idea of
the NN filter is that prediction models are built by source in-
stances that are nearest-neighbours of target instances [51].
To conduct CPDP, Turhan et al. used 10 NASA and SOFT-
LAB datasets in the PROMISE repository [35, 51].

Ma et al. proposed Transfer Naive Bayes (TNB) [29].
The TNB builds a prediction model by weighting source
instances similar to target instances [29]. Using the same
datasets used by Turhan et al., Ma et al. evaluated the
TNB models for CPDP [29, 51].

Since the datasets used in the empirical studies of Turhan
et al. and Ma et al. have heterogeneous metric sets, they
conducted CPDP using the common metrics [29, 51]. There
is another CPDP study with the top-K common metric sub-
set [17]. However, as explained in Section 1, CPDP using
common metrics is worse than WPDP [17, 51].

Nam et al. adapted a state-of-the-art transfer learning
technique called Transfer Component Analysis (TCA) and
proposed TCA+ [37]. They used 8 datasets in two groups,
ReLink and AEEEM, with 26 and 61 metrics respectively [37].

509

However, Nam et al. could not conduct CPDP between
ReLink and AEEEM because they have heterogeneous met-
ric sets. Since the project pool with the same metric set is
very limited, conducting CPDP using a project group with
the same metric set can be limited as well. For example,
at most 18% of defect datasets in the PROMISE repository
have the same metric set [35]. In other words, we cannot di-
rectly conduct CPDP for the 18% of the defect datasets by
using the remaining (82%) datasets in the PROMISE repos-
itory [35]. CPDP studies conducted by Canfora et al. and
Panichella et al. use 10 Java projects only with the same
metric set from the PROMISE repository [4, 35, 39]

Zhang et al. proposed the universal model for CPDP [57].
The universal model is built using 1398 projects from Source-
Forge and Google code and leads to comparable prediction
results to WPDP in their experimental setting [57].

However, the universal defect prediction model may be
difficult to apply for the projects with heterogeneous met-
ric sets since the universal model uses 26 metrics including
code metrics, object-oriented metrics, and process metrics.
In other words, the model can only be applicable for target
datasets with the same 26 metrics. In the case where the
target project has not been developed in object-oriented lan-
guages, a universal model built using object-oriented metrics
cannot be used for the target dataset.

He et al. addressed the limitations due to heterogeneous
metric sets in CPDP studies listed above [18]. Their ap-
proach, CPDP-IFS, used distribution characteristic vectors
of an instance as metrics. The prediction performance of
their best approach is comparable to or helpful in improv-
ing regular CPDP models [18].

However, the approach by He et al. is not compared with
WPDP [18]. Although their best approach is helpful to im-
prove regular CPDP models, the evaluation might be weak
since the prediction performance of a regular CPDP is usu-
ally very poor [59]. In addition, He et al. conducted exper-
iments on only 11 projects in 3 dataset groups [18].

We propose HDP to address the above limitations caused
by projects with heterogeneous metric sets. Contrary to the
study by He et al. [18], we compare HDP to WPDP, and
HDP achieved better or comparable prediction performance
to WPDP in about 68% of predictions. In addition, we
conducted extensive experiments on 28 projects in 5 dataset
groups. In Section 3, we explain our approach in detail.

3. APPROACH
Figure 2 shows the overview of HDP based on metric se-

lection and metric matching. In the figure, we have two
datasets, Source and Target, with heterogeneous metric sets.
Each row and column of a dataset represents an instance
and a metric, respectively, and the last column represents
instance labels. As shown in the figure, the metric sets in
the source and target datasets are not identical (X1 to X4

and Y1 to Y7 respectively).
When given source and target datasets with heterogeneous

metric sets, for metric selection we first apply a feature selec-
tion technique to the source. Feature selection is a common
approach used in machine learning for selecting a subset of
features by removing redundant and irrelevant features [13].
We apply widely used feature selection techniques for metric
selection of a source dataset as in Section 3.1 [10, 47].

After that, metrics based on their similarity such as dis-
tribution or correlation between the source and target met-

X1#X2#X3#X4# Label#
1" 1" 3" 10"Buggy"
8" 0" 1" 0" Clean"
�" �" �" �" �"
9" 0" 1" 1" Clean"

Metric
Matching

Source: Project A Target: Project B

Prediction
Model Build

(training)
Predict
(test)

Metric
Selection

Y1# Y2# Y3# Y4# Y5# Y6# Y7# Label#
3" 1" 1" 0" 2" 1" 9" ?"
1" 1" 9" 0" 2" 3" 8" ?"
�" �" �" �" �" �" �" �"
0" 1" 1" 1" 2" 1" 1" ?"

1" 3" 10"Buggy"
8" 1" 0" Clean"
�" �" �" �"
9" 1" 1" Clean"

1" 3" 10"Buggy"
8" 1" 0" Clean"
�" �" �" �"
9" 1" 1" Clean"

9" 1" 1" ?"
8" 3" 9" ?"
�" �" �" �"
1" 1" 1" ?"

Figure 2: Heterogeneous defect prediction

rics are matched up. In Figure 2, three target metrics are
matched with the same number of source metrics.

After these processes, we finally arrive at a matched source
and target metric set. With the final source dataset, HDP
builds a model and predicts labels of target instances.

In the following subsections, we explain the metric selec-
tion and matching in detail.

3.1 Metric Selection in Source Datasets
For metric selection, we used various feature selection ap-

proaches widely used in defect prediction such as gain ra-
tio, chi-square, relief-F, and significance attribute evalua-
tion [10, 47]. According to benchmark studies about various
feature selection approaches, a single best feature selection
approach for all prediction models does not exist [5, 15, 28].
For this reason, we conduct experiments under different fea-
ture selection approaches. When applying feature selection
approaches, we select top 15% of metrics as suggested by
Gao et al. [10]. In addition, we compare the prediction re-
sults with or without metric selection in the experiments.

3.2 Matching Source and Target Metrics
To match source and target metrics, we measure the sim-

ilarity of each source and target metric pair by using several
existing methods such as percentiles, Kolmogorov-Smirnov
Test, and Spearman’s correlation coefficient [30, 49]. We de-
fine the following three analyzers for metric matching:

• Percentile based matching (PAnalyzer)

• Kolmogorov-Smirnov Test based matching (KSAnalyzer)

• Spearman’s correlation based matching (SCoAnalyzer)

The key idea of these analyzers is computing matching
scores for all pairs between the source and target metrics.
Figure 3 shows a sample matching. There are two source
metrics (X1 and X2) and two target metrics (Y1 and Y2).
Thus, there are four possible matching pairs, (X1,Y1), (X1,Y2),
(X2,Y1), and (X2,Y2). The numbers in rectangles between

510

Source Metrics Target Metrics

X1

X2

Y1

Y2

0.8

0.4

0.5

0.3

Figure 3: An example of metric matching between
source and target datasets.

matched source and target metrics in Figure 3 represent
matching scores computed by an analyzer. For example,
the matching score between the metrics, X1 and Y1, is 0.8.

From all pairs between the source and target metrics, we
remove poorly matched metrics whose matching score is not
greater than a specific cutoff threshold. For example, if the
matching score cutoff threshold is 0.3, we include only the
matched metrics whose matching score is greater than 0.3.
In Figure 3, the edge (X1,Y2) in matched metrics will be
excluded when the cutoff threshold is 0.3. Thus, all the
candidate matching pairs we can consider include the edges
(X1,Y1), (X2,Y2), and (X2,Y1) in this example. In Section 4,
we design our empirical study under different matching score
cutoff thresholds to investigate their impact on prediction.

We may not have any matched metrics based on the cutoff
threshold. In this case, we cannot conduct defect prediction.
In Figure 3, if the cutoff threshold is 0.9, none of the matched
metrics are considered for HDP so we cannot build a pre-
diction model for the target dataset. For this reason, we
investigate target prediction coverage (i.e. what percentage
of target datasets could be predicted?) in our experiments.

After applying the cutoff threshold, we used the maximum
weighted bipartite matching [31] technique to select a group
of matched metrics, whose sum of matching scores is highest,
without duplicated metrics. In Figure 3, after applying the
cutoff threshold of 0.30, we can form two groups of matched
metrics without duplicated metrics. The first group con-
sists of the edges, (X1,Y1) and (X2,Y2), and another group
consists of the edge (X2,Y1). In each group, there are no
duplicated metrics. The sum of matching scores in the first
group is 1.3 (=0.8+0.5) and that of the second group is 0.4.
The first group has a greater sum (1.3) of matching scores
than the second one (0.4). Thus, we select the first match-
ing group as the set of matched metrics for the given source
and target metrics with the cutoff threshold of 0.30 in this
example.

Each analyzer for the metric matching scores is described
below.

3.2.1 PAnalyzer
PAnalyzer simply compares 9 percentiles (10th, 20th,. . . ,

90th) of ordered values between source and target metrics.
First, we compute the difference of n-th percentiles in

source and target metric values by the following equation:

Pij(n) =
spij(n)

bpij(n)
(1)

, where Pij(n) is the comparison function for n-th percentiles
of i-th source and j-th target metrics, and spij(n) and bpij(n)
are smaller and bigger percentile values respectively at n-th

percentiles of i-th source and j-th target metrics. For exam-
ple, if the 10th percentile of the source metric values is 20
and that of target metric values is 15, the difference is 0.75
(Pij(10) = 15/20 = 0.75).

Using this percentile comparison function, a matching score
between source and target metrics is calculated by the fol-
lowing equation:

Mij =

9∑
k=1

Pij(10× k)

9
(2)

, where Mij is a matching score between i-th source and j-th
target metrics. The best matching score of this equation is
1.0 when the values of the source and target metrics of all 9
percentiles are the same.

3.2.2 KSAnalyzer
KSAnalyzer uses a p-value from the Kolmogorov-Smirnov

Test (KS-test) as a matching score between source and tar-
get metrics. The KS-test is a non-parametric two sample
test that can be applicable when we cannot be sure about
the normality of two samples and/or the same variance [27,
30]. Since metrics in some defect datasets used in our em-
pirical study have exponential distributions [36] and metrics
in other datasets have unknown distributions and variances,
the KS-test is a suitable statistical test to compute p-values
for these datasets. In statistical testing, a p-value shows the
probability of whether two samples are significantly different
or not. We used the KolmogorovSmirnovTest implemented
in the Apache commons math library.

The matching score is:

Mij = pij (3)

, where pij is a p-value from the KS-test of i-th source and
j-th target metrics. A p-value tends to be zero when two
metrics are significantly different.

3.2.3 SCoAnalyzer
In SCoAnalyzer, we used the Spearman’s rank correla-

tion coefficient as a matching score for source and target
metrics [49]. Spearman’s rank correlation measures how
two samples are correlated [49]. To compute the coefficient,
we used the SpearmansCorrelation in the Apache commons
math library. Since the size of metric vectors should be the
same to compute the coefficient, we randomly select metric
values from a metric vector that is of a greater size than an-
other metric vector. For example, if the sizes of the source
and target metric vectors are 110 and 100 respectively, we
randomly select 100 metric values from the source metric to
agree to the size between the source and target metrics. All
metric values are sorted before computing the coefficient.

The matching score is as follows:

Mij = cij (4)

, where cij is a Spearman’s rank correlation coefficient be-
tween i-th source and j-th target metrics.

3.3 Building Prediction Models
After applying metric selection and matching, we can fi-

nally build a prediction model using a source dataset with
selected and matched metrics. Then, as a regular defect
prediction model, we can predict defects on a target dataset
with metrics matched to selected source metrics.

511

Table 1: The 28 defect datasets from five groups.

Group Dataset
of instances # of

metrics
Prediction
GranularityAll Buggy(%)

AEEEM
[8, 37]

EQ 325 129(39.69%)

61 Class
JDT 997 206(20.66%)
LC 399 64(9.26%)
ML 1862 245(13.16%)

PDE 1492 209(14.01%)

ReLink
[56]

Apache 194 98(50.52%)
26 FileSafe 56 22(39.29%)

ZXing 399 118(29.57%)

MORPH
[40]

ant-1.3 125 20(16.00%)

20 Class

arc 234 27(11.54%)
camel-1.0 339 13(3.83%)
poi-1.5 237 141(59.49%)

redaktor 176 27(15.34%)
skarbonka 45 9(20.00%)

tomcat 858 77(8.97%)
velocity-1.4 196 147(75.00%)
xalan-2.4 723 110(15.21%)
xerces-1.2 440 71(16.14%)

NASA
[35, 45]

cm1 327 42(12.84%)

37 Function
mw1 253 27(10.67%)
pc1 705 61(8.65%)
pc3 1077 134(12.44%)
pc4 1458 178(12.21%)

SOFTLAB
[51]

ar1 121 9(7.44%)

29 Function
ar3 63 8(12.70%)
ar4 107 20(18.69%)
ar5 36 8(22.22%)
ar6 101 15(14.85%)

4. EXPERIMENTAL SETUP
4.1 Research Questions

To systematically evaluate heterogeneous defect predic-
tion (HDP) models, we set three research questions.

• RQ1: Is heterogeneous defect prediction comparable to
WPDP (Baseline1)?

• RQ2: Is heterogeneous defect prediction comparable to
CPDP using common metrics (CPDP-CM, Baseline2)?

• RQ3: Is heterogeneous defect prediction comparable to
CPDP-IFS (Baseline3)?

RQ1, RQ2, and RQ3 lead us to investigate whether our HDP
is comparable to WPDP (Baseline1), CPDP-CM (Baseline2),
and CDDP-IFS (Baseline3) [18].

4.2 Benchmark Datasets
We collected publicly available datasets from previous stud-

ies [8, 37, 40, 51, 56]. Table 1 lists all dataset groups used in
our experiments. Each dataset group has a heterogeneous
metric set as shown in the table. Prediction Granularity in
the last column of the table means the prediction granularity
of instances. Since we focus on the distribution or correla-
tion of metric values when matching metrics, it is beneficial
to be able to apply the HDP approach on datasets even in
different granularity levels.

We used five groups with 28 defect datasets: AEEEM,
ReLink, MORPH, NASA, and SOFTLAB.

AEEEM was used to benchmark different defect predic-
tion models [8] and to evaluate CPDP techniques [18, 37].
Each AEEEM dataset consists of 61 metrics including object-
oriented (OO) metrics, previous-defect metrics, entropy met-
rics of change and code, and churn-of-source-code metrics [8].

Datasets in ReLink were used by Wu et al. [56] to improve
the defect prediction performance by increasing the quality
of the defect data and have 26 code complexity metrics ex-
tracted by the Understand tool [52].

The MORPH group contains defect datasets of several
open source projects used in the study about the dataset
privacy issue for defect prediction [40]. The 20 metrics used
in MORPH are McCabe’s cyclomatic metrics, CK metrics,
and other OO metrics [40].

NASA and SOFTLAB contain proprietary datasets from
NASA and a Turkish software company, respectively [51].
We used five NASA datasets, which share the same metric
set in the PROMISE repository [35, 45]. We used cleaned
NASA datasets (DS′ version) [45]. For the SOFTLAB group,
we used all SOFTLAB datasets in the PROMISE reposi-
tory [35]. The metrics used in both NASA and SOFTLAB
groups are Halstead and McCabe’s cyclomatic metrics but
NASA has additional complexity metrics such as parameter
count and percentage of comments [35].

Predicting defects is conducted across different dataset
groups. For example, we build a prediction model by Apache
in ReLink and tested the model on velocity-1.4 in MORPH
(Apache⇒velocity-1.4).1

We did not conduct defect prediction across projects in the
same group where datasets have the same metric set since
the focus of our study is on prediction across datasets with
heterogeneous metric sets. In total, we have 600 possible
prediction combinations from these 28 datasets.

4.3 Matching Score Cutoff Thresholds
To build HDP models, we apply various cutoff thresholds

for matching scores to observe how prediction performance
varies according to different cutoff values. Matched metrics
by analyzers have their own matching scores as explained in
Section 3. We apply different cutoff values (0.05 and 0.10,
0.20,. . . ,0.90) for the HDP models. If a matching score cut-
off is 0.50, we remove matched metrics with the matching
score ≤ 0.50 and build a prediction model with matched
metrics with the score > 0.50. The number of matched met-
rics varies by each prediction combination. For example,
when using KSAnalyzer with the cutoff of 0.05, the number
of matched metrics is four in cm1⇒ar5 while that is one
in ar6⇒pc3. The average number of matched metrics also
varies by analyzers and cutoff values; 4 (PAnalyzer), 2 (KS-
Analyzer), and 5 (SCoAnalyzer) in the cutoff of 0.05 but 1
(PAnalyzer), 1 (KSAnalyzer), and 4 (SCoAnalyzer) in the
cutoff of 0.90 on average.

4.4 Baselines
We compare HDP to three baselines: WPDP (Baseline1),

CPDP using common metrics (CPDP-CM) between source
and target datasets (Baseline2), and CPDP-IFS (Baseline3).

We first compare HDP to WPDP. Comparing HDP to
WPDP will provide empirical evidence of whether our HDP
models are applicable in practice.

We conduct CPDP using only common metrics (CPDP-
CM) between source and target datasets as in previous CPDP
studies [18, 29, 51]. For example, AEEEM and MORPH
have OO metrics as common metrics so we use them to
build prediction models for datasets between AEEEM and
MORPH. Since using common metrics has been adopted to
address the limitation on heterogeneous metric sets in previ-
ous CPDP studies [18, 29, 51], we set CPDP-CM as a base-
line to evaluate our HDP models. The number of matched
metrics varies across the dataset group. Between AEEEM

1Hereafter a rightward arrow (⇒) denotes a prediction com-
bination.

512

and ReLink, only one common metric exists, LOC. NASA
and SOFTLAB have 28 common metrics. On average, the
number of common metrics in our datasets are about five.

We include CPDP-IFS proposed by He et al. as a base-
line [18]. CPDP-IFS enables defect prediction on projects
with heterogeneous metric sets (Imbalanced Feature Sets)
by using the 16 distribution characteristics of values of each
instance such as mode, median, mean, harmonic mean, min-
imum, maximum, range, variation ratio, first quartile, third
quartile, interquartile range, variance, standard deviation,
coefficient of variance, skewness, and kurtosis [18]. The 16
distribution characteristics are used as features to build a
prediction model.

4.5 Experimental Design
For the machine learning algorithm, we use Logistic re-

gression, which is widely used for both WPDP and CPDP
studies [34, 37, 46, 59]. We use Logistic regression imple-
mented in Weka with default options [14].

For WPDP, it is necessary to split datasets into training
and test sets. We use 50:50 random splits, which are widely
used in the evaluation of defect prediction models [22, 37,
41]. For the 50:50 random splits, we use one half of the
instances for training a model and the rest for test (round
1). In addition, we use the two splits in a reverse way, where
we use the previous test set for training and the previous
training set for test (round 2). We repeat these two rounds
500 times, i.e. 1000 tests, since there is a randomness in
selecting instances for each split [1]. Simply speaking, we
repeat the two-fold cross validation 500 times.

For CPDP-CM, CPDP-IFS, and HDP, we build a predic-
tion model by using a source dataset and test the model on
the same test splits used in WPDP. Since there are 1000 dif-
ferent test splits for a within-project prediction, the CPDP-
CM, CPDP-IFS, and HDP models are tested on 1000 differ-
ent test splits as well.

4.6 Measures
To evaluate the prediction performance, we use the area

under the receiver operating characteristic curve (AUC).
The AUC is known as a useful measure for comparing dif-
ferent models and is widely used because AUC is unaffected
by class imbalance as well as being independent from the
cutoff probability (prediction threshold) that is used to de-
cide whether an instance should be classified as positive or
negative [12, 25, 43, 48]. Mende confirmed that it is difficult
to compare the defect prediction performance reported in
the defect prediction literature since prediction results come
from the different cutoffs of prediction thresholds [33]. How-
ever, the receiver operating characteristic curve is drawn by
both the true positive rate (recall) and the false positive rate
on various prediction threshold values. The higher AUC rep-
resents better prediction performance and the AUC of 0.5
means the performance of a random predictor [43].

To compare HDP by our approach to baselines, we also use
the Win/Tie/Loss evaluation, which is used for performance
comparison between different experimental settings in many
studies [23, 26, 53]. As we repeat the experiments 1000
times for a target project dataset, we conduct the Wilcoxon
signed-rank test (p<0.05) for all AUC values in baselines
and HDP [55]. If an HDP model for the target dataset out-
performs a corresponding baseline result after the statistical
test, we mark this HDP model as a ‘Win’. In a similar way,

Table 2: Comparison results among WPDP, CPDP-
CM, CPDP-IFS, and HDP by KSAnalyzer with the
cutoff of 0.05 in a median AUC.

Target
WPDP

(Baseline1)
CPDP-CM
(Baseline2)

CPDP-IFS
(Baseline3)

HDP
KSAnalyzer
cutoff=0.05

EQ 0.583 0.776 0.461 0.783
JDT 0.795 0.781 0.543 0.767
LC 0.575 0.636 0.584 0.655
ML 0.734 0.651 0.557 0.692*

PDE 0.684 0.682 0.566 0.717

Apache 0.714 0.689 0.635 0.717*
Safe 0.706 0.749 0.616 0.818*

Zxing 0.605 0.619 0.530 0.650*

ant-1.3 0.609 0.590 0.500 0.835
arc 0.670 0.611 0.523 0.701

camel-1.0 0.550 0.590 0.500 0.639
poi-1.5 0.707 0.676 0.606 0.701

redaktor 0.744 0.500 0.500 0.537
skarbonka 0.569 0.736 0.528 0.694*

tomcat 0.778 0.746 0.640 0.818
velocity-1.4 0.725 0.609 0.500 0.391
xalan-2.4 0.755 0.658 0.499 0.751
xerces-1.2 0.624 0.453 0.500 0.489

cm1 0.653 0.622 0.551 0.717*
mw1 0.612 0.584 0.614 0.727
pc1 0.787 0.675 0.564 0.752*
pc3 0.794 0.665 0.500 0.738*
pc4 0.900 0.773 0.589 0.682*

ar1 0.582 0.464 0.500 0.734*
ar3 0.574 0.862 0.682 0.823*
ar4 0.657 0.588 0.575 0.816*
ar5 0.804 0.875 0.585 0.911*
ar6 0.654 0.611 0.527 0.640

All 0.657 0.636 0.555 0.724*

we mark an HDP model as a ‘Loss’ when the results of a
baseline outperforms that of our HDP approach with statis-
tical significance. If there is no difference between a baseline
and HDP with statistical significance, we mark this case as
a ‘Tie’. Then, we count the number of wins, ties, and losses
for HDP models. By using the Win/Tie/Loss evaluation,
we can investigate how many HDP predictions it will take
to improve baseline approaches.

5. RESULTS
In this section, we report the experimental results of the

HDP approach by significance attribute selection for metric
selection and KSAnalyzer with the cutoff threshold of 0.05.

Among different metric selections, significance attribute
selection led to the best prediction performance overall. In
terms of analyzers, KSAnalyzer led to the best prediction
performance. Since the KSAnalyzer is based on the p-value
of a statistical test, we chose a cutoff of 0.05 which is a com-
monly accepted significance level in the statistical test [7].

5.1 Comparison Result with Baselines
Table 2 shows the prediction performance (a median AUC)

of baselines and HDP by KSAnalyzer with the cutoff of 0.05,
for each target as well as all targets (the last row in the
table). Baseline1 represents the WPDP results of a tar-
get project and Baseline2 shows the CPDP results using
common metrics (CPDP-CM) between source and target
projects. Baseline3 shows the results of CPDP-IFS proposed
by He et al. [18]. The last column shows the HDP results
by KSAnalyzer with the cutoff of 0.05. If there are better
results between Baseline1 and our approach with statistical

513

Table 3: Median AUCs of baselines and HDP in
KSAnalyzer (cutoff=0.05) by each source group.

Source
WPDP

(Baseline1)
CPDP-CM
(Baseline2)

CPDP-IFS
(Baseline3)

HDP
KS,0.05

Target
Coverage
of HDP

AEEEM 0.654 0.736 0.528 0.739* 48%
ReLink 0.654 0.665 0.500 0.702* 88%

MORPH 0.657 0.667 0.590 0.736* 100%
NASA 0.654 0.527 0.500 0.734* 52%

SOFTLAB 0.695 0.612 0.554 0.708* 100%

significance (Wilcoxon signed-rank test [55], p<0.05), the
better AUC values are in bold font as shown in Table 2. Be-
tween Baseline2 and our approach, better AUC values with
statistical significance are underlined in the table. Between
Baseline3 and our approach, better AUC values with statis-
tical significance are shown with an asterisk (*).

We observed the following results about RQ1:

• In 25 out of 28 targets, HDP by KSAnalyzer with the cut-
off of 0.05 leads to better or comparable results against
WPDP with statistical significance. (The WPDP results
in only ML, pc3, and pc4 are in bold font.)

• HDP by KSAnalyzer with the cutoff of 0.05 outperforms
WPDP with statistical significance when considering re-
sults from all targets (All in the last row in the table)
together in our experimental settings.

The following results are related to RQ2:

• HDP by KSAnalyzer with the cutoff of 0.05 leads to bet-
ter or comparable results to CPDP-CM with statistical
significance. (no underlines in CPDP-CM of Table 2)

• HDP by KSAnalyzer with the cutoff of 0.05 outperforms
CPDP-CM with statistical significance when considering
results from All targets in our experimental settings.

In terms of RQ3, we observed the following results:

• HDP by KSAnalyzer with the cutoff of 0.05 leads to bet-
ter or comparable results to CPDP-IFS with statistical
significance. (no asterisks in CPDP-IFS of Table 2)

• HDP by KSAnalyzer with the cutoff of 0.05 outperforms
CPDP-IFS with statistical significance when considering
results from All targets in our experimental settings.

5.2 Target Prediction Coverage
Target prediction coverage shows how many target projects

can be predicted by the HDP models. If there are no feasible
prediction combinations for a target because of there being
no matched metrics between source and target datasets, it
might be difficult to use an HDP model in practice.

For target prediction coverage, we analysed our HDP re-
sults by KSAnalyzer with the cutoff of 0.05 by each source
group. For example, after applying metric selection and
matching, we can build a prediction model by using EQ in
AEEEM and predict each of 23 target projects in four other
dataset groups. However, because of the cutoff value, some
predictions may not be feasible. For example, EQ⇒Apache
was not feasible because there are no matched metrics whose
matching scores are greater than 0.05. Instead, another
source dataset, JDT, in AEEEM has matched metrics to
Apache. In this case, we consider the source group, AEEEM,
covered Apache. In other words, if any dataset in a source
group can be used to build an HDP model for a target, we
count the target prediction is as covered.

Table 3 shows the median AUCs and prediction target
coverage. The median AUCs were computed by the AUC
values of the feasible HDP predictions and their correspond-
ing predictions of WPDP, CPDP-CM, and CPDP-IFS. We
conducted the Wilcoxon signed-rank test on results between
WPDP and baselines [55]. Like Table 2, better results be-
tween baselines and our approach with statistical signifi-
cance are in bold font, underlined, and/or with asterisks.

First of all, in each source group, we could observe HDP
outperforms or is comparable to WPDP with statistical sig-
nificance. For example, target projects were predicted by
some projects in ReLink and the median AUC for HDP by
KSAnalyzer is 0.702 while that of WPDP is 0.654. In addi-
tion, HDP by KSAnalyzer also outperforms or had a compa-
rable prediction performance against CPDP-CM. There are
no better results in CPDP-CM than those in HDP by KSAn-
alyzer with statistical significance (no underlined results in
third column in Table 3). In addition, HDP by KSAbalyzer
outperforms CPDP-IFS in all source groups.

The target prediction coverage in the MORPH and SOFT-
LAB groups yielded 100% as shown in Table 3. This im-
plies our HDP models may conduct defect prediction with
high target coverage even using datasets which only appear
in one source group. AEEEM, ReLink, and NASA groups
have 48%, 88%, and 52% respectively since some predic-
tion combinations do not have matched metrics because of
low matching scores (≤0.05). Thus, some prediction com-
binations using matched metrics with low matching scores
can be automatically excluded. In this sense, our HDP ap-
proach follows a similar concept to the two-phase predic-
tion model [21]: (1) checking prediction feasibility between
source and target datasets, and (2) predicting defects.

5.3 Win/Tie/Loss Results
To investigate our performance evaluation in detail, we re-

port the Win/Tie/Loss results of HDP by KSAnalyzer with
the cutoff of 0.05 against WPDP (Baseline1), CPDP-CM
(Baseline2), and CPDP-IFS (Baseline3) in Table 4.

KSAnalyzer with the cutoff of 0.05 conducted 222 out of
600 prediction combinations since 378 combinations do not
have any matched metrics because of the cutoff threshold.
In Table 4, the target dataset, EQ, was predicted in four
prediction combinations and our approach, HDP, outper-
forms Baseline1 and Baseline3 in the four combinations (i.e.
4 Wins). However, HDP outperforms Baseline2 in only two
combinations of the target, EQ (2 Wins).

Against Baseline1, the six targets such as EQ, Zxing, skar-
bonka, tomcat, ar3, and ar4 have only Win results. In other
words, defects in those six targets could be predicted better
by other source projects using HDP models by KSAnalyzer
compared to WPDP models.

However, the eight targets such as JDT, ML, redaktor,
velocity-1.4, xalan-2.4, xerces-1.2, pc3, and pc4 have no
Wins at all against Baseline1. In addition, other targets
still have Losses even though they have Win or Tie results.

Overall, the numbers of Win and Tie results are 147 and
3 respectively out of all of the 222 prediction combinations.
This means that about 67.6% of prediction combinations by
our HDP models achieve better or comparable prediction
performance than those in WPDP.

The Win/Tie/Loss results against Baseline2 and Base-
line3 show a similar trend. The HDP results in the 161
(72.5%) out of 222 prediction combinations show HDP out-

514

Table 4: Win/Tie/Loss results of HDP by KS-
Analyzer (cutoff=0.05) against WPDP (Baseline1),
CPDP-CM (Baseline2), and CPDP-IFS (Baseline3).

Target
Against

WPDP
(Baseline1)

CPDP-CM
(Baseline2)

CPDP-IFS
(Baseline3)

Win Tie Loss Win Tie Loss Win Tie Loss

EQ 4 0 0 2 2 0 4 0 0
JDT 0 0 5 3 0 2 5 0 0
LC 6 0 1 3 3 1 3 1 3
ML 0 0 6 4 2 0 6 0 0

PDE 3 0 2 2 0 3 5 0 0

Apache 6 0 5 8 1 2 9 0 2
Safe 14 0 3 12 0 5 15 0 2

Zxing 8 0 0 6 0 2 7 0 1

ant-1.3 6 0 1 6 0 1 5 0 2
arc 3 1 0 3 0 1 4 0 0

camel-1.0 3 0 2 3 0 2 4 0 1
poi-1.5 2 0 2 3 0 1 2 0 2

redaktor 0 0 4 2 0 2 3 0 1
skarbonka 11 0 0 4 0 7 9 0 2

tomcat 2 0 0 1 1 0 2 0 0
velocity-1.4 0 0 3 0 0 3 0 0 3
xalan-2.4 0 0 1 1 0 0 1 0 0
xerces-1.2 0 0 3 3 0 0 1 0 2

cm1 7 1 2 8 0 2 9 0 1
mw1 5 0 1 4 0 2 4 0 2
pc1 1 0 5 5 0 1 6 0 0
pc3 0 0 7 7 0 0 7 0 0
pc4 0 0 7 2 0 5 7 0 0

ar1 14 0 1 14 0 1 11 0 4
ar3 15 0 0 5 0 10 10 2 3
ar4 16 0 0 14 1 1 15 0 1
ar5 14 0 4 14 0 4 16 0 2
ar6 7 1 7 8 4 3 12 0 3

Total
147

66.2%
3

1.4%
72

32.4%
147

66.2%
14

6.3%
61

27.5%
182

82.0%
3

1.3%
37

16.7%

performs and is comparable to CPDP-CM. Against Base-
line3, 185 (83.3%) predction combinations are Win or Tie
results.

The Win/Tie/Loss results show that with our HDP model
by KSAnalyzer there is a higher possibility of getting a bet-
ter prediction performance.

However, there are still about 32% Loss results against
WPDP. In Section 6, we discuss and analyze why Loss re-
sults happen.

6. DISCUSSION

6.1 Why Matched Metric Works?
In Figure 4, we use box plots to represent distributions

of matched metrics. The gray, black, and white box plots
shows distributions of matched metrics in all, buggy, and
clean instances respectively. The three box plots on the left-
hand side represent distributions of a source metric while
the three box plots on the right-hand side represent those
of a target metric. The bottom and top of the boxes rep-
resent the first and third quartiles respectively. The solid
horizontal line in a box represents the median value in each
distribution. Black points in the figure are outliers.

Figure 4 explains how the prediction combination of ant-
1.3⇒ar5 can have a high AUC, 0.946. Suppose that a simple
model predicts that an instance is buggy when the metric
value of the instance is more than 40 in the case of Fig-
ure 4. In both datasets, approximately 75% or more buggy
and clean instances will be predicted correctly. In Figure 4,

0

50

100

150

Source: ant-1.3 (RFC) Target: ar5 (unique_operands)
Distribution

M
et

ric
 v

al
ue

s Instances
all

buggy

clean

Figure 4: Distribution of metrics (matching
score=0.91) from ant-1.3⇒ar5 (AUC=0.946).

0

250

500

750

1000

Source: Safe (CountLineCode) Target: velocity-1.4 (loc)
Distribution

M
et

ric
 v

al
ue

s Instances
all

buggy

clean

Figure 5: Distribution of metrics (matching
score=0.45) from Safe⇒velocity-1.4 (AUC=0.391).

the matched metrics in ant-1.3⇒ar5 are the response for
class (RFC: number of methods invoked by a class) [6] and
the number of unique operands (unique operands) [16], re-
spectively. The RFC and unique operands are not the same
metric so it might look like an arbitrary matching. How-
ever, they are matched based on their similar distributions
as shown in Figure 4. Typical defect prediction metrics have
tendencies in which higher complexity causes more bug-
proneness [8, 36, 42]. In Figure 4, instances with higher
values of RFC and unique operands have the tendency to
be more bug-prone. For this reason, the model using the
matched metrics could achieve such a high AUC (0.938).
We could observe this bug-prone tendency in other Win re-
sults. Since matching metrics is based on similarity of source
and target metric distributions, HDP also addresses several
issues related to a dataset shift such as the covariate shift
and domain shift discussed by Turhan [50].

Some prediction combinations have Loss results in Ta-
ble 4. We investigated matched metrics in these prediction
combinations. In velocity-1.4 of Table 4, all results are Loss.
Thus, as a representative loss result, we discuss the predic-
tion combination, Safe⇒velocity-1.4, whose AUC is 0.391.

As observed, Loss results were usually caused by differ-
ent tendencies of bug-proneness between source and target
metrics. Figure 5 shows how the bug-prone tendencies of
source and target metrics are different. Interestingly, the
matched source and target metric by the KSAnalyzer is the
same as LOC (CountLineCode and loc) in both. As we ob-
serve in the figure, the median of buggy instance values of
the source metric is higher than that of clean instances in

515

Table 5: Prediction performance (a median AUC
and % of Win) in different metric selections.

Approach
Against

HDP
WPDP CPDP-CM CPDP-IFS

AUC Win% AUC Win% AUC Win% AUC

Gain Ratio 0.657 63.7% 0.645 63.2% 0.536 80.2% 0.720
Chi-Square 0.657 64.7% 0.651 66.4% 0.556 82.3% 0.727
Significance 0.657 66.2% 0.636 66.2% 0.553 82.0% 0.724

Relief-F 0.670 57.0% 0.657 63.1% 0.543 80.5% 0.709
None 0.657 47.3% 0.624 50.3% 0.536 66.3% 0.663

that the more LOC implies the higher bug-proneness in the
case of Safe. However, the median of buggy instance values
in a target metric is lower than that of clean instance val-
ues in that the less LOC implies the higher bug-proneness
in velocity-1.4. This inconsistent tendency of bug-proneness
between the source and target metrics could degrade the
prediction performance although they are the same metric.

We regard the matching that has an inconsistent bug-
prone tendency between source and target metrics as a noisy
metric matching. We could observe this kind of noisy metric
matching in prediction combinations in other Loss results.

However, it is very challenging to filter out the noisy met-
ric matching since we cannot know labels of target instances
in advance. If we could design a filter for the noisy met-
ric matching, the Loss results would be minimized. Thus,
designing a new filter to mitigate these Loss results is an
interesting problem to address. Investigating this new filter
for the noisy metric matching will remain as future work.

Figure 5 also explains why CPDP-CM did not show rea-
sonable prediction performance. Although the matched met-
rics are same as LOC, its bug-prone tendency is inconsistent.
Thus, this matching using the common metric was noisy and
was not helpful for building a prediction model.

We also investigated whether the performance of HDP can
be affected by the size of a target dataset. If the size of a
target dataset gets smaller, it might be difficult to precisely
compute distribution similarity between source and target
metrics. As in Table 1, the sizes of datasets vary from 36
(ar5) and 1862 (ML), and the results of HDP in Table 4 also
vary. We could not find any relation between the size of a
target and the prediction performance. In ar5 of Table 4,
14 out of 18 predictions led to Win results, while in ML, all
six predictions led to Loss results. In velocity-1.4 that has a
relatively small number (196) of instances compared to other
datasets, all three predictions had Loss results. However,
tomcat that is of a bigger size (858) than velocity-1.4 had
only Win results. As discussed, the prediction performance
of HDP is dependent on the bug-prone tendencies of the
matched metrics. If the matched metrics are consistent in
terms of the bug-prone tendency, HDP can lead to promising
results regardless of the size of the target dataset.

6.2 Performance in Different Metric Selections
Table 5 shows prediction results on various metric selec-

tion approaches including with no metric selection (‘None’).
We compare the median AUCs of the HDP results by KSAn-
alyzer with the cutoff of 0.05 to those of WPDP, CPDP-CM,
or CPDP-IFS, and report % of Win results.

Overall, we could observe metric selection to be helpful
in improving prediction models in terms of AUC. When ap-
plying metric selection, the Win results account for more
than about 63% in most cases against WPDP and CPDP-

Table 6: Prediction performance in other analyz-
ers with the matching score cutoffs, 0.05 and 0.90.
(Anz=Analyzer, TgtCov=Target coverage)

Anz
Cut
off

Against
HDP Tgt

Cov
WPDP CPDP-CM CPDP-IFS

AUCWin% AUC Win% AUC Win% AUC

P 0.05 0.684 30.3% 0.640 45.2% 0.511 54.5% 0.617* 100%
P 0.90 0.657 54.2% 0.622 65.1% 0.535 78.3% 0.692* 96%

KS 0.05 0.657 66.2% 0.636 66.2% 0.553 82.4% 0.724* 100%
KS 0.90 0.657 100% 0.761 71.4% 0.624 100.0% 0.852* 21%

SCo 0.05 0.684 28.5% 0.640 37.3% 0.511 46.3% 0.542* 100%
SCo 0.90 0.684 29.0% 0.639 36.6% 0.511 48.4% 0.547 100%

CM. Against CPDP-IFS, the Win results of HDP account
for more than 80% after appying the metric selection ap-
proaches. This implies that the metric selection approaches
can remove irrelevant metrics to build a better prediction
model. In addition, this result confirms the previous studies
that we can build prediction models better than or compa-
rable to WPDP models with even a few key metrics [10,
17]. However, the percentages of Win results in ‘None’ were
lower than those in applying metric selection. Among metric
selection approaches, ‘Chi-Square’ and ‘Significance’ based
approaches lead to the best performance in terms of the per-
centage of the Win results (64.7%-66.2%) against WPDP.

6.3 Performance in Various Analyzers
In Table 6, we compare the prediction performance in

other analyzers with the matching score cutoff thresholds,
0.05 and 0.90. HDP’s prediction results by PAnalyzer, with
a cutoff of 0.90, are comparable to WPDP. This implies that
comparing 9 percentiles between source and target metrics
can evaluate the similarity of them well with a threshold of
0.90. However, PAnalyzer with the cutoff of 0.90 did not
achieve 100% target coverage and is too simple an approach
to lead to better prediction performance than KSAnalyzer.
In KSAnalyzer with a cutoff of 0.05, the AUC (0.724) out-
performs it (0.657) in WPDP with statistical significance.

HDP by KSAnalyzer with a cutoff of 0.90 could lead to
significant improvement in the AUC value (0.852) compared
to that (0.724) with the cutoff of 0.05. However, the target
coverage is just 21%. This is because some prediction combi-
nations are automatically filtered out since poorly matched
metrics, whose matching score is not greater than the cut-
off, are ignored. In other words, defect prediction for 79%
of targets was not conducted since the matching scores of
matched metrics in prediction combinations for the targets
are not greater than 0.90 so that all matched metrics in the
combinations were ignored.

An interesting observation in PAnalyzer and KSAnalyzer
is that AUC values of HDP by those analyzers improved
when a cutoff threshold increased. As the cutoff thresh-
old increased as 0.05, 0.10, 0.20,. . . , and 0.90, we observed
prediction results by PAnalyzer and KSAnalyzer gradually
improved from 0.617 to 0.692 and 0.724 to 0.852 in AUC,
respectively. This means these two analyzers can filter out
negative prediction combinations well. As a result, the per-
centage of Win results are also significantly increased.

Results by SCoAnalyzer were worse than WPDP results.
In addition, prediction performance rarely changed regard-
less of cutoff thresholds; results by SCoAnalyzer in different
cutoffs from 0.05 to 0.90 did not vary as well. A possible

516

Table 7: Win/Tie percentages of HDP by KSAna-
lyzer (cutoff=0.05) against WPDP, CPDP-CM, and
CPDP-IFS by different machine learners.

HDP
Learners

Against
WPDP CPDP-CM CPDP-IFS

Win Tie Win Tie Win Tie

Logistic 66.2% 1.4% 66.2% 6.3% 82.0% 2.7%
RandomForest 10.4% 2.3% 42.3% 1.4% 65.8% 2.2%

BayesNet 34.7% 4.1% 45.9% 2.7% 66.2% 2.7%
SVM 24.3% 23.0% 27.5% 0.0% 32.9% 14.9%
J48 30.2% 11.7% 32.4% 1.4% 41.9% 12.1%

SimpleLogistic 45.5% 2.7% 69.4% 6.8% 84.2% 3.2%
LMT 42.8% 3.2% 64.4% 6.3% 79.7% 3.2%

reason is that SCoAnalyzer does not directly compare the
distribution between source and target metrics. This result
implies that the similarity of distribution between source
and target metrics is a very important factor for building a
better prediction model.

6.4 Performance in Various Learners
To investigate if HDP works with other machine learn-

ers, we built HDP models (KSAnalyzer and the cutoff of
0.05) with various learners used in defect prediction litera-
ture such as Random Forest, BayesNet, SVM, J48 Decision
Tree, Simple Logistic, and Logistic Model Trees (LMT) [8,
11, 24, 25, 37, 48]. Table 7 shows Win/Tie results.

Logistic regression (Logistic) led to the best results among
various learners. The Logistic regression models works well
when there is a linear relationship between a predictor vari-
able (a metric) and the logit transformation of the outcome
variable (bug-proneness) [3]. In our study, this linear rela-
tionship is related to the bug-prone tendency of a metric,
that is, a higher complexity causes more bug-proneness [8,
36, 42]. As the consistent bug-prone tendency of matched
metrics is important in HDP, the HDP models built by Lo-
gistic regression can lead to the best prediction performance.

HDP models built by other learners such as Simple logis-
tic and LMT led to comparable results to Logistic regression
against CPDP-CM and CPDP-IFS. Against Baseline2, Win
results (69.4% and 64.4%) in Simple Logistic and LMT are
comparable to Win results (66.2%) in Logistic. Simple lo-
gistic also uses the logit function and LMT adopts Logistic
regression at the leaves of decision tree [11]. In other words,
both learners consider the linear relationship like Logistic
regression [3]. In our experimental settings, HDP tends to
work well with the learners based on the linear relationship
between a metric and a label (bug-proneness).

6.5 Practical Guidelines for HDP
We proposed the HDP models to enable defect prediction

on software projects by using training datasets from other
projects even with heterogeneous metric sets. When we have
training datasets in the same project or in other projects
with the same metric set, we can simply conduct WPDP
or CPDP using recently proposed CPDP techniques respec-
tively [4, 29, 37, 39, 44]. However, in practice, it might be
that no training datasets for both WPDP and CPDP exist.
In this case, we can apply the HDP approach.

In Section 5 and Table 6, we confirm that the overall result
from HDP by KSAnalyzer with the cutoff of 0.05 outper-
forms the WPDP and shows 100% target coverage. Since
KSAnalyzer can match similar source and target metrics,

we guide the use of KSAnalyzer for HDP. In terms of the
matching score cutoff threshold, there is a trade-off between
prediction performance and target coverage. Since a cutoff
of 0.05 that is the widely used level of statistical signifi-
cance [7], we can conduct HDP using KSAnalyzer with the
cutoff of 0.05. However, we observe some Loss results in our
empirical study. To minimize the percentage of Loss results,
we can sacrifice the target coverage by increasing the cutoff
as Table 6 shows KSAnalyzer with the cutoff of 0.90 led to
100% Win results in feasible predictions against WPDP.

6.6 Threats to Validity
We cannot generalize our conclusions since 28 datasets for

the experiments may not be representative. However, we
tried to select various datasets used in papers published in
top software engineering venues [8, 25, 37, 40, 51, 56]. In ad-
dition, we used datasets from both open-source (AEEEM [8,
37], ReLink [56], and MORPH [40]) and proprietary projects
(NASA [25, 51] and SOFTLAB [51]).

We evaluated our HDP models in AUC. AUC is known
as a good measure for comparing different prediction mod-
els [12, 25, 43, 48]. However, validating prediction models in
terms of both precision and recall is also required in practice.
To fairly compare WPDP and HDP models in precision and
recall, we need to identify a proper threshold of prediction
probability. Identifying the proper threshold is a challenging
issue and remains as future work.

We computed matching scores using all source and target
instances for each prediction combination. However, with
the matching scores, we tested prediction models on a test
set from the 50:50 random splits because of the WPDP mod-
els as explained in Section 4.5. To conduct WPDP with all
instances of a project dataset as a test set, we need a training
dataset from the previous release of the same project. How-
ever, the training dataset is not available for our subjects.
Instead of using the 50:50 random splits, we additionally
conducted experiments about HDP against CPDP-CM and
CPDP-IFS by testing a prediction model on a test set using
all instances of a target dataset in each prediction combina-
tion. In this setting, the median AUC of HDP was 0.723 and
the median AUCs of the corresponding results in CPDP-CM
and CPDP-IFS were 0.636 and 0.555 respectively. These
results are similar to those from the 50:50 random splits in
Section 5. In other words, as long as the bug-prone tendency
of matched metrics is consistent, HDP yields promising re-
sults.

7. CONCLUSION
Cross-project defect prediction cannot be conducted across

projects with heterogeneous metric sets. To address this lim-
itation, we proposed heterogeneous defect prediction (HDP)
based on metric matching using statistical analysis [30]. Our
empirical evaluation showed the proposed HDP models are
feasible and yield promising results.

HDP is very promising as it permits potentially all hetero-
geneous datasets of software projects to be used for defect
prediction on new projects or projects lacking in defect data.
In addition, it may not be limited to defect prediction. This
technique can potentially be applicable to all prediction and
recommendation based approaches for software engineering
problems. As future work, we will explore the feasibility
of building various prediction and recommendation models
using heterogeneous datasets.

517

8. REFERENCES
[1] A. Arcuri and L. Briand. A practical guide for using

statistical tests to assess randomized algorithms in
software engineering. In Proceedings of the 33rd
International Conference on Software Engineering,
pages 1–10, New York, NY, USA, 2011. ACM.

[2] V. R. Basili, L. C. Briand, and W. L. Melo. A
validation of object-oriented design metrics as quality
indicators. IEEE Trans. Softw. Eng., 22:751–761,
October 1996.

[3] J. Bruin. newtest: command to compute new test,
http://www.ats.ucla.edu/stat/stata/ado/analysis/,
Feb. 2011.

[4] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto,
A. Panichella, and S. Panichella. Multi-objective
cross-project defect prediction. In Software Testing,
Verification and Validation, 2013 IEEE Sixth
International Conference on, March 2013.

[5] C. Catal and B. Diri. Investigating the effect of
dataset size, metrics sets, and feature selection
techniques on software fault prediction problem.
Information Sciences, 179(8):1040 – 1058, 2009.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Softw. Eng.,
20:476–493, June 1994.

[7] G. W. Corder and D. I. Foreman. Nonparametric
Statistics for Non-Statisticians: A Step-by-Step
Approach. New Jersey: Wiley, 2009.

[8] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating
defect prediction approaches: a benchmark and an
extensive comparison. Empirical Software Engineering,
17(4-5):531–577, 2012.

[9] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita,
and N. Ubayashi. An empirical study of just-in-time
defect prediction using cross-project models. In
Proceedings of the 11th Working Conference on
Mining Software Repositories, pages 172–181, New
York, NY, USA, 2014. ACM.

[10] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya.
Choosing software metrics for defect prediction: An
investigation on feature selection techniques. Softw.
Pract. Exper., 41(5):579–606, Apr. 2011.

[11] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting
the impact of classification techniques on the
performance of defect prediction models. In Proc. of
the 37th Int’l Conf. on Software Engineering (ICSE),
ICSE ’15, pages 789–800, 2015.

[12] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall.
Method-level bug prediction. In Proceedings of the
ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, pages
171–180, New York, NY, USA, 2012. ACM.

[13] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. J. Mach. Learn. Res.,
3:1157–1182, Mar. 2003.

[14] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: an update. SIGKDD Explor. Newsl.,
11:10–18, November 2009.

[15] M. Hall and G. Holmes. Benchmarking attribute
selection techniques for discrete class data mining.
Knowledge and Data Engineering, IEEE Transactions

on, 15(6):1437–1447, Nov 2003.

[16] M. H. Halstead. Elements of Software Science
(Operating and Programming Systems Series). Elsevier
Science Inc., New York, NY, USA, 1977.

[17] P. He, B. Li, X. Liu, J. Chen, and Y. Ma. An
empirical study on software defect prediction with a
simplified metric set. Information and Software
Technology, 59(0):170 – 190, 2015.

[18] P. He, B. Li, and Y. Ma. Towards cross-project defect
prediction with imbalanced feature sets. CoRR,
abs/1411.4228, 2014.

[19] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang. An
investigation on the feasibility of cross-project defect
prediction. Automated Software Engineering,
19(2):167–199, 2012.

[20] Y. Kamei, E. Shihab, B. Adams, A. Hassan,
A. Mockus, A. Sinha, and N. Ubayashi. A large-scale
empirical study of just-in-time quality assurance.
Software Engineering, IEEE Transactions on,
39(6):757–773, June 2013.

[21] D. Kim, Y. Tao, S. Kim, and A. Zeller. Where should
we fix this bug? a two-phase recommendation model.
Software Engineering, IEEE Transactions on,
39(11):1597–1610, Nov 2013.

[22] M. Kläs, F. Elberzhager, J. Münch, K. Hartjes, and
O. von Graevemeyer. Transparent combination of
expert and measurement data for defect prediction: an
industrial case study. In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering - Volume 2, pages 119–128, New York,
NY, USA, 2010. ACM.

[23] E. Kocaguneli, T. Menzies, J. Keung, D. Cok, and
R. Madachy. Active learning and effort estimation:
Finding the essential content of software effort
estimation data. Software Engineering, IEEE
Transactions on, 39(8):1040–1053, 2013.

[24] T. Lee, J. Nam, D. Han, S. Kim, and I. P. Hoh. Micro
interaction metrics for defect prediction. In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering,
2011.

[25] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
Software Engineering, IEEE Transactions on,
34(4):485–496, 2008.

[26] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou.
Sample-based software defect prediction with active
and semi-supervised learning. Automated Software
Engineering, 19(2):201–230, 2012.

[27] H. W. Lilliefors. On the kolmogorov-smirnov test for
normality with mean and variance unknown. Journal
of the American Statistical Association, 62(318):pp.
399–402, 1967.

[28] H. Liu, J. Li, and L. Wong. A comparative study on
feature selection and classification methods using gene
expression profiles and proteomic patterns. Genome
Informatics, 13:51–60, 2002.

[29] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer
learning for cross-company software defect prediction.
Inf. Softw. Technol., 54(3):248–256, Mar. 2012.

[30] F. J. Massey. The kolmogorov-smirnov test for

518

goodness of fit. Journal of the American Statistical
Association, 46(253):68–78, 1951.

[31] J. Matouek and B. Gärtner. Understanding and Using
Linear Programming (Universitext). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

[32] T. McCabe. A complexity measure. Software
Engineering, IEEE Transactions on, SE-2(4):308–320,
Dec 1976.

[33] T. Mende. Replication of defect prediction studies:
Problems, pitfalls and recommendations. In
Proceedings of the 6th International Conference on
Predictive Models in Software Engineering, pages
5:1–5:10, New York, NY, USA, 2010. ACM.

[34] A. Meneely, L. Williams, W. Snipes, and J. Osborne.
Predicting failures with developer networks and social
network analysis. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations
of software engineering, pages 13–23, 2008.

[35] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli,
J. Krall, F. Peters, and B. Turhan. The promise
repository of empirical software engineering data, June
2012.

[36] T. Menzies, J. Greenwald, and A. Frank. Data mining
static code attributes to learn defect predictors. IEEE
Trans. Softw. Eng., 33:2–13, January 2007.

[37] J. Nam, S. J. Pan, and S. Kim. Transfer defect
learning. In Proceedings of the 2013 International
Conference on Software Engineering, pages 382–391,
Piscataway, NJ, USA, 2013. IEEE Press.

[38] T. Ostrand, E. Weyuker, and R. Bell. Predicting the
location and number of faults in large software
systems. Software Engineering, IEEE Transactions on,
31(4):340–355, April 2005.

[39] A. Panichella, R. Oliveto, and A. De Lucia.
Cross-project defect prediction models: L’union fait la
force. In Software Maintenance, Reengineering and
Reverse Engineering (CSMR-WCRE), 2014 Software
Evolution Week - IEEE Conference on, pages 164–173,
Feb 2014.

[40] F. Peters and T. Menzies. Privacy and utility for
defect prediction: experiments with morph. In
Proceedings of the 2012 International Conference on
Software Engineering, pages 189–199, Piscataway, NJ,
USA, 2012. IEEE Press.

[41] M. Pinzger, N. Nagappan, and B. Murphy. Can
developer-module networks predict failures? In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering,
pages 2–12, New York, NY, USA, 2008. ACM.

[42] F. Rahman and P. Devanbu. How, and why, process
metrics are better. In Proceedings of the 2013
International Conference on Software Engineering,
Piscataway, NJ, USA, 2013. IEEE Press.

[43] F. Rahman, D. Posnett, and P. Devanbu. Recalling
the “imprecision” of cross-project defect prediction. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software
Engineering, New York, NY, USA, 2012. ACM.

[44] D. Ryu, O. Choi, and J. Baik. Value-cognitive
boosting with a support vector machine for
cross-project defect prediction. Empirical Software
Engineering, pages 1–29, 2014.

[45] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data
quality: Some comments on the nasa software defect
datasets. Software Engineering, IEEE Transactions
on, 39(9):1208–1215, Sept 2013.

[46] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E.
Hassan. High-impact defects: a study of breakage and
surprise defects. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European
conference on Foundations of software engineering,
pages 300–310, New York, NY, USA, 2011. ACM.

[47] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim.
Reducing features to improve code change-based bug
prediction. IEEE Transactions on Software
Engineering, 39(4):552–569, 2013.

[48] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A
general software defect-proneness prediction
framework. Software Engineering, IEEE Transactions
on, 37(3):356–370, 2011.

[49] C. Spearman. The proof and measurement of
association between two things. International Journal
of Epidemiology, 39(5):1137–1150, 2010.

[50] B. Turhan. On the dataset shift problem in software
engineering prediction models. Empirical Software
Engineering, 17(1-2):62–74, 2012.

[51] B. Turhan, T. Menzies, A. B. Bener, and
J. Di Stefano. On the relative value of cross-company
and within-company data for defect prediction.
Empirical Softw. Eng., 14:540–578, October 2009.

[52] Understand 2.0. http://www.scitools.com/products/.

[53] G. Valentini and T. G. Dietterich. Low bias bagged
support vector machines. In Proceedings of the
Twentieth International Conference on Machine
Learning, pages 752–759. AAAI Press, 2003.

[54] S. Watanabe, H. Kaiya, and K. Kaijiri. Adapting a
fault prediction model to allow inter languagereuse. In
Proceedings of the 4th International Workshop on
Predictor Models in Software Engineering, pages
19–24, New York, NY, USA, 2008. ACM.

[55] F. Wilcoxon. Individual Comparisons by Ranking
Methods. Biometrics Bulletin, 1(6):80–83, Dec. 1945.

[56] R. Wu, H. Zhang, S. Kim, and S. Cheung. Relink:
Recovering links between bugs and changes. In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering,
2011.

[57] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou.
Towards building a universal defect prediction model.
In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, pages
182–191, New York, NY, USA, 2014. ACM.

[58] T. Zimmermann and N. Nagappan. Predicting defects
using network analysis on dependency graphs. In
Proceedings of the 30th international conference on
Software engineering, pages 531–540, 2008.

[59] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy. Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In
Proceedings of the the 7th joint meeting of the
European software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering, pages 91–100, New York, NY,
USA, 2009. ACM.

519

