
Measure It? Manage It? Ignore It?
Software Practitioners and Technical Debt

Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and Ian Gorton
∗

Carnegie Mellon University Software Engineering Institute
Pittsburgh, PA, USA

{nernst,sbellomo,ozkaya,rn,igorton}@sei.cmu.edu

ABSTRACT
The technical debt metaphor is widely used to encapsulate
numerous software quality problems. The metaphor is at-
tractive to practitioners as it communicates to both techni-
cal and nontechnical audiences that if quality problems are
not addressed, things may get worse. However, it is unclear
whether there are practices that move this metaphor beyond
a mere communication mechanism. Existing studies of tech-
nical debt have largely focused on code metrics and small
surveys of developers. In this paper, we report on our sur-
vey of 1,831 participants, primarily software engineers and
architects working in long-lived, software-intensive projects
from three large organizations, and follow-up interviews of
seven software engineers. We analyzed our data using both
nonparametric statistics and qualitative text analysis. We
found that architectural decisions are the most important
source of technical debt. Furthermore, while respondents
believe the metaphor is itself important for communication,
existing tools are not currently helpful in managing the de-
tails. We use our results to motivate a technical debt time-
line to focus management and tooling approaches.

Categories and Subject Descriptors
K.6.3 [Software Management]: Management–software de-
velopment, software selection

Keywords
Technical debt, architecture, survey

1. INTRODUCTION
The technical debt metaphor concisely describes a univer-

sal problem that software engineers face when developing
software: how to balance near-term value with long-term
quality. The appeal is that once technical debt is made vis-
ible, engineers (and eventually, their managers) can begin

∗Now at College of Computer and Information Science,
Northeastern University, i.gorton@neu.edu

to understand in what ways debt can be harmful or ben-
eficial to a project. Debt accumulates and causes ongoing
costs (“interest”) to system quality in maintenance and evo-
lution. Debt can be taken on deliberately, then monitored
and managed (“principal repaid”), to achieve business value.

The usefulness of this concept prompted the software engi-
neering research community, software consultants, and tool
vendors alike to pay more attention to understanding what
constitutes technical debt and how to measure, manage, and
communicate technical debt. Recent systematic literature
reviews [19, 33] report that

• using code quality analysis techniques to understand
technical debt has been the dominant focus in research
and by tool vendors.

• beyond code quality, other work explores the suitabil-
ity of the metaphor in other phases of the software
life cycle: for example, “requirements debt,” “testing
debt,”“code debt,” and “design debt.”

Practitioners currently use the term technical debt to mean,
broadly, a “shortcut for expediency” [23] and, more specif-
ically, bad code or inadequate refactoring [15]. Shull et al.
[29], in a review paper on research in technical debt, high-
light that technical debt is a multi-faceted problem. Ad-
dressing it effectively in practice requires research in soft-
ware evolution, risk management, qualitative assessment of
context, software metrics, program analysis, and software
quality. Applying technical debt research starts with identi-
fying a project’s sources of “pain.” In order to give guidance
to a specific project, research in this area must be grounded
in the project’s context.

This combination of diverse definitions of technical debt in
research, alongside the need to ground research on technical
debt in practice, raised three research questions:

1. To what extent do practitioners have a commonly shared
definition of technical debt?

2. How much of technical debt is architectural in nature?

3. What management practices and tools are used in in-
dustry to deal with debt?

To investigate these questions, we conducted a two-part
study. First, we administered a survey of software profes-
sionals in three large organizations, with 1,831 responses;
second, we held semistructured, follow-up interviews with
seven respondents, all professional software engineers, to fur-
ther investigate the emerging themes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786848

50

Our study results show that the concept of technical debt
has a broad shared understanding among software practi-
tioners and managers. Our main finding is that architectural
choices, often made very early in the software life cycle, are
a key source of technical debt. In the perception of devel-
opers and architects, management remains unaware of the
importance of technical debt. The lack of tool support for
accurately managing and tracking architectural sources of
debt is a key issue and remains a gap in practice. This
stands in contrast to the existing heavy focus on code-based
analysis of technical debt. Building on these observations,
we introduce a timeline of technical debt to better distin-
guish between the time when debt is incurred and the ongo-
ing problems it causes to help clarify issues and focus future
research.

2. RELATED WORK
Defining, analyzing, visualizing, and managing technical

debt have received increasing research attention. Here we
present relevant work that maps to our research questions
and findings.

Defining technical debt. The original definition of
technical debt is from Ward Cunningham [4]. Since then,
numerous people have proposed definitions, including Mc-
Connell [23], Kruchten [16], and Seaman [29], among others
(e.g., Fowler[8] or Kniberg [15]). In order to understand
implications of technical debt, there have been attempts to
create categories of debt or relate it to different development
life cycles [13, 1]. Small-scale interview-based studies on un-
derstanding how developers talk about technical debt also
exist [21, 31]. Our study is the first study that looks at the
perceptions of software professionals with a broad empirical
basis.

Correlating code violations with technical debt mea-
sures. A number of studies have examined the relationship,
if any, between software metrics and technical debt. These
studies applied existing code smells, coupling and cohesion,
and dependency analysis to identify areas of technical debt
[7, 11, 22]. There is also work investigating what adequate
tool support means when focusing on code analysis and tech-
nical debt [6]. Our study highlights that the use of code
violation tools and techniques is perceived to be of minimal
value in understanding technical debt.

Architecture issues as technical debt. Understand-
ing how to manage architectural concerns to avoid techni-
cal debt accumulation is an important research topic, as re-
flected by systematic literature reviews. This body of work
includes efforts to come up with architectural measures [25],
to map architectural dependencies [24] or pattern drift to
decay [10], and to provide an uncertainty-based evolution
of architectural refactoring priorities [20]. Our study is the
first to empirically demonstrate that a focus on architectural
issues has merit in practice as well.

Theoretical foundations of technical debt. Schmid
explores technical debt as an aspect of software evolution
[27], and Shull and others focus on empirical foundations
[21]. Understanding the benefit, principle, and interest and
mapping properly to software design decisions and evolu-
tion have been investigated in industrial case studies without
generalizable results to date [3, 12, 30]. A theory of techni-
cal debt and its management practices is yet to emerge. Our
study is different in that it investigates broad-based profes-
sional perceptions and contributes to further understanding

of a theory of technical debt, with a timeline for mapping
root causes and symptoms.

3. RESEARCH QUESTIONS
Our goal in this study was to understand how software

engineers relate to technical debt and whether they use tools
and techniques to manage it. We formulated the following
research questions.

RQ1. Do professional software engineers have a shared
definition of technical debt?

Research Question 1 investigates whether technical debt
is a concept with shared meaning and whether there is con-
sensus on what technical debt is at a fine-grained level (e.g.,
software life-cycle stage). This research topic was motivated
by questions raised in the Managing Technical Debt work-
shop series [17] and a literature review from Li et al. [19].

RQ2. Are issues with architectural elements—such as
module dependencies, external dependencies, external team
dependencies, and architecture decisions—among the most
significant sources of technical debt?

Research Question 2 investigates a mapping to a portion
of the definition of technical debt by Steve McConnell: “A
design or construction approach that’s expedient in the short
term but that creates a technical context in which the same
work will cost more to do later than it would cost to do now
(including increased cost over time)” [23]. What do these
short-term design approaches consist of?

RQ3. Are there practices and tools for managing technical
debt?

Research Question 3 investigates whether software pro-
fessionals are measuring technical debt, whether they think
they should actively manage technical debt, and the role
that tools may play.

4. STUDY DESIGN
Since we were interested in broad-based, industry prac-

tices, a targeted survey of practicing software professionals
was appropriate. We paired that with follow-up interviews
to investigate our research questions in more detail. We
conducted the survey with software professionals—including
developers, testers, architects, and managers—at two large
multinational corporations and one government research lab
(not ours). Based on the responses to the survey, and moti-
vated by Research Question 2, we identified engineers who
were concerned about bad architecture choices as technical
debt for follow-up one-hour interviews.

Our study design is inspired by that described in Kim
et al. on refactoring [14], Gousios et al. on pull-request
integration [9], and Seaman [28] on survey and interview
analysis.

4.1 Research Protocol
The research questions formed the basis for developing our

survey and interview instruments and guided our analysis of
the data.

If respondents indicated they were unfamiliar with the
term, our survey instrument first gave McConnell’s defini-
tion of technical debt (“a design or construction approach
that is expedient in the short term but that creates a tech-
nical context in which the same work will cost more to do
later than it would cost to do now, including increased cost
over time” [23]). It then opened with multiple-choice ques-

51

Table 1: Collaborator Characteristics

Org. Type Description Num.
Surveys
Sent

A Multi-
national
for-
profit

Fortune 500 organization
with headquarters in the
U.S., hardware and soft-
ware organization

3,500+

B Multi-
national
for-
profit

Fortune 500 organization
with headquarters in Eu-
rope, hardware and soft-
ware organization

15,000+

C Govt.
R&D

U.S.-based research soft-
ware development lab

200+

tions on demographics and system context. Next, we asked
two open-ended (free-text) questions to hear in the respon-
dents’ own words their understanding of technical debt by
asking them to provide a definition and an example. This
was followed by closed questions based primarily on Likert-
style rating of agreement or disagreement, with one ranking
question. These closed questions were influenced by the def-
inition and practices emerging from the reported results of
the Managing Technical Debt research community (attended
by academia and industry) [16]. We asked two additional
open-ended questions about challenges managing technical
debt and tools used.

We piloted our survey with a focus group consisting of
other researchers and practicing architects to refine our ques-
tions. We mapped our questions in the survey to our re-
search questions before analyzing the response data. Our
survey and interview instruments are available online.1 We
cannot share actual responses due to confidentiality agree-
ments with our collaborators.

To distribute the survey, we leveraged connections to in-
dustrial partners, and our partners were enthusiastic and
helpful in obtaining broad corporate acceptance of the sur-
vey. We distributed the survey to the three different com-
panies using their internal software developer channels, in-
cluding special interest groups and custom mailing aliases.
Table 1 lists their characteristics.

The survey was open at each organization for three weeks,
with one initial announcement and one reminder midway.
In two organizations, a drawing for an iPad was offered for
those who participated in the survey.

After the survey, we conducted seven follow-up interviews
with people who indicated that they were willing to help:
four from Organization A, two from Organization B, and one
from Organization C. All were senior developers or architects
(a distinction without a difference for our subjects). Their
systems ranged from 100,000 source lines of code (SLOC) to
1 million SLOC. We followed a predefined interview script
(see the online appendix in Note 1) while allowing variation
and path exploration as necessary. The interviews focused
on the role of architectural decisions in technical debt.

4.2 Respondents
We sent the surveys to more than 18,000 potential tar-

gets, although it is hard to quantify how many were dupli-

1http://github.com/neilernst/td-survey

cates or inactive accounts. Across all three collaborators,
1,831 respondents began the survey, and 536 respondents
answered all questions, an overall response rate of 29%, al-
though response rate varied per question (which we report
as we discuss each question). None of the questions were
mandatory. Respondents had on average over 6 years ex-
perience, with 32% over 15 years; roles selected included
developers (42%), system engineers (7%), QA/testers (7%),
project leads/managers (32%), architects (7%), and other
(6%).

There were 39 separate business units represented among
the three companies, covering a broad set of domains, from
scientific computing to command and control, business in-
formation systems, and embedded software. Most projects
were web systems (24%) or embedded systems (31%). Proj-
ects generally consisted of 10 to 20 people, although 32%
had fewer than 9 staff (including contractors and business
staff). The systems were on average 3 to 5 years old, but a
significant number (29%) were more than 10 years old. The
systems were typically between 100,000 SLOC and 1 million
SLOC in size. Most respondents used Scrum (33%) or in-
cremental development methods (20%), but some used self-
admitted waterfall methods (15%) and some had no method-
ology (17%!).

4.3 Analysis
For the closed-ended questions, we prefaced each question

with a statement to “think of your current or most recent
project” in order to ground the responses. We treat answers
to Likert-style questions as ordinal (and not continuously
distributed); therefore, comparing answer means is not ap-
propriate.

We combined codes from three open-ended questions into
a single set, since we found that our codes applied equally
to all. These questions asked participants to (1) define tech-
nical debt (n = 454), (2) provide an example with cause
and result (n = 393), and (3) list challenges to managing
technical debt (n = 304). We applied manual coding on the
three open-ended questions as follows: Initially, two authors
individually coded a set of all answers for one question. This
involved open coding as described in Strauss and Corbin [32],
then axial coding to derive higher level categories. We chose
a research focus—technical debt and architecture—but oth-
erwise allowed the data to suggest relevant codes. For exam-
ple, the definition “The added cost to properly implement
system requirements after short term fixes are removed and
proper design is installed” led to, among others, the in vivo
code “added cost.”

As we did this coding, the first two authors wrote theoret-
ical memos about possible relationships among some of the
emerging codes. We used those memos to sort our codes into
higher level categories. We then presented a list of the 40
most commonly occurring codes to the remaining authors,
along with a sample of 50 survey responses. All of the au-
thors then coded the sample, after which we conducted card
sorting to identify common themes and duplicates. Defi-
nitions of our codes can be found with our supplementary
material (Note 1). Following the synchronization exercise,
two of us coded each survey response with at least one and
up to three of the finalized codes. We report on interview
quotes with a letter and number corresponding to column
1 from Table 1. Other quotes are taken from open-ended
responses.

52

7%

3%

14%

17%

65%

79%

71%

61%

44%

15%

14%

26%

25%

39%

20%

Lack of awareness of TD is a problem

TD is used strategically

TD includes both principal and interest

TD depends on future outcomes

TD is just a metaphor

Percentage

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

Figure 1: High-level definitions of technical debt. Percentages indicate SD + D, N, and A + SA, respectively.

5. DEFINING TECHNICAL DEBT
RQ1 asked whether software professionals have a shared

definition of technical debt.

5.1 Technical Debt: A Useful Abstract Meta-
phor

Our data indicated that technical debt was a useful met-
aphor to communicate more abstract concepts, such as the
need for investment.

Our respondents know what technical debt is, and they
are struggling with it. Of 574 responses to the statement
“Dealing with the consequences of technical debt has con-
sumed a painful chunk of project resources,” 75% agreed
or strongly agreed, and only 10% disagreed or strongly dis-
agreed (15% neutral). We found support on a number of
questions for convergence on the concept of technical debt
(see Figure 1): 79% agree or strongly agree that “lack of
awareness is a problem” and 71% that “technical debt im-
plies dealing with both principal and interest.”This suggests
that there is widespread agreement on high-level aspects of
the technical debt metaphor, including some popular finan-
cial extensions of the metaphor.

Some of the most commonly occurring codes (Awareness,
Interest, Time Pressure) on the open-ended questions (Fig-
ure 2) were similarly high-level concepts. For example, we
coded as Interest the definition“extra effort in projects which
is not required for purely technical reasons.” We coded
as Time Pressure the response “Business pressure to meet
deadline. Less time allocation for design and development
and quality testing.” These were fairly common as exam-
ples of level of detail for an answer to the question “How
would you define technical debt?” Another example was a
challenge, coded as Awareness: “Getting programs to ac-
knowledge they have it to begin with.” These abstract con-
cepts lack the detail for delineating the source of technical
debt from the causes and consequences. Less common were
answers pointing to the source such as “Code that has been
incrementally developed over the years that is now so com-
plicated” or “bugs and crash-downs.”

Interview data also supported that technical debt is a

useful metaphor for communicating with technical manage-
ment. For example, “(A2) I think the vocabulary of techni-
cal debt is useful for getting the interests aligned.”

The answers coded as Awareness seemed contradictory:
how can technical debt be a useful metaphor, yet awareness
still be a challenge? We think this is due to technical debt
being at a nascent stage as a concept in software engineer-
ing. While early adopters (our respondents) have recognized
its importance, a major perceived use is to begin conversa-
tions with those who are unaware of it, that is, “convincing
product managers and stakeholders on the value proposition
of managing the debt.”

5.2 Moving Beyond the Metaphor
65% of respondents disagreed that technical debt was“only

a metaphor,” possibly because they recognize that a meta-
phor is not on its own sufficient to drive measurable out-
comes. For that, one needs a reification of the metaphor:
what specific elements of this project (architecture, code,
defects, for example) need improvement? Is there one par-
ticular element that merits more attention?

We found that only architecture was commonly seen as
a major source of technical debt, irrespective of context.
Project context—such as framework choices, language, and
life-cycle phase—clearly changes how technical debt is asso-
ciated with each project instance. We can point to the broad
number of business areas our survey covered (39), as well as
the array of project ages and methodologies, as evidence of
this. This diversity appears in the data as well. In some
cases, respondents were concerned about hardware impacts
on technical debt (“Changes in hardware area are made with-
out understanding the impact on other areas (software) of
the system.”). Others were more concerned with documenta-
tion (“Comments in code have not been kept commensurate
with the actions of the code whenever functionality has been
changed.”). In another, the database decisions long ago were
paramount sources of technical debt (“Over 10 years ago
there was a performance problem caused by the increasing
size of the operational database.”).

We asked respondents a number of questions to probe

53

0% 10% 20% 30% 40% 50% 60% 70% 80%

None
Tools

Limited Knowledge
Cost Pressure

Lack of Documentation
Measurement

Process
Rework

Inadequate Testing
Defects

Code Problems
Legacy Modernization

Requirements Shortfall
Interest

Time Pressure
Awareness

Architecture Choice

Figure 2: Coding frequency for open-ended questions.

whether there was a shared understanding of what consti-
tutes sources of technical debt (n = 570). Figure 3 shows
agreement on some items (e.g., architecture, that technical
debt should not be treated in isolation from software de-
velopment) and disagreement on others (e.g., defects and
process). We interpret this to mean that for some project
elements, there is confusion over what is and is not techni-
cal debt. For example, 45% of respondents agree or strongly
agree that defects are technical debt, while 32% disagree or
strongly disagree, showing little agreement. Figure 2—the
open-coding results—showed a similar result: apart from ar-
chitecture, which we cover in the following section, there is
no obvious agreement on the source of technical debt. For
instance, code occurred in only 18% of answers, and defects
in only 11%. This is in contrast to the focus of current com-
mercial tools and research, which predominantly deal with
code quality, or industry thought leaders, such as Cunning-
ham, who referred to “shipping first time code” [4], although
ideally, code in an agile perspective should encapsulate ar-
chitectural choices directly.

RQ1: Do professional software engineers have a shared
definition of technical debt?
Finding 1: The technical debt metaphor is useful and com-
monly understood at an abstract level to convey urgency
about accumulating software costs.
Finding 2: Apart from architecture, software professionals
do not agree on which other project elements are sources of
technical debt.

6. ARCHITECTURAL SOURCES OF DEBT
RQ2 asked whether or not architecture was perceived as a

major source of technical debt. Our interest in architecture
is motivated by our past research [26, 25], as well as the high
level of responses that included examples of technical debt
as architecture choices and architecture drift in the data we
collected. We examined what problems it might cause and
what such issues looked like. We found that architectural
choices have the greatest impact based on our analysis of
the closed and open-ended questions and interview data.

6.1 Architectural Choices Are Key
We asked participants (n = 544) to rank a randomly or-

dered list of 14 choices (shown in Figure 4) “with respect
to the amount of debt (1 = high, 14 = low) they repre-
sent on this project.” These choices reflect different possi-
ble sources, including code, requirements, and architecture,
that emerged from several workshops, detailed in [17]. There
are a number of ways to measure what the top choice was.
Figure 4 shows the percentage of times that respondents
ranked a choice in the top three choices. Bad architecture
choices stood out from others at 296 of the top three re-
sponses (54%). In terms of the mean rank, the top three
were Bad architecture choices (mean rank 4.3), Overly com-
plex code (6.0), and Lack of code documentation (6.5). For
the median, we have the same top three choices, with val-
ues 3, 5, 6, respectively. Finally, we conducted a Friedman
rank sum test [5], which rejected the null hypothesis that all
items are ranked equally (df = 13, p < 2.2E6).

Architecture choice was a code in the open-ended ques-
tions that we defined as a combination of intentional short-
cut and poor decision in hindsight. It describes choices
(intentional or not) made about high-level project design,
including library choices, framework use, and reference ar-
chitectures (such as JEE). 73% of the open-coded examples
fall into this category. For example, one response gave as an
example “. . . ‘platform’ was not designed with scalability in
mind so transferring design from a traditional microproces-
sor + external memory system to a microcontroller single
chip system required about 4 man-years of work.”

Definitions of technical debt from McConnell [23] and
Cunningham [4] both support the notion of a shortcut for
expediency that is interpreted mostly as “bad code.” Our
examples offer cases different from bad code, since decisions
are made earlier and involve more strategic design. For ex-
ample, “(B2) the work that we’re doing now to introduce
a service layer and also building some clients using other
technology is an example of, you know, decisions that could
have been done at an earlier stage if we had had more time
and had the funding and the resources to do them at the
time instead of doing it now.”

54

3%

8%

24%

45%

49%

45%

85%

82%

57%

32%

29%

28%

11%

10%

20%

23%

22%

27%

TD also architectural

Defects not TD

Process not TD

Unimplemented features not TD

TD not measurable

TD part of S/W development context

Percentage

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

Figure 3: Sources of technical debt. Percentages indicate SD + D, N, and A + SA, respectively.

We heard a similar architecture focus in our interviews.
Five of seven participants told stories about architecture
choices in the context of a heavy emphasis on fast delivery
of features and limited budget. Participants framed these
choices in terms of development veering from an important
architectural decision (in the form of a pattern or application
framework) that was no longer followed.

One participant offered an example of the model-view-
controller pattern: “(A3) In retrospect we put messaging/
communication . . . in the wrong place in the model view con-
troller architecture which limited flexibility. The correct im-
plementation would put it at the model layer (supporting
communication interaction between models) rather than at
the presentation layer. As a result modifying or adding new
roles requires more work than it should.”

6.2 The Need to Manage Drift Between Source
and Original Design

The age of most of the systems represented by the respon-
dents was greater than 3 years (74%), and 28% had more
than 1 million SLOC. This time frame and size inevitably
led to variance over time from the original vision, observed
as technical debt today. This drift is consistent with what
Lehman refers to as software entropy (systems needing on-
going maintenance) [18]. Some of the examples for this drift
include changing system uses (“over the years, other sites
would begin using the system and would require changes to
how the workflow operated”); poor initial understanding of
requirements, off-the-shelf technology, and quality attribute
interaction (“poor business knowledge led to poor system
design lead to poor user experience lead to rework”); and
prototype-becomes-product antipatterns (“The original ob-
jective was simply a proof-of-concept and using good soft-
ware design practices was not a concern.”).

While architecture choices were the greatest source of tech-
nical debt, dealing with that debt was more problematic.
Both the long life spans of many of these projects and the
drift from the original decisions, designs, and documentation
make paying down technical debt a challenge. For example,
“(A2) There were some problems in the infrastructure code

where there was originally an architecture in place, but it
wasn’t necessarily followed consistently. . . . So thought had
been given to that, but in the implementation . . . shortcuts
were taken and dependencies were not clean.”

The challenge of paying down technical debt and its in-
terest charges is also highlighted by codes for requirements
and legacy migration, with 15% and 10% frequency, respec-
tively (Figure 2). These codes applied often to definitions of
technical debt or examples of systems that were facing high
development costs to re-architect to fix previous decisions.
These challenges could be due to poor requirements gath-
ering (e.g., “[we had] an unrefreshed approach for capture
of infrastructure software requirements”) or legacy decisions
made without foresight (“our development follows the lifecy-
cle of MS Technologies like .NET, Windows OS etc. A sig-
nificant effort is wasted in the technology migration without
adding ‘real’ value to the software”).

The degree of drift is related to system age. We found
a weak association between system age and the perceived
importance of architectural issues, using Yule’s Q [34] as a
measure (n = 483, q = −0.42). 89% of those with longer
lived systems (≥6 years old) agreed or strongly agreed with
the notion that architectural issues were a significant source
of debt, compared to 80% of those with newer systems (<3
years old). A chi-square test of independence (χ2 = 30.512,
df = 12, p = 0.0023) showed that the two factors (system age
and importance of architectural debt) are not independent.

Incurring technical debt is often positioned as either de-
liberate and strategic or inadvertent and accidental (e.g.,
Martin Fowler’s quadrant2). Our results show most debt oc-
curs in the “inadvertent/prudent” quadrant. That is, most
of the decisions incurring debt were made long ago by other
people. The decision was likely deliberate, and may have
appeared correct at the time, but subsequent events led to
problems: “Not foreseeing the need of final users to cus-
tomize results of our [redacted] tools” or “The initial design
was intended to support our nearer term needs with regards
to performance.” What is not happening, in contravention

2http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

55

0

50

100

150

200

250

300

350

Figure 4: Ranking sources of technical debt. Choice 1 is represented by hatches; Choice 2, dashes; and Choice
3, dots.

to commonly accepted practice in the agile community, is
refactoring/re-architecting. As Cunningham says, refactor-
ing or “modifying the program to look as if we had known
what we were doing all along.”3 is an important aspect of
building and maintaining software, yet that activity rarely
appeared in our results. This may be because the teams
which are refactoring do not deal much with technical debt,
and so our investigation did not reach those teams.

One implication of this drift from original designs is a need
for better monitoring of decisions and approaches. Respon-
dents gave many examples of engineers unaware of critical
decisions. For example, “(A1) We have . . . an architectural
concept [for managing databases]. And so originally it was
supposed to be a series of classes that you would write for a
particular feature that would check your database data after
you’re done. . . . And over the years what has happened is
because people didn’t realize that’s what it was supposed to
be, we now get basically all kinds of database stuff in there.”

An example of what type of monitoring might help is typ-
ified in the following anecdote from our interviews: “(A2)
I believe we started tracking technical debt kinds of issues
when we saw them. So that we could get a handle on what’s
there and we could point to that ‘This particular test took
longer than expected because we ran into certain kinds of
problems.’ ”

RQ2. Are issues with architectural elements among the
most significant sources of technical debt?
Finding 3: Architectural issues are the greatest source of
technical debt.
Finding 4: Architectural issues are difficult to deal with,
since they were often caused many years previously.
Finding 5: Monitoring and tracking drift from original de-
sign and rationale are vital.

3http://www.c2.com/cgi/wiki?WardExplainsDebtMetaphor

7. MANAGING TECHNICAL DEBT
RQ3 asked, “Are there practices for managing technical

debt?” In particular, we wanted to understand what tools
and practices might be used and whether those tools were
adequate. Contrary to the increased emphasis of research,
consulting, and tool vendors on measuring technical debt,
tooling and measurement did not appear much in our data.

7.1 Few Systematic Management Practices
65% of respondents had no defined technical debt man-

agement practice, and of the remaining respondents, 25%
managed it at the team level (n = 490, Figure 5). While
there is no explicit standard approach for managing techni-
cal debt, there is some management of technical debt within
existing processes in many cases (e.g., 60% track technical
debt as part of risk processes or backlog grooming (n = 480,
Figure 6). We asked about tool use (n = 482), and 41%
do not use tools for managing technical debt (26% have no
opinion; only 16% thought tools were giving appropriate de-
tail). For our question concerning who is aware of technical
debt, our respondents—most of whom are developers, archi-
tects, or program managers—said that executives and busi-
ness managers were largely unaware (42%). Only 10% said
their business managers were actively managing technical
debt.

7.2 Tools Are Inadequate
Figure 6 suggests that tool use in identifying technical

debt is low (16%, n = 480). A substantial number of re-
spondents (27%) do not identify technical debt: “fail first,
identify technical debt as cause,” or “when the schedule ex-
ploded.” Where tools are used, issue tracking predominates
(25% explicitly track it). Some respondents reported using
social processes (using architecture evaluations, risk man-
agement, or retrospectives). Furthermore, the open-coded
data (Figure 2) indicated that awareness is a big obstacle to
managing technical debt. This suggests that making techni-

56

6.1 %

10.2 %

12.0 %

25.1 %

65.3 %

Company Level

Business Unit Level

Program Level

Team Level

No Std Approach

Figure 5: At what level is technical debt manage-
ment standardized?

16 %

21 %

25 %

25 %

27 %

29 %

31 %

31 %

Using TD tools

Result of slowing cadence

Part of systematic arch. eval.

Explicit part of backlog

Not identified/Other

Part of overall risk mgmt.

Retrospectives

Implicit part of backlog

Figure 6: At what point do you identify technical
debt?

cal debt visible and measurable may be a key gap in practice.
Tools specific to managing technical debt were rarely used

to manage architectural issues. Some were installed, but the
complexity of configuring them or interpreting results meant
that they sat unused. We collated responses to an open-
ended question on tools (“What tools, if any, are used to
analyze technical debt on this project?”; n = 242) into the
most-frequently cited tool categories, seen in Figure 7. Is-
sue trackers, which include tools such as Redmine, Jira, and
Team Foundation Server, were the most prevalent (28%).
After that, no tool category exceeded 11%, including de-
pendency analysis (e.g., SonarQube, Understand), code rule
checking (e.g., CPPCheck, Findbugs, SonarQube), and code
metrics (e.g., Sloccount). 50% of respondents said that no
tools were used. A related question on tool use (n = 482)
found that 41% of respondents did not use tools, and only
16% said tools gave enough detail.

The interviews revealed that tools produce too many false
positives, which is a well-known challenge [2], and the tools
often require context-specific tailoring. For example, tools
do not know what areas of code are poor quality, but will
never be fixed for other reasons, and thus should be ignored.
They need a way to better narrow and focus static analysis
results when modifiability is a key concern.

Outputs from tools do not deal well with the challenge
of making management aware of the problem. For exam-
ple, “(B1) regarding static analysis we have the source code
static analysis tools, but this is to assure proper quality of
source code. But how architectural changes are impacting
I don’t know. And, in fact, this is something we don’t do.”
Furthermore, those tools are difficult to set up: “(C1) it
showed up on Jenkins - the CI server - there’s a billion lit-

3 %
3 %
3 %
3 %

5 %
5 %
5 %

6 %
9 %

10 %
10 %

11 %
28 %

Inhouse TD
CI/Build

Code coverage
IDE

Other
Excel

Test automation
Code metrics

Code rule checkers
Security analysis
Depend. analysis

Social process
Issue tracker

Figure 7: Tool use as percentage of answers, with
“Unknown” and “None” excluded.

tle warnings. And so it seems a little bit overwhelming.”
But it was only after explicitly identifying the issue that
resources were available: “(A2) Yeah, so once a structural
problem was identified, we were able to take that to the pro-
gram management and get authorization and kind of buy-in
to tackle that problem directly. And we were able to say,
‘Because of the way this is currently structured, we keep en-
countering these problems and it’s making it more expensive
to maintain’ so we like focused efforts going.”

So why do static analysis tools not help with management
of technical debt, and what is taking their place? Our inter-
views suggest a wide range of potential architectural issues.
Due to the nature of the problem, some of these tools may
be a good fit for module static analysis and some may not.
In many cases, technical debt remains something that at
best is managed with identifying tags on the issue tracker.
For example, “[we track] occasionally by explicit tech debt
items, usually by pain, or not at all.”

RQ3. Are there practices and tools for managing techni-
cal debt?
Finding 6: Tools do not capture the key areas of accumu-
lating problems in technical debt.
Finding 7: From a developer’s perspective, management
remains largely unaware of technical debt and the value of
managing it.

8. DISCUSSION
As a result of our empirical investigation, we found the

following:

1. The technical debt metaphor is useful and commonly
understood at an abstract level to convey urgency about
accumulating software costs.

2. Apart from architecture, software professionals do not
agree on which other project elements are sources of
technical debt.

3. Architectural issues are the greatest source of technical
debt.

4. Architectural issues are difficult to deal with, since
they were often caused many years previously.

5. Monitoring and tracking drift from original design and
rationale are vital.

6. Tools do not capture the key areas of accumulating
problems in technical debt.

57

7. From a developer’s perspective, management remains
largely unaware of technical debt and the value of man-
aging it.

Interviewees and survey respondents placed significant em-
phasis on describing perceived root causes of technical debt
(e.g., uneducated developers, time pressure) that are outside
of their control. Consequently, technical debt management
is largely reactive since it often must cause significant pain
on multiple fronts before it is addressed. Fixing root causes
requires different strategies than fixing the current state of
the system. This is an area where ongoing and future re-
search on technical debt should contribute, providing clari-
fications on separating analysis techniques that focus on the
artifacts of the system to fix the problem today, from process
and awareness approaches to to avoid making early decisions
that will incur technical debt later in the life cycle.

8.1 Technical Debt Timeline
We propose a simple timeline approach as an aid to iden-

tifying and understanding technical debt, particularly debt
caused by variation from an original design. The timeline
captures the states that a particular technical debt issue goes
through. We identify some key points, shown by numbers
in Figure 8.

Figure 8: Technical debt timeline, with time increas-
ing to the right.

1. The time when technical debt is taken on (incurred).
For example, rather than investing in identifying com-
mon services, developers copy and modify code. The
respondents could mostly identify architectural issues
that map to the point where the debt starts. Beyond
these, most examples stayed at the abstract level, such
as inexperienced developers writing inadequate code
that confuses the developers and prohibits taking con-
crete action against the debt.

2. The time when technical debt is recognized and traced
back to the source. Ideally, this should be visible to
both engineers and management and overlap with the
time that technical debt is taken on (Point 1). The
respondents reported identifying technical debt at dif-
ferent points along the spectrum, as part of the devel-
opment backlog (56%), in retrospectives (31%), and as
a result of slowing project cadence (21%). We found
tools are not heavily used to analyze technical debt;
those who used tools most frequently used issue track-
ers and then dependency-focused metrics tools. How-
ever, in many cases the metrics tools were run to check
a box for management, and teams took a one-size-fits-
all approach to running generic reports. Teams often
became overwhelmed with the results and threw out
the data.

3. The ideal time to plan and re-architect to pay back the
debt. This is a function of the ongoing cost of the debt
accumulating during the interval ti. 61% of the respon-
dents agreed or strongly agreed that technical debt is
strategically used to support business objectives. Yet
most of their examples showed that technical debt is
handled after reaching this tipping point where paying
back the debt can exceed the benefit of the features
developed at the expense of the debt.

4. Organizations decide whether to pay back some or all
of the debt. The interval, tj , between Point 3 and
Point 4 is often the time when organizations recognize
the pain, which is what we saw in our survey and in-
terview responses. Respondents know that the debt
exists, but they have no management strategies for
dealing with the debt. As noted earlier, a plurality
of respondents (66%) do not pay down debt or pay it
down only when it becomes a roadblock. The accumu-
lated issues of the technical debt now exceed the initial
perceived short-term benefits.

5. Organizations decide to deliberately manage the rest of
the existing and future debt. They ideally begin moni-
toring the accumulating technical debt and accounting
for it during planning cycles.

A timeline perspective helps bring visibility and under-
standing to the causes, sources, symptoms, and consequences
so they can be managed. One of our respondents recognized
this challenge: “I can see that a large challenge is corralling
what different people mean by technical debt. Based on
the questions, I wonder if my definition and thoughts are
broader than most; maybe that is limiting what I believe
I can affect.” Mapping techniques for identifying and track-
ing technical debt can assist with determining how tools can
benefit development teams. Our future work includes vali-
dating this time line and mapping analysis approaches onto
it.

8.2 Study Limitations
External validity: Our corporate partners are large or-

ganizations dealing, in most cases, with long-lived, complex
software and hardware systems built for external customers.
Smaller, self-contained teams developing product software or
doing greenfield development would likely be less concerned
with legacy decisions. We would not expect to hear much
about architectural technical debt from teams that have the
time and management support to follow established design
best practices, or that have no legacy code with which to
contend. There is a chance that the finding of architecture
as problem may be a Hawthorne effect of our institution
being widely known as an architecture research institute.
However, none of the open-ended questions, nor the prelim-
inary text, mention architecture as an important issue. It
was only in the interviews that we specifically asked about
architecture. Our results reflect the views of people who
presumably had an interest in the issue of technical debt.
However, we attracted participation from a wide range of
experience, system size, and domains.

Internal validity: We checked our inter-rater reliability
by having two of us code each response to a survey ques-
tion or interview transcript, then comparing the codes using
Cohen’s kappa statistic. This was 0.45, which is low to mod-
erate agreement. We resolved disagreements between raters

58

by always choosing from the first rater. We confirmed the
sensitivity to architecture results by noting that two survey
questions independently query for architecture as a choice.
There is a possibility of acquiescence bias to truisms like“ar-
chitecture is important,” but we asked for specific examples
in order to avoid this. Interview respondents were selected
opportunistically and may not be typical.

Construct validity: Likert scales are one-dimensional
and assume that respondents can accurately map their re-
sponses to a question into that dimension (e.g., strongly
agree or disagree). In some cases, since technical debt is
a complex concept, this may not be realistic. Survey rank
questions may not be 100% mutually exclusive and exhaus-
tive, although we tried to ameliorate this with our pilot sur-
vey.

9. CONCLUSION
Our findings tell us the following:

• Software practitioners agree on the usefulness of the
metaphor (Finding 1), notwithstanding different in-
terpretations of what makes up technical debt in par-
ticular contexts (Finding 2). There is consensus on
McConnell’s definition of “a design and construction
approach that is expedient in the short term” [23].

• Our data and analysis strongly support that the lead-
ing sources of technical debt are architectural choices
(Finding 3), answering our second research question.
Architectural design decisions take many years to evolve;
hence they are difficult to deal with (Finding 4), and
managing this drift is vital in managing technical debt
(Finding 5).

• Developers perceive management as unaware of tech-
nical debt issues (Finding 7), and they desire standard
practices and tools to manage technical debt that do
not currently exist (Finding 6).

We suggest that research in technical debt tooling focus
on monitoring the gap between development and architec-
ture, improving ongoing architecture analysis and confor-
mance. Tooling is a necessary component of any technical
debt management strategy. We offered the technical debt
timeline as a way to map discovered issues in order to guide
a management strategy.

Continued work moving technical debt from metaphor to
practice is an important challenge. As one of our respon-
dents said, “I am pleased to see that [our organization] (and
hopefully the industry as a whole) is taking an interest in
the issue of technical debt. Traditionally it has been very
difficult for developers to relay this concern to leadership
and customers.”

10. ACKNOWLEDGMENTS
Many thanks to the many participants in our surveys and

interviews, as well as our industrial partners.
Copyright 2015 ACM. This material is based upon work

funded and supported by the Department of Defense un-
der Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering In-
stitute, a federally funded research and development center.
This material has been approved for public release and un-
limited distribution. DM-0002252

11. REFERENCES
[1] N. Alves, L. Ribeiro, V. Caires, T. Mendes, and

R. Sṕınola. Towards an ontology of terms on technical
debt. In International Workshop on Managing
Technical Debt, 2014.

[2] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and
D. Engler. A few billion lines of code later: Using
static analysis to find bugs in the real world.
Communications of the ACM, 53(2):66–75, Feb. 2010.

[3] Z. Codabux and B. Williams. Managing technical
debt: an industrial case study. In International
Workshop on Managing Technical Debt, pages 8–15,
San Francisco, 2013.

[4] W. Cunningham. The WyCash portfolio management
system. In Object-oriented Programming Systems,
Languages, and Applications, pages 29–30. Vancouver,
1992.

[5] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006.

[6] D. Falessi, M. Shaw, K. Mullen, and M. Stein.
Practical considerations, challenges, and requirements
of tool-support for managing technical debt. In
International Workshop on Managing Technical Debt,
pages 16–19, San Francisco, 2013.

[7] F. Fontana, V. Ferme, and S. Spinelli. Investigating
the impact of code smells debt on quality code
evaluation. In International Workshop on Managing
Technical Debt, pages 15–22, Zurich, 2012.

[8] M. Fowler. Technical debt quadrant.
http://martinfowler.com/bliki/

TechnicalDebtQuadrant.html, 2009.

[9] G. Gousios, A. Zaidman, M.-A. Storey, and A. van
Deursen. Work practices and challenges in pull-based
development: The integrator’s perspective. In
International Conference on Software Engineering,
2015.

[10] I. Griffith and C. Izurieta. Design pattern decay: an
extended taxonomy and empirical study of grime and
its impact on design pattern evolution. In Conference
on Empirical Software Engineering and Measurement,
Baltimore, MD, 2013.

[11] I. Griffith, D. Reimanis, C. Izurieta, Z. Codabux,
A. Deo, and B. Williams. The correspondence between
software quality models and technical debt estimation
approaches. In International Workshop on Managing
Technical Debt, pages 19–26, Victoria, 2014.

[12] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti,
G. Tonin, F. DaSilva, A. Santos, and C. Siebra.
Tracking technical debt–an exploratory case study. In
International Conference on Software Maintenance,
pages 528–531, Williamsburg, 2011.

[13] C. Izurieta, A. Vetro, N. Zazworka, Y. Cai,
C. Seaman, and F. Shull. Organizing the technical
debt landscape. In International Workshop on
Managing Technical Debt, pages 23–26, 2012.

[14] M. Kim, T. Zimmermann, and N. Nagappan. A field
study of refactoring challenges and benefits. In
SIGSOFT Symposium on Foundations of Software
Engineering, Raleigh, NC, November 2012.

[15] H. Kniberg. Good and bad technical debt (and how

59

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

TDD helps), http://blog.crisp.se/2013/10/11/
henrikkniberg/good-and-bad-technical-debt,
October 2013.

[16] P. Kruchten, R. L. Nord, and I. Ozkaya. Technical
debt: From metaphor to theory and practice. IEEE
Software Special Issue on Technical Debt, 29(6):18–21,
2012.

[17] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi.
Technical debt: towards a crisper definition; report on
the 4th International Workshop on Managing
Technical Debt. SIGSOFT Softw. Eng. Notes,
38(5):51–54, 2013.

[18] M. M. Lehman. On understanding laws, evolution,
and conservation in the large-program life cycle.
Journal of Systems and Software, 1:213–221, 1980.

[19] Z. Li, P. Avgeriou, and P. Liang. A systematic
mapping study on technical debt and its management.
Journal of Systems and Software, 101:193–220, 2014.

[20] Z. Li, P. Liang, and P. Avgeriou. Architectural debt
management in value-oriented architecting.
Economics-Driven Software Architecture, pages 65–86,
2014.

[21] E. Lim, N. Taksande, and C. Seaman. A balancing
act: what software practitioners have to say about
technical debt. IEEE Software, 29(6):22–27, 2012.

[22] R. Marinescu. Assessing technical debt by identifying
design flaws in software systems. IBM Journal of
Research and Development, 56(5):9:1–9:13, 2012.

[23] S. McConnell. Technical debt, http://www.construx.
com/10x_Software_Development/Technical_Debt/,
2007.

[24] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic.
Mapping architectural decay instances to dependency
models. In International Workshop on Managing
Technical Debt, pages 39–46, San Francisco, 2013.

[25] R. L. Nord, I. Ozkaya, P. Kruchten, and
M. Gonzalez-Rojas. In search of a metric for managing
architectural technical debt. In Joint Working
IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture
(ECSA), pages 91–100, Helsinki, Aug. 2012. IEEE.

[26] R. L. Nord, I. Ozkaya, R. Sangwan, J. Delange,
M. Gonzalez, and P. Kruchten. Variations on using
propagation cost to measure architecture modifiability
properties. In International Conference on Software
Maintenance, pages 400–403, Eindhoven, September
2013.

[27] K. Schmid. A formal approach to technical debt
decision making. In International Conference on
Quality of Software Architectures, pages 153–162,
Vancouver, British Columbia, Canada, 2013.

[28] C. Seaman. Qualitative methods in empirical studies
of software engineering. IEEE Transactions on
Software Engineering, 25(4):557–572, 1999.

[29] F. Shull, D. Falessi, C. Seaman, M. Diep, and
L. Layman. Technical debt: Showing the way for
better transfer of empirical results. In Perspectives on
the Future of Software Engineering, pages 179–190,
2013.

[30] C. Siebra, G. Tonin, F. DaSilva, R. Oliveira,
L. Antonio, R. Miranda, and A. Santos. Managing
technical debt in practice: An industrial report. In
International Symposium on Empirical Software
Engineering and Measurement, pages 247–250, 2012.

[31] R. Spinola, N. Zazworka, A. Vetrò, C. Seaman, and
F. Shull. Investigating technical debt folklore:
Shedding some light on technical debt opinion. In
International Workshop on Managing Technical Debt,
2013.

[32] A. Strauss and J. M. Corbin. Basics of Qualitative
Research : Techniques and Procedures for Developing
Grounded Theory. Sage Publications, Thousand Oaks,
1998.

[33] E. Tom, A. Aurum, and R. Vidgen. An exploration of
technical debt. Journal of Systems and Software,
86(6):1498–1516, 2013.

[34] G. Yule. On the methods of measuring association
between two attributes. Journal of the Royal
Statistical Society, LXXV:579–652, 1912.

60

http://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt
http://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://www.construx.com/10x_Software_Development/Technical_Debt/

	Introduction
	Related Work
	Research Questions
	Study Design
	Research Protocol
	Respondents
	Analysis

	Defining Technical Debt
	Technical Debt: A Useful Abstract Metaphor
	Moving Beyond the Metaphor

	Architectural Sources of Debt
	Architectural Choices Are Key
	The Need to Manage Drift Between Source and Original Design

	Managing Technical Debt
	Few Systematic Management Practices
	Tools Are Inadequate

	Discussion
	Technical Debt Timeline
	Study Limitations

	Conclusion
	Acknowledgments
	References

