
Heterogeneous Cross-Company Defect Prediction by Unified
Metric Representation and CCA-Based Transfer Learning

Xiaoyuan Jing1,2,*, Fei Wu1,2, Xiwei Dong1,2, Fumin Qi1, Baowen Xu3,1,*
1State Key Laboratory of Software Engineering, School of Computer, Wuhan University, China

2School of Automation, Nanjing University of Posts and Telecommunications, China
3Department of Computer Science and Technology, Nanjing University, China

*Corresponding author: jingxy_2000@126.com, bwxu@nju.edu.cn

ABSTRACT
Cross-company defect prediction (CCDP) learns a prediction
model by using training data from one or multiple projects of a
source company and then applies the model to the target company
data. Existing CCDP methods are based on the assumption that
the data of source and target companies should have the same
software metrics. However, for CCDP, the source and target
company data is usually heterogeneous, namely the metrics used
and the size of metric set are different in the data of two
companies. We call CCDP in this scenario as heterogeneous
CCDP (HCCDP) task. In this paper, we aim to provide an
effective solution for HCCDP. We propose a unified metric
representation (UMR) for the data of source and target companies.
The UMR consists of three types of metrics, i.e., the common
metrics of the source and target companies, source-company
specific metrics and target-company specific metrics. To construct
UMR for source company data, the target-company specific
metrics are set as zeros, while for UMR of the target company
data, the source-company specific metrics are set as zeros. Based
on the unified metric representation, we for the first time
introduce canonical correlation analysis (CCA), an effective
transfer learning method, into CCDP to make the data
distributions of source and target companies similar. Experiments
on 14 public heterogeneous datasets from four companies indicate
that: 1) for HCCDP with partially different metrics, our approach
significantly outperforms state-of-the-art CCDP methods; 2) for
HCCDP with totally different metrics, our approach obtains
comparable prediction performances in contrast with within-
project prediction results. The proposed approach is effective for
HCCDP.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management-Software quality
assurance (SQA), D.2.5 [Software Engineering]: Testing and
Debugging-Code inspections and walk-throughs.

General Terms
Experimentation, Measurement, Reliability, Verification

Keywords
Heterogeneous cross-company defect prediction (HCCDP),
common metrics, company-specific metrics, unified metric
representation, canonical correlation analysis (CCA).

1. INTRODUCTION
Software defect prediction (SDP) is one of the most important
research topics in software engineering, which has attracted a lot
of attention from both academic and industrial communities [1-5].
Most prior studies on this issue attempt to train predictors based
on historical data to detect the defect proneness of new software
modules within the same company [6-11], which is called within-
company defect prediction (WCDP). However, for a new
company or companies with limited historical data, there is not
enough training defect data to build a prediction model. In this
case, it is hard to perform within-company defect prediction.

Fortunately, there are many open source defect datasets available,
such as the PROMISE repository [12]. A potential way of
predicting defects in projects without historical data is to make
use of these public data sets. In recent years, several cross-
company defect prediction (CCDP) methods have been developed
[13-15], such as nearest-neighbor filter (NN-filter) [16], transfer
Naive Bayes (TNB) [17], double transfer boosting (DTB) [18],
CLIFF+MORPH [19], etc. They learn prediction model by using
sufficient training data from existing source projects and then
apply the model to the target project.

1.1 Motivation
Existing CCDP methods are based on the assumption that the data
of source and target companies should have the same software
metrics. In fact, since different companies might select different
programming languages, develop software modules according to
different user requirements, and test software modules from
different aspects, there usually exist different metrics in the data
of different companies. Table 1 tabulates the numbers of metrics
in defect data of companies including NASA [12, 20-21],
SOFTLAB [12], ReLink [22-23] and AEEEM [23-24]. Table 2
shows the numbers of common metrics between projects of these
four companies. Figure 1 illustrates the detailed metrics used in
defect data of four companies. In the figure, we outline the
common metrics shared by two different companies with
rectangle boxes in different colors. Specifically, the red
rectangle box outlines the common metrics of NASA and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’15, August 31-September 4, 2015, City, State, Country.
Copyright 2015 ACM 1-58113-000-0/00/0010 …$15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786813

496

mailto:jingxy_2000@126.com

@relation CM1 from NASA

@attribute LOC_BLANK numeric
@attribute BRANCH_COUNT numeric
@attribute CALL_PAIRS numeric
@attribute LOC_CODE_AND_COMMENT numeric
@attribute LOC_COMMENTS numeric
@attribute CONDITION_COUNT numeric
@attribute CYCLOMATIC_COMPLEXITY numeric
@attribute CYCLOMATIC_DENSITY numeric
@attribute DECISION_COUNT numeric
@attribute DECISION_DENSITY numeric
@attribute DESIGN_COMPLEXITY numeric
@attribute DESIGN_DENSITY numeric
@attribute EDGE_COUNT numeric
@attribute ESSENTIAL_COMPLEXITY numeric
@attribute ESSENTIAL_DENSITY numeric
@attribute LOC_EXECUTABLE numeric
@attribute PARAMETER_COUNT numeric
@attribute HALSTEAD_CONTENT numeric
@attribute HALSTEAD_DIFFICULTY numeric
@attribute HALSTEAD_EFFORT numeric
@attribute HALSTEAD_ERROR_EST numeric
@attribute HALSTEAD_LENGTH numeric
@attribute HALSTEAD_LEVEL numeric
@attribute HALSTEAD_PROG_TIME numeric
@attribute HALSTEAD_VOLUME numeric
@attribute MAINTENANCE_SEVERITY numeric
@attribute MODIFIED_CONDITION_COUNT numeric
@attribute MULTIPLE_CONDITION_COUNT numeric
@attribute NODE_COUNT numeric
@attribute NORMALIZED_CYLOMATIC_COMPLEXITY numeric
@attribute NUM_OPERANDS numeric
@attribute NUM_OPERATORS numeric
@attribute NUM_UNIQUE_OPERANDS numeric
@attribute NUM_UNIQUE_OPERATORS numeric
@attribute NUMBER_OF_LINES numeric
@attribute PERCENT_COMMENTS numeric
@attribute LOC_TOTAL numeric

@relation AR3 from SOFTLAB

@attribute total_loc numeric
@attribute blank_loc numeric
@attribute comment_loc numeric
@attribute code_and_comment_loc numeric
@attribute executable_loc numeric
@attribute unique_operands numeric
@attribute unique_operators numeric
@attribute total_operands numeric
@attribute total_operators numeric
@attribute halstead_vocabulary numeric
@attribute halstead_length numeric
@attribute halstead_volume numeric
@attribute halstead_level numeric
@attribute halstead_difficulty numeric
@attribute halstead_effort numeric
@attribute halstead_error numeric
@attribute halstead_time numeric
@attribute branch_count numeric
@attribute decision_count numeric
@attribute call_pairs numeric
@attribute condition_count numeric
@attribute multiple_condition_count numeric
@attribute cyclomatic_complexity numeric
@attribute cyclomatic_density numeric
@attribute decision_density numeric
@attribute design_complexity numeric
@attribute design_density numeric
@attribute normalized_cyclomatic_complexity numeric
@attribute formal_parameters numeric

@relation Apache from ReLink

@attribute AvgCyclomatic numeric
@attribute AvgCyclomaticModified numeric
@attribute AvgCyclomaticStrict numeric
@attribute AvgEssential numeric
@attribute AvgLine numeric
@attribute AvgLineBlank numeric
@attribute AvgLineCode numeric
@attribute AvgLineComment numeric
@attribute CountLine numeric
@attribute CountLineBlank numeric
@attribute CountLineCode numeric
@attribute CountLineCodeDecl numeric
@attribute CountLineCodeExe numeric
@attribute CountLineComment numeric
@attribute CountSemicolon numeric
@attribute CountStmt numeric
@attribute CountStmtDecl numeric
@attribute CountStmtExe numeric
@attribute MaxCyclomatic numeric
@attribute MaxCyclomaticModified numeric
@attribute MaxCyclomaticStrict numeric
@attribute RatioCommentToCode numeric
@attribute SumCyclomatic numeric
@attribute SumCyclomaticModified numeric
@attribute SumCyclomaticStrict numeric
@attribute SumEssential numeric

@relation EQ from AEEEM

@attribute ck_oo_numberOfPrivateMethods numeric
@attribute LDHH_lcom numeric
@attribute LDHH_fanIn numeric
@attribute numberOfNonTrivialBugsFoundUntil: numeric
@attribute WCHU_numberOfPublicAttributes numeric
@attribute WCHU_numberOfAttributes numeric
@attribute CvsWEntropy numeric
@attribute LDHH_numberOfPublicMethods numeric
@attribute WCHU_fanIn numeric
@attribute LDHH_numberOfPrivateAttributes numeric
@attribute CvsEntropy numeric
@attribute LDHH_numberOfPublicAttributes numeric
@attribute WCHU_numberOfPrivateMethods numeric
@attribute WCHU_numberOfMethods numeric
@attribute ck_oo_numberOfPublicAttributes numeric
@attribute ck_oo_noc numeric
@attribute numberOfCriticalBugsFoundUntil: numeric
@attribute ck_oo_wmc numeric
@attribute LDHH_numberOfPrivateMethods numeric
@attribute WCHU_numberOfPrivateAttributes numeric
@attribute CvsLogEntropy numeric
@attribute WCHU_noc numeric
@attribute LDHH_numberOfAttributesInherited numeric
@attribute WCHU_wmc numeric
@attribute ck_oo_fanOut numeric
@attribute ck_oo_numberOfLinesOfCode numeric
@attribute ck_oo_numberOfAttributesInherited numeric
@attribute ck_oo_numberOfMethods numeric
@attribute ck_oo_dit numeric
@attribute ck_oo_fanIn numeric
@attribute LDHH_noc numeric
@attribute WCHU_dit numeric
@attribute ck_oo_lcom numeric
@attribute WCHU_numberOfAttributesInherited numeric
@attribute ck_oo_rfc numeric
@attribute LDHH_wmc numeric
@attribute LDHH_numberOfAttributes numeric
@attribute LDHH_numberOfLinesOfCode numeric
@attribute WCHU_fanOut numeric

SOFTLAB, the green rectangle box outlines the common metrics
of NASA and ReLink, and the blue rectangle box outlines the
common metrics of SOFTLAB and ReLink. It is noted that only
40 metrics of AEEEM are listed in the figure. From Tables 1, 2
and Figure 1, we can see that the types of metrics and the sizes of
metric sets are varied in these companies.

Table 1. Number of metrics in projects of four companies
Company NASA SOFTLAB ReLink AEEEM
Number

of metrics 38 29 26 61

Table 2. Number of common metrics between projects of
different companies

Company A∩
Company B

NASA∩SOFT
LAB

NASA∩ReLi
nk

NASA∩A
EEEM

Number 28 3 0
Company A∩
Company B

SOFTLAB∩R
eLink

SOFTLAB∩A
EEEM

ReLink∩
AEEEM

Number 3 0 0

If we want to detect the defect proneness of modules in NASA by
regarding the defect data from SOFTLAB, ReLink or AEEEM as
training data, existing CCDP methods can only make use of the
common metrics shared by NASA and SOFTLAB or ReLink.
However, the size of common metric set across different
companies may be very small (like the common metric set
between NASA and ReLink), and the metrics except the common
metrics might have favorable discriminant ability. Since no
common metrics exist in NASA and AEEEM, existing CCDP
methods cannot make use of defect data in AEEEM. We call
CCDP in this scenario as heterogeneous CCDP (HCCDP).

In this paper, we answer the following three research questions:

RQ 1: How to design an effective approach for HCCDP?

RQ 2: Is the heterogeneous cross-company defect data helpful for
cross-company defect prediction?

RQ 3: If the heterogeneous cross-company defect data can help
prediction, when it helps the most?

1.2 Contribution
The contributions of our study are summarized as the following
two points:

1. Focusing on heterogeneous CCDP (HCDDP), we propose a
unified metric representation (UMR) for the data of source and
target companies. The UMR consists of three types of metrics
including the common metrics of the source and target companies,
source-company specific metrics, and target-company specific
metrics. We set the target-company specific metrics as zeros when
constructing the UMR for source company data, and set the
source-company specific metrics as zeros when constructing the
UMR for target company data.

2. Based on the unified metric representation, we for the first time
introduce the transfer learning method named canonical
correlation analysis (CCA) [25] into CCDP for making the data
distribution of target company similar to that of source company.
CCA is an effective machine learning method, which can
maximize the correlation of source and target data.

We call the proposed approach for HCCDP as CCA+. We conduct
experiments on 14 public datasets from four companies including
NASA [12, 20-21], SOFTLAB [12], ReLink [22-23] and AEEEM
[23-24]. Experimental results demonstrate that the proposed
approach can obtain desirable prediction results for HCCDP.

1.3 Organization
The rest of this paper is organized as follows: Section 2 reviews
the related work. Section 3 describes the proposed CCA+
approach. Experimental results are reported in Section 4 and
conclusions are drawn in Section 5.

2. RELATED WORK
In this section, we briefly review existing cross-company defect
prediction (CCDP) methods, cross-project defect prediction
(CPDP) methods, and canonical correlation analysis (CCA) and
transfer learning methods.

Figure 1. List of the metrics used in defect data of four companies.

497

2.1 Cross-company Defect Prediction (CCDP)
Methods
CCDP refers to using data from other companies to build defect
predictors. There exist two mainstream ways for CCDP. The first
one is to find the best suitable training data for the target modules.
Turhan et al. [16] found that defect predictors built on all
available cross-company data dramatically increase defect
detection ability, but with unacceptably high false alarm rates.
They reckoned that the irrelevancies in the cross-company data
lead to the false alarms and presented a nearest-neighbor filter
(NN-filter) method to select training data close to within-company
data. Peters et al. [13] developed the Peters filter to select training
data for CCDP.

The second mainstream way for CCDP is to design effective
machine learning algorithms with high generalization ability for
constructing the defect predictor. Ma et al. [17] presented a cross-
company prediction algorithm named transfer Naive Bayes (TNB),
which estimates the distribution of the test data, transfers cross-
company data information into the weights of the training data,
and then builds defect prediction model on these weighted data.
Recently, Chen et al. [18] developed the double transfer boosting
(DTB) method for CCDP, which firstly uses data gravitation for
reshaping the whole distribution of cross-company data to fit
within-company data, and then designs the transfer boosting
algorithm to remove negative samples in cross-company data with
a small ratio of labeled within-company data.

However, existing CCDP methods are based on the restrictive
assumption that the software metrics used in source and target
company data should be the same. They do not apply to
the scenario of heterogeneous CCDP.

2.2 Cross-project Defect Prediction (CPDP)
Methods
Cross-project defect prediction (CPDP) refers to predicting
defects in a project using prediction models trained from historical
data of other projects [26-28]. When we only use one project in a
specific company for training the prediction model, CCDP can be
considered as CPDP.

Over the past recent years, we have witnessed lots of interest in
developing new CPDP methods. Using 12 applications,
Zimmermann et al. [29] performed 622 cross-project predictions.
The results indicate that CPDP is a serious challenge, i.e., simply
using models from projects in the same domain or with the same
process does not lead to accurate predictions. Careful selection of
training data and the characteristics of data and process play
important roles in successful CPDP. He et al. [30] investigated
CPDP by focusing on training data selection. They showed that
the prediction results were related to the distributional attributes
of datasets, which is useful for training data selection. Rahman et
al. [31] introduced the measure called area under the cost
effectiveness curve (AUCEC) to investigate the feasibility of
CPDP and drew a conclusion that CPDP is no worse than within-
project prediction in terms of AUCEC. Turhan et al. [32]
introduced a mixed model for CPDP, which uses both the within-
and cross-project data as training data. They concluded that the
performance of the mixed model could be comparable to that of
within-project prediction. Recently, Nam et al. [23] applied
transfer component analysis (TCA) to CPDP, which is a feature-
based transfer learning method. Furthermore, they extended TCA
to TCA+ by using the normalization techniques to preprocess data,

which exhibits good performance for defect prediction. Ryu et al.
[33] developed the value-cognitive boosting with support vector
machine method for class-imbalance issue of CPDP.

Existing CPDP methods are also based on the assumption that the
data of source and target companies should have the same
software metrics. If there exist partially different metrics between
the source and target projects, existing CPDP methods can only
make use of common metrics. When no common metrics exist
between source and target projects, existing CPDP methods
cannot be used for defect prediction.

2.3 Canonical Correlation Analysis (CCA)
and Transfer Learning Methods
Canonical correlation analysis (CCA) [25] is a powerful tool in
multivariate data analysis to find the correlation between two sets
of variables. The two sets of variables can be associated with two
different objects or two different views of the same object. CCA
aims to learn a pair of projective transformations corresponding to
the two sets of variables such that the projected variables are
maximally correlated.

CCA has been applied in many areas, such as signal processing
[34], pattern classification [35] and multi-view feature learning
[36-37]. Recently, CCA has been used for transfer learning. Wu et
al. [38] addressed the heterogeneous transfer discriminant analysis
of canonical correlations (HTDCC) method for cross-view action
recognition, which learns a discriminative common feature space
for linking source and target views to transfer knowledge between
them. Zhang and Shi [39] presented the cross-domain CCA
algorithm, which attempts to learn a semantic space of multi-view
correspondences from different domains and transfer the
knowledge by using dimensionality reduction in a multi-view way.
Yeh et al. [40] employed CCA to derive a joint feature space for
associating cross-domain data and developed a new support
vector machine (SVM) algorithm that incorporates the domain
adaptation ability observed in the derived subspace for cross-
domain pattern classification application.

The difference between our approach and the above CCA-based
methods is that we for the first time introduce CCA into the field
of cross-company software defect prediction, and propose a novel
metric representation for the heterogeneous source and target data,
with which we propose the CCA+ approach.

3. OUR APPROACH
To answer the RQ 1 “How to design an effective approach for
HCCDP”, we propose the CCA+ approach for heterogeneous
CCDP. Our approach includes two parts: unified metric
representation for heterogeneous source and target data, and CCA
for transfer learning.

3.1 Unified Metric Representation for
Heterogeneous Source and Target Data
To effectively utilize the heterogeneous data from two domains,
Li et al. [41] introduced a common subspace for the source and
target data so that the heterogeneous data can be compared.
Specifically, for any source sample sx and target sample tx , the
feature mapping functions sϕ and tϕ are defined as:

() ; ;0
t

s s s
s dx Px xϕ = and () ;0 ;

s

t t t
t dx Qx xϕ = , where P and

Q are two projective matrices, sd and td separately denote the

498

dimensionalities of source and target data. Promising results have
been shown in [41].

Inspired by [41], we design a unified metric representation (UMR)
for the heterogeneous source and target defect data. Assume that

{ }1 2, , , N
S S S SX x x x= and { }1 2, , , M

T T T TX x x x= separately denote

the source and target company data, where i
Sx denotes the thi

module in SX , N and M represent the numbers of modules in

SX and TX , respectively. A module in the source company can

be represented as 1 2; ; ; sidi i i
S S S Sx a a a = and a module in the

target company can be represented as 1 2; ; ; tidi i i
T T T Tx a a a = . Here,

ij
Sa represents the metric value corresponding to the thj metric of
i
Sx , sd and td are the numbers of metrics in source and target

data, respectively. Usually, the metrics used in SX and TX are
different and s td d≠ .

Considering the large difference in values of different metrics, we
firstly employ the z-score normalization [42] (without using the
pooled standard deviation) to preprocess data, which is similar to
the N2 normalization in [23]. Note that the normalization is
applicable to either source or target company data. We then search
the common metrics from the metrics used in SX and TX . We
select row vectors that are associated with the common metrics
from SX and TX to construct cd NC

SX ×∈ and cd MC
TX ×∈ . It is

noted that the thk rows in C
SX and C

TX correspond to the same
common metric. To make heterogeneous data from source and
target companies can be compared, we define the unified metric
representation (UMR) as follows:

()0
t c

C
S
s

S S

d d N

X

X X

− ×

=

 and ()0
s c

C
T

T d d M

s
T

X
X

X
− ×

=

, (1)

where s
SX is the data in SX containing source-company specific

metrics (that are metrics except the common metrics in SX) and
s
TX is the data in TX containing target-company specific metrics.

After obtaining the unified metric representation, defect data from
two companies can be readily compared. Figure 2 illustrates the
construction of UMR for heterogeneous source and target data. It
is noted that when there exist no common metrics in the data from
two companies, the UMR can be defined as:

0
t

S
S

d N

X
X

×

=

 and
0

sd M
T

T

X
X
×

=

. (2)

3.2 CCA for Transfer Learning
Based on the obtained UMR for the heterogeneous source and
target company data, we can employ the effective transfer learning
method CCA to make the distributions of source and target
company data similar. CCA is presented to find a common space
for data from two domains such that the correlation between the
projected data in the space is maximized.

CCA seeks to obtain two projection directions Sw and Tw , one
for each company data, to maximize the following linear
correlation coefficient:

()
() () ()()

,T T T
S S T T S ST T

T T T T
S S T T S SS S T TT T

cov w X w X w C w

var w X var w X w C w w C w
= , (3)

where ()cov ⋅ denotes the covariance function, ()var ⋅ denotes

the auto-variance function, ()T⋅ refers to the transpose of a vector

or a matrix. With the projection directions Sw and Tw , we can

separately project SX and TX into a common space, where the

projected samples T
S Sw X and T

T Tw X are maximally correlated,
that is, their distributions can be made to be similar. This is why
CCA can be used for CCDP. SSC and TTC denote the within-

company covariance matrices of SX and TX , respectively. STC

refers to the cross-company covariance matrix of SX and TX .

SSC , TTC and STC are separately defined as:

()()
1

1 N Ti i
SS S S S S

i
C x m x m

N =

= − −∑ , (4)

()()
1

1 M Ti i
TT T T T T

i
C x m x m

M =

= − −∑ , (5)

()()
1 1

1 N M Ti j
ST S S T T

i j
C x m x m

NM = =

= − −∑∑ , (6)

where i
Sx denotes the thi module vector with the unified metric

representation in SX , Sm and Tm are the mean modules of SX

and TX :

1

1 N
i

S S
i

m x
N =

= ∑ and
1

1 M
i

T T
i

m x
M =

= ∑ . (7)

Since Formula (3) is invariant with respect to scaling of Sw and

Tw , the objective function of CCA can be defined as follows:

,max

. . 1, 1
S T

T
w w S ST T

T T
S SS S T TT T

w C w

s t w C w w C w= =
. (8)

Formula (8) can be solved by generalized eigenvalue problem as
follows:

ST S SS S

ST T TT T

C w C w
C w C w

λ

=

. (9)

λ is the generalized eigenvalue corresponding to the generalized

eigenvector S

T

w
w

. Suppose that we get p pairs of projective

vectors (),S Tw w corresponding to the largest eigenvalues, we can

Figure 2. Illustration of UMR construction for
heterogeneous source and target data.

Source

Target

Construct UMR
Zero

Data with
common
metrics

Data with
company-
specific
metrics

499

construct the projective transformation []1, ,S S SPW w w= and

[]1, ,T T TPW w w= .

When obtaining the projected samples T
S SW X and T

T TW X , we use
the nearest neighbor (NN) classifier [43] with the Euclidean
distance for prediction. Specifically, for each projected target
sample, we predict label (defective or defect-free) for it with the
label of the projected source sample that is nearest to it according
to Euclidean distance. Algorithm 1 realizes the proposed CCA+
approach.

Algorithm 1 CCA+ Approach
Require: Source company data SX , target company data TX
and the class labels of SX .
Output: Class labels for TX .
1. Use the z-score normalization to preprocess SX and TX .
2. Search the common metrics from the heterogeneous SX and

TX , and construct the unified metric representation as Formula

(1) or (2) to obtain SX and TX .
3. Construct the covariance matrices SSC , TTC and STC .
4. Obtain the projective transformations SW and TW by using
Formula (9).
5. Based on the obtained T

S SW X and T
T TW X , use the NN

classifier with the Euclidean distance for defect prediction.

4. EXPERIMENTS
In this section, we evaluate the proposed CCA+ approach for
heterogeneous CCDP empirically. We firstly introduce the
benchmark datasets and three commonly used evaluation
measures. Then, we perform experiment of HCCDP with partially
different metrics, followed by the experiment of HCCDP with
totally different metrics.

4.1 Data Set
In the experiment, we employ 14 publicly available and
commonly used datasets (projects) from four different companies

including NASA [12, 20-21], SOFTLAB [12], ReLink [22-23]
and AEEEM [23-24] as the test data. Table 3 tabulates the details
about the datasets we used and Figure 1 illustrates the detailed
metrics used in these companies.

Each dataset in NASA represents a NASA software system or sub-
system, which contains the corresponding defect-marking data
and various static code metrics. The NASA data was collected
from across the United States over a period of five years from
numerous NASA contractors working at different geographical
centers [16]. Static code metrics of NASA datasets include size,
readability, complexity and etc., which are closely related to
software quality.

Turkish software company (SOFTLAB) contains three datasets,
i.e., AR3, AR4 and AR5, which are controller software for a
washing machine, a dishwasher and a refrigerator, respectively.
The used datasets from SOFTLAB and those from NASA are
obtained from PROMISE repository [12]. There exist 28 common
metrics between these two companies. Although the defect data of
these two companies are from the same repository, these
companies are very different from each other.

ReLink was collected by Wu et al. [23] and the defect information
in ReLink has been manually verified and corrected. ReLink has
26 complexity metrics, which are widely used in defect prediction
[23]. Among three used datasets, the size of each one (the number
of modules) ranges from 56 to 399, while the number of attributes
is fixed to 26.

The AEEEM data set was collected by D’Ambros et al. [24].
AEEEM consists of 61 metrics: 17 source code metrics, 5
previous-defect metrics, 5 entropy-of-change metrics, 17 entropy-
of-source-code metrics, and 17 churn-of-source code metrics [24].
In particular, AEEEM includes linearly decayed entropy (LDHH)
and weighted churn (WCHU). Both LDHH and WCHU have been
verified as informative defect predictors [24]. Figure 1 lists part of
the metrics used in AEEEM.

4.2 Evaluation Measures
In the experiment, we employ three commonly used evaluation
measures to evaluate the performance of defect prediction models,

Table 3. Details of dataset used in the experiment

Company Project Description Number
of metrics

Number of
total modules

Number of
defective modules

Percentage of
defective
modules

NASA
CM1 Spacecraft instrument 37 327 42 12.84%
MW1 A zero gravity experiment 37 253 27 10.67%
PC1 Flight software 37 705 61 8.65%

SOFTLA
B

AR3 Embedded controller 29 63 8 12.70%
AR4 Embedded controller 29 107 20 18.69%
AR5 Embedded controller 29 36 8 22.22%

ReLink

Apache HTTP
Server (Apache) Web server 26 194 98 50.52%
OpenIntents Safe

(Safe) Security 26 56 22 39.29%
ZXing Bar-code reader library 26 399 118 29.57%

AEEEM

Equinox (EQ) OSGi framework 61 324 129 39.81%
Eclipse JDT
Core (JDT) Development 61 997 206 20.66%

Apache Lucene
(LC) Text search engine library 61 691 64 9.26%

Mylyn (ML) Task management 61 1862 245 13.16%
Eclipse PDE UI

(PDE) Development 61 1497 209 13.96%

500

including recall rate, false positive rate and F-measure. These
measures can be defined by using A , B , C and D in Table 4.
Here, A , B , C and D are the number of defective modules that
are predicted as defective, the number of defective modules that
are predicted as defect-free, the number of defect-free modules
that are predicted as defective, and the number of defect-free
modules that are predicted as defect-free, respectively.

Table 4. Four kinds of defect prediction results

 Predict as defective Predict as defect-free
Defective modules A B

Defect-free modules C D

The recall rate is defined as ()A A B+ . It denotes the ratio of the
number of defective modules that are correctly classified as
defective to the total number of defective modules. This measure
is very important for SDP, because prediction models intend to
find out defective modules as much as possible.

The false positive rate is defined as ()C C D+ . It denotes the
ratio of the number of defect-free modules that are wrongly
classified as defective to the total number of defect-free modules.

For SDP, the prediction precision of a model denotes the ratio of
the number of defective modules that are correctly classified as
defective to the number of modules that are classified as defective.
The prediction precision evaluates the correct degree of prediction
model and is defined as ()A A C+ . Obviously, a good prediction
model desires to achieve high value of recall rate and precision.
However, there exists trade-off between the recall rate and
precision. Therefore, a comprehensive measure of recall rate and
precision is necessary. F-measure is the harmonic mean of recall
rate and precision, which is defined as:

2- recall precisionF measure
recall precision
× ×

=
+

.

All the above evaluation measures range from 0 to 1. Obviously,
an ideal defect prediction model should hold high values of recall
rate and F-measure, and low value of false positive rate. In the
experiment, we evaluate the performances of all defect prediction
models in terms of recall (Pd), false positive (Pf) and F-measure
values. It is noted that we do not specially report results with
respect to the precision measure since it has been included in the
comprehensive F-measure.

4.3 Heterogeneous CCDP with Partially
Different Metrics
4.3.1 Compared Methods and Experimental Setting
To validate the effectiveness of the proposed CCA+ approach for
heterogeneous CCDP where the metrics of source and target data
are partially different, we compare CCA+ with two state-of-the-art
cross-company defect prediction methods, namely NN-filter [16]
and TNB [17], and a state-of-the-art cross-project defect
prediction method, namely TCA+ [23]. In these compared
methods, NN-filter attempts to select suitable training samples to
learn predictors. And for NN-filter, each target sample selects 5
nearest neighbors to construct the training set. TCA+ and TNB
employ effective machine learning methods for prediction.

We design the following two experiments to evaluate our
approach:

(1) One-to-one heterogeneous CCDP. We conduct cross-company
prediction using all modules in only one project as the source
company data, which can also be called cross-project defect
prediction. For example, AR4=>CM1, CM1=>Apache, etc. Here,
the left side of “=>” denotes the source company data and the
right side of “=>” represents the target company data.

(2) Many-to-one heterogeneous CCDP. We conduct cross-
company prediction using all modules in multiple projects as the
source company data. For example, {CM1,MW1,PC1}=>AR3,
{CM1,MW1,PC1}=>Apache, etc.

For both experiments, we observe the prediction results when the
number of common metrics is large and when the number of
common metrics is very small. Note that all the compared
methods can only use the common metrics in the source and target
companies. The evaluation of heterogeneous CCDP does not
involve any randomness, because all modules in a project or
multiple projects from source company constitute the training set
and all modules in a project from the target company constitute
the test set.

4.3.2 One-to-one Heterogeneous CCDP
Table 5 shows the Pd and Pf values of one-to-one heterogeneous
CCDP when 28 common metrics exist in source and target data.
“M” denotes the measure. Table 6 tabulates the corresponding F-
measure values. In these tables, the numbers presented with
boldface denote the best results in the corresponding prediction
scenes. From Tables 5 and 6, we can see that CCA+ can obtain
better Pd and Pf values in most prediction scenes as compared
with other competing methods, and it always obtains the best F-
measure values. The reason is that our approach uses all the
metrics rather than only using the common metrics, and the
company-specific metrics usually contain some useful
discriminant information.

Table 5. Pd and Pf values of one-to-one heterogeneous CCDP

with 28 common metrics

Source=>Target M TCA+ NN-
filter TNB CCA+

AR4=>CM1 Pd 0.59 0.15 0.76 0.78
Pf 0.40 0.02 0.52 0.03

CM1=>AR4 Pd 0.60 0.58 0.74 0.70
Pf 0.32 0.09 0.65 0.01

AR4=>MW1 Pd 0.58 0.64 0.51 0.96
Pf 0.08 0.09 0.13 0.06

MW1=>AR4 Pd 0.32 0.75 0.50 0.60
Pf 0.10 0.18 0.38 0.02

AR4=>PC1 Pd 0.47 0.40 0.65 0.85
Pf 0.23 0.15 0.21 0.04

PC1=>AR4 Pd 0.30 0.60 0.50 0.60
Pf 0.06 0.23 0.36 0.00

CM1=>AR3 Pd 0.75 0.37 0.50 0.50
Pf 0.40 0.08 0.41 0.01

CM1=>AR5 Pd 0.37 0.25 0.50 0.62
Pf 0.17 0.05 0.43 0.03

PC1=>AR3 Pd 0.37 0.75 0.75 0.75
Pf 0.16 0.10 0.21 0.01

PC1=>AR5 Pd 0.37 1.00 0.50 0.62
Pf 0.03 0.25 0.37 0.00

Average Pd 0.47 0.55 0.59 0.70
Pf 0.20 0.12 0.36 0.02

501

Table 6. F-measure values of one-to-one heterogeneous CCDP
with 28 common metrics

Source=>Target TCA+ NN-filter TNB CCA+
AR4=>CM1 0.27 0.23 0.28 0.78
CM1=>AR4 0.40 0.60 0.32 0.80
AR4=>MW1 0.43 0.52 0.38 0.77
MW1=>AR4 0.38 0.58 0.31 0.70
AR4=>PC1 0.23 0.27 0.33 0.74
PC1=>AR4 0.37 0.54 0.32 0.75
CM1=>AR3 0.33 0.40 0.22 0.61
CM1=>AR5 0.37 0.28 0.33 0.71
PC1=>AR3 0.30 0.61 0.46 0.80
PC1=>AR5 0.50 0.50 0.36 0.76

Average 0.36 0.45 0.33 0.74
Ranksum 155.0 154.0 155.0

Table 7. Pd and Pf values of one-to-one heterogeneous CCDP

with 3 common metrics

Source=>Target M TCA+ NN-
filter TNB CCA+

CM1=>Apache Pd 0.60 0.60 0.52 0.68
Pf 0.35 0.28 0.41 0.10

Apache=>CM1 Pd 0.35 0.16 0.26 0.55
Pf 0.23 0.15 0.15 0.27

PC1=>Safe Pd 0.13 0.54 0.61 0.83
Pf 0.08 0.20 0.55 0.25

Safe=>PC1 Pd 0.54 0.12 0.70 0.72
Pf 0.38 0.10 0.47 0.08

AR4=>ZXing Pd 0.47 0.11 0.23 0.48
Pf 0.36 0.16 0.21 0.23

ZXing=>AR4 Pd 0.20 0.26 0.27 0.75
Pf 0.13 0.07 0.24 0.24

AR3=>Apache Pd 0.17 0.75 0.53 0.92
Pf 0.07 0.62 0.47 0.50

Apache=>AR3 Pd 0.37 0.25 0.12 0.75
Pf 0.14 0.17 0.10 0.30

MW1=>ZXing Pd 0.38 0.36 0.23 0.48
Pf 0.25 0.25 0.21 0.21

ZXing=>MW1 Pd 0.55 0.45 0.35 0.61
Pf 0.31 0.13 0.34 0.11

Average Pd 0.38 0.36 0.38 0.67
Pf 0.23 0.21 0.31 0.22

To statistically analyze the F-measure results given in Table 6, we
perform the Wilcoxon rank-sum test [44-45], which is one of non-
parameter statistical significance test for comparison of two
methods, at a confidence level of 95%, and the rank sum values
are shown in the last low of Table 6. According to the
critical value [46], the proposed approach makes a significant
difference in comparison with other methods. In following
experiments (Tables 8, 10 and 12), we also conduct the statistical
test and the test results indicate the significant difference exists.

Tables 7 and 8 show the Pd, Pf, and F-measure values of one-to-
one heterogeneous CCDP when only three common metrics exist
in defect data from two companies. We can see that when very
few common metrics exist in source and target data, three
compared methods have unsatisfactory performances. However,
CCA+ can still achieve “normal” prediction results. Generally, the
average F-measure of CCA+ in Table 8 is significantly inferior to
that in Table 6. The reason is that larger size of common metrics
in fact means more useful information can be explored and the
large common metric set can relieve the stress of good prediction
model learning in aspect of metric difference.

4.3.3 Many-to-one Heterogeneous CCDP
In this subsection, we perform the many-to-one heterogeneous
CCDP experiments. Since TCA+ [23] is designed for cross-
project defect prediction, we just take the NN-filter and TNB
methods as compared methods. We firstly report the prediction
results when the source and target company data have 28 common
metrics. The Pd, Pf and F-measure values are shown in Tables 9
and 10. In general, as compared with the results in Tables 5 and 6,
all the compared methods gain some improvement with respect to
three used evaluation measures, especially Pd and F-measure. In
addition, our CCA+ always outperforms the other compared
methods in terms of F-measure.

Table 8. F-measure values of one-to-one heterogeneous CCDP
with 3 common metrics

Source=>Target TCA+ NN-filter TNB CCA+
CM1=>Apache 0.61 0.64 0.54 0.76
Apache=>CM1 0.24 0.13 0.22 0.32

PC1=>Safe 0.21 0.59 0.48 0.73
Safe=>PC1 0.19 0.10 0.20 0.56

AR4=>ZXing 0.40 0.14 0.26 0.47
ZXing=>AR4 0.22 0.32 0.22 0.52
AR3=>Apache 0.27 0.63 0.53 0.76
Apache=>AR3 0.31 0.21 0.13 0.38
MW1=>ZXing 0.38 0.36 0.26 0.48
ZXing=>MW1 0.26 0.35 0.15 0.47

Average 0.31 0.34 0.30 0.55
Ranksum 144.5 131.5 138.5

Table 9. Pd and Pf values of many-to-one heterogeneous

CCDP with 28 common metrics
Source=>Target M NN-filter TNB CCA+

{CM1,MW1,PC1}=>AR3 Pd 1.00 0.87 0.75
Pf 0.11 0.12 0.00

{CM1,MW1,PC1}=>AR4 Pd 0.50 1.00 0.80
Pf 0.07 0.96 0.00

{CM1,MW1,PC1}=>AR5 Pd 0.62 0.50 0.75
Pf 0.07 0.37 0.03

{AR3,AR4,AR5}=>CM1 Pd 0.85 0.78 0.83
Pf 0.08 0.43 0.03

{AR3,AR4,AR5}=>MW1 Pd 0.58 0.62 0.85
Pf 0.07 0.17 0.01

{AR3,AR4,AR5}=>PC1 Pd 0.40 0.70 0.90
Pf 0.13 0.19 0.02

Average Pd 0.65 0.74 0.81
Pf 0.09 0.37 0.02

Table 10. F-measure values of many-to-one heterogeneous

CCDP with 28 common metrics
Source=>Target NN-filter TNB CCA+

{CM1,MW1,PC1}=>AR3 0.76 0.63 0.85
{CM1,MW1,PC1}=>AR4 0.57 0.32 0.88
{CM1,MW1,PC1}=>AR5 0.66 0.36 0.80
{AR3,AR4,AR5}=>CM1 0.69 0.54 0.81
{AR3,AR4,AR5}=>MW1 0.54 0.40 0.86
{AR3,AR4,AR5}=>PC1 0.29 0.37 0.85

Average 0.59 0.44 0.84
Ranksum 57.0 57.0

We also report the prediction results (Pd, Pf and F-measure values)
corresponding to many-to-one heterogeneous CCDP with three
common metrics existing in source and target companies, as
shown in Tables 11 and 12. We can see that our approach
performs the best in terms of F-measure, and sufficient source

502

company data can improve the prediction performances as
compared with the prediction results in Tables 7 and 8.

Table 11. Pd and Pf values of many-to-one heterogeneous
CCDP with 3 common metrics

Source=>Target M NN-filter TNB CCA+

{CM1,MW1,PC1}=>Apache Pd 0.68 0.48 0.81
Pf 0.38 0.27 0.16

{Apache,Safe,ZXing}
=>CM1

Pd 0.21 0.57 0.92
Pf 0.14 0.30 0.08

{CM1,MW1,PC1}=>Safe Pd 0.51 0.45 0.81
Pf 0.05 0.21 0.23

{Apache,Safe,ZXing}=>PC1 Pd 0.32 0.52 0.83
Pf 0.29 0.26 0.06

{AR3,AR4,AR5}=>ZXing Pd 0.13 0.46 0.97
Pf 0.06 0.15 0.22

{Apache,Safe,ZXing}=>AR4 Pd 0.40 0.32 0.65
Pf 0.10 0.15 0.06

{AR3,AR4,AR5}=>Apache Pd 0.71 0.42 0.94
Pf 0.48 0.12 0.01

{Apache,Safe,ZXing}=>AR3 Pd 0.37 0.37 0.87
Pf 0.23 0.38 0.36

{CM1,MW1,PC1}=>ZXing Pd 0.40 0.48 0.91
Pf 0.13 0.25 0.19

{Apache,Safe,ZXing}
=>MW1

Pd 0.45 0.47 0.92
Pf 0.10 0.32 0.12

Average Pd 0.41 0.45 0.86
Pf 0.19 0.24 0.15

Table 12. F-measure values of many-to-one heterogeneous

CCDP with 3 common metrics
Source=>Target NN-filter TNB CCA+

{CM1,MW1,PC1}=>Apache 0.66 0.55 0.82
{Apache,Safe,ZXing}=>CM1 0.18 0.31 0.75

{CM1,MW1,PC1}=>Safe 0.62 0.51 0.75
{Apache,Safe,ZXing}=>PC1 0.14 0.24 0.66
{AR3,AR4,AR5}=>ZXing 0.20 0.46 0.77

{Apache,Safe,ZXing}=>AR4 0.43 0.30 0.66
{AR3,AR4,AR5}=>Apache 0.65 0.54 0.96

{Apache,Safe,ZXing}=>AR3 0.25 0.18 0.40
{CM1,MW1,PC1}=>ZXing 0.46 0.46 0.77

{Apache,Safe,ZXing}=>MW1 0.38 0.21 0.61
Average 0.40 0.37 0.72
Ranksum 146.0 150.0

4.4 Heterogeneous CCDP with Totally
Different Metrics
4.4.1 Experimental Setting
For heterogeneous CCDP where source and target companies
have totally different metrics, existing CCDP methods cannot be
used for prediction. In this part, we perform within-project
(Target=>Target) prediction experiments and use the within-
project prediction results as references, which is similar to the
performance comparison strategy in [23]. Specifically, we employ
our previously proposed cost-sensitive discriminative dictionary
learning (CDDL) [11] method to conduct within-project defect
prediction, which is a state-of-the-art within-project prediction
method. Here, 50% modules in the target project are randomly
selected for training and the remained modules are used for testing.
The random selection process for training and test data may be
biased and may affect the prediction performance. Thus, we repeat
this process 20 times and report the average prediction results.

It is noted that the proposed CCA+ approach is only evaluated
once for each prediction scene, because the evaluation of
heterogeneous CCDP with CCA+ does not involve any
randomness. When we conduct HCCDP with CCA+, all modules
in a project or multiple projects from source company constitute
the training set and all modules in a project from the target
company constitute the test set.

We also design two experiments including one-to-one
heterogeneous CCDP and many-to-one heterogeneous CCDP to
evaluate CCA+. Since the metrics used in AEEEM are totally
different from those of other companies, we use the projects in
AEEEM as the source or target data in all prediction cases.

Table 13. Pd and Pf values of within-project prediction and
heterogeneous CCDP (one-to-one) with no common metrics

Source=>Target M CCA+ Within
(Target=>Target)

JDT=>PC1 Pd 0.75 0.86
Pf 0.11 0.29

PC1=>JDT Pd 0.45 0.69
Pf 0.06 0.17

JDT=>AR4 Pd 0.70 0.66
Pf 0.22 0.23

AR4=>JDT Pd 0.66 0.69
Pf 0.12 0.17

JDT=>ZXing Pd 0.61 0.68
Pf 0.41 0.43

ZXing=>JDT Pd 0.80 0.69
Pf 0.15 0.17

ML=>PC1 Pd 0.73 0.86
Pf 0.08 0.29

PC1=>ML Pd 0.33 0.58
Pf 0.08 0.20

ML=>AR4 Pd 0.53 0.66
Pf 0.06 0.23

AR4=>ML Pd 0.49 0.58
Pf 0.18 0.20

ML=>ZXing Pd 0.50 0.68
Pf 0.21 0.43

ZXing=>ML Pd 0.60 0.58
Pf 0.19 0.20

PDE=>PC1 Pd 0.31 0.86
Pf 0.00 0.29

PC1=>PDE Pd 0.40 0.77
Pf 0.09 0.33

PDE=>AR4 Pd 0.45 0.66
Pf 0.03 0.23

AR4=>PDE Pd 0.51 0.77
Pf 0.14 0.33

PDE=>ZXing Pd 0.67 0.68
Pf 0.44 0.43

ZXing=>PDE Pd 0.85 0.77
Pf 0.27 0.33

EQ=>CM1 Pd 0.44 0.74
Pf 0.30 0.37

CM1=>EQ Pd 0.63 0.75
Pf 0.29 0.37

LC=>Apache Pd 0.17 0.67
Pf 0.00 0.31

Apache=>LC Pd 0.95 0.71
Pf 0.44 0.19

Average Pd 0.57 0.71
Pf 0.18 0.28

503

Table 14. F-measure values of within-project prediction and
heterogeneous CCDP (one-to-one) with no common metrics

Source=>Target CCA+ Within (Target=>Target)
JDT=>PC1 0.51 0.41
PC1=>JDT 0.54 0.59
JDT=>AR4 0.51 0.49
AR4=>JDT 0.62 0.59

JDT=>ZXing 0.47 0.50
ZXing=>JDT 0.67 0.59

ML=>PC1 0.55 0.41
PC1=>ML 0.36 0.40
ML=>AR4 0.59 0.49
AR4=>ML 0.37 0.40

ML=>ZXing 0.49 0.50
ZXing=>ML 0.42 0.40
PDE=>PC1 0.45 0.41
PC1=>PDE 0.40 0.40
PDE=>AR4 0.56 0.49
AR4=>PDE 0.42 0.40

PDE=>ZXing 0.49 0.50
ZXing=>PDE 0.47 0.40

EQ=>CM1 0.25 0.38
CM1=>EQ 0.60 0.65

LC=>Apache 0.29 0.68
Apache=>LC 0.30 0.44

Average 0.47 0.48

Table 15. Pd and Pf values of within-project prediction and
heterogeneous CCDP (many-to-one) with no common metrics

Source=>Target M CCA+ Within (Target=>Target)
{JDT,ML,PDE}

=>PC1
Pd 0.66 0.86
Pf 0.05 0.29

{CM1,MW1,PC
1}=>JDT

Pd 0.55 0.69
Pf 0.05 0.17

{JDT,ML,PDE}
=>AR4

Pd 0.52 0.66
Pf 0.16 0.23

{AR3,AR4,AR5}
=>JDT

Pd 0.57 0.69
Pf 0.04 0.17

{JDT,ML,PDE}
=>ZXing

Pd 0.63 0.68
Pf 0.38 0.43

{Apache,Safe,Z
Xing}=>JDT

Pd 0.75 0.69
Pf 0.10 0.17

{CM1,MW1,PC
1}=>ML

Pd 0.55 0.58
Pf 0.19 0.20

{AR3,AR4,AR5}
=>ML

Pd 0.60 0.58
Pf 0.21 0.20

{Apache,Safe,Z
Xing}=>ML

Pd 0.73 0.58
Pf 0.24 0.20

{CM1,MW1,PC
1}=>PDE

Pd 0.69 0.77
Pf 0.24 0.33

{AR3,AR4,AR5}
=>PDE

Pd 0.81 0.77
Pf 0.25 0.33

{Apache,Safe,Z
Xing}=>PDE

Pd 0.36 0.77
Pf 0.02 0.33

{PDE,ML,EQ}
=>CM1

Pd 0.49 0.74
Pf 0.00 0.37

{CM1,MW1,PC
1}=>EQ

Pd 0.70 0.75
Pf 0.28 0.37

{PDE,ML,LC}
=>Apache

Pd 0.66 0.67
Pf 0.25 0.31

{Apache,Safe,Z
Xing}=>LC

Pd 0.72 0.71
Pf 0.18 0.19

Average Pd 0.62 0.70
Pf 0.17 0.27

4.4.2 One-to-one Heterogeneous CCDP
Table 13 gives the Pd and Pf values of our approach for one-to-
one heterogeneous CCDP where no common metric exists in the

source and target data. For comparison, the Pd and Pf values of
within-project (Target=>Target) defect prediction are also
reported in this Table. Table 14 shows the corresponding F-
measure values. We can see that CCA+ can obtain comparable
results in contrast with the within-project prediction results.

Table 16. F-measure values of within-project prediction and

heterogeneous CCDP (many-to-one) with no common metrics

Source=>Target CCA+ Within
(Target=>Target)

{JDT,ML,PDE}=>PC1 0.59 0.41
{CM1,MW1,PC1}=>JDT 0.63 0.59
{JDT,ML,PDE}=>AR4 0.60 0.49
{AR3,AR4,AR5}=>JDT 0.66 0.59

{JDT,ML,PDE}=>ZXing 0.49 0.50
{Apache,Safe,ZXing}=>JDT 0.70 0.59

{CM1,MW1,PC1}=>ML 0.39 0.40
{AR3,AR4,AR5}=>ML 0.40 0.40

{Apache,Safe,ZXing}=>ML 0.44 0.40
{CM1,MW1,PC1}=>PDE 0.42 0.40
{AR3,AR4,AR5}=>PDE 0.47 0.40

{Apache,Safe,ZXing}=>PDE 0.49 0.40
{PDE,ML,EQ}=>CM1 0.34 0.38

{CM1,MW1,PC1}=>EQ 0.66 0.65
{PDE,ML,LC}=>Apache 0.69 0.68

{Apache,Safe,ZXing}=>LC 0.41 0.44
Average 0.52 0.48

4.4.3 Many-to-one Heterogeneous CCDP
Tables 15 and 16 report the performances (Pd, Pf and F-measure
values) of our approach for many-to-one heterogeneous CCDP
when the source and target data has totally different metrics.
Within-project (Target=>Target) prediction results are also shown
in these two tables. It is obvious that the many-to-one prediction
results of our approach are better than the one-to-one prediction
results shown in Tables 13 and 14. In many-to-one heterogeneous
CCDP, our approach can achieve better or comparable prediction
results as compared with the within-project prediction results,
which indicates the effectiveness of the proposed approach.

4.5 Answers to Research Questions
1. RQ 2: Is the heterogeneous cross-company defect data helpful

for cross-company defect prediction?

From the tables above, we can conclude that the heterogeneous
cross-company defect data is helpful for defect prediction. For
HCCDP with partially different metrics, existing CCDP
methods can only make use of the common metrics and show
unsatisfactory performances. Our approach makes full use of all
the metrics of source and target companies, and show desirable
prediction results. For HCCDP with totally different metrics,
our approach can obtain comparable or even better prediction
results as compared with within-project prediction results.

2. RQ 3: If the heterogeneous cross-company defect data can help
prediction, when it helps the most?

According to the prediction results in Tables 5-16, we can find
that, in general, the results of HCCDP with partially different
metrics are better than those of HCCDP with totally different
metrics. In addition, the results of many-to-one HCCDP are
better than those of one-to-one HCCDP. Specifically, the
prediction performances of many-to-one HCCDP with 28
common metrics are the best. Therefore, we conclude that when
there exist multiple projects in the source company and a large

504

number of common metrics between source and target company
data, the heterogeneous cross-company defect data can help
prediction most.

4.6 Further Experiment
4.6.1 Performance with Other Classifiers
In this subsection, we report the prediction performances of our
approach with other classifiers including support vector machine
(SVM), random forest (RF) and logistic regression (LR). Table 17
tabulates the results of CCA+ with SVM, RF, LR and NN
classifiers in some representative heterogeneous CCDP cases. We
can see that CCA+ obtains favorable prediction results with
various classifiers and achieves the best prediction results with the
NN classifier.

Table 17. F-measure values of CCA+ in some specific
heterogeneous CCDP cases

Source=>Target SVM RF LR NN
AR4=>CM1 0.77 0.76 0.74 0.78

CM1=>Apache 0.73 0.70 0.76 0.76
{CM1,MW1,PC1}=>AR3 0.83 0.78 0.79 0.85

{CM1,MW1,PC1}=>Apache 0.80 0.75 0.77 0.82
JDT=>PC1 0.51 0.47 0.49 0.51

{JDT,ML,PDE}=>PC1 0.56 0.51 0.57 0.59
average 0.70 0.66 0.69 0.72

Table 18. MCC values of CCA+ in some specific heterogeneous

CCDP cases

Source=>Target TCA+ NN-
filter TNB CCA+

Within
(Target=>

Target)
AR4=>CM1 0.19 0.23 0.25 0.76 —

CM1=>Apache 0.25 0.32 0.11 0.59 —
{CM1,MW1,PC1}

=>AR3 — 0.90 0.75 0.77 —
{CM1,MW1,PC1}

=>Apache — 0.30 0.22 0.65 —
JDT=>PC1 — — — 0.48 0.43

{JDT,ML,PDE}
=>PC1 — — — 0.64 0.58

4.6.2 Performance with the MCC Measure
Considering that the source data may be class-imbalanced,
especially for one-to-one CCDP, for this part, we also measure the
prediction performance of CCA+ using the comprehensive
matthews correlation coefficient (MCC) measure [47]. MCC
includes all A , B , C and D in the confusion matrix of Table 4,
and can be regarded as taking the class-imbalance issue into
consideration. MCC is defined as follows:

* *
() * () * () * ()

A D B CMCC
A B A C B D C D

−
=

+ + + +
.

The MCC measure ranges from -1 to 1, and an ideal defect
prediction model should hold high values of MCC. Table 18
reports the results of CCA+ with MCC as the measure in some
representative heterogeneous CCDP cases. The heterogeneous
CCDP cases in the table correspond to those in Tables 5-16, and
we fill the table with “-” where the compared methods are not
performed in some specific cases. According to Table 18, our
CCA+ approach can obtain better results in terms of MCC as
compared with other related methods in most cases.

4.7 Threats to Validity
Followings are several potential threats to the validity with respect
to the experiments:

(1) Bias of evaluation measures. One bias is the measures we used
to report the performance of defect prediction. Other measures,
such as area under curve (AUC) and g-measure (harmonic mean
of pd and 1-pf) are not used. They are also comprehensive
measures. In this work, we employ the widely used pd, pf, F-
measure and MCC indices to show the empirical evaluation of
defect prediction.

(2) Comparison accuracy. The authors of the three compared
methods do not provide the program codes. We carefully
implement these methods by following their papers.

5. CONCLUSIONS
In this paper, we propose an effective solution for heterogeneous
cross-company defect prediction (HCCDP) problem, which refers
to the cross-company prediction scenario where source and target
company data has different metrics. We present a novel metric
representation. By effectively combining the common metrics,
company-specific metrics and an appropriate number of zeros, we
can obtain a unified metric representation for data from two
different companies. Then, we for the first time introduce the
transfer learning method CCA into CCDP, such that the data
distributions of source and target data with the unified metric
representation can be made similar. We call the proposed
approach for heterogeneous CCDP as CCA+.

We conduct HCCDP experiments on the 14 widely-used open
source projects from four companies. And we separately design
the one-to-one and many-to-one experiments to evaluate the
performances of the proposed approach. The experimental results
of one-to-one prediction indicate that our approach is superior to
state-of-the-art CCDP methods in terms of three widely-used
measures. In many-to-one HCCDP experiments, our approach
also shows desirable prediction effects that are comparable to
within-project prediction. All in all, the proposed approach is an
effective solution for heterogeneous cross-company defect
prediction.

For the future work, we would like to employ more company data
that contains both open source and commercial proprietary closed
projects to validate the generalization ability of our approach. We
will also evaluate the application of our solution for cross-
company data containing some other static code metrics.

6. ACKNOWLEDGEMENTS
The authors want to thank the anonymous reviewers for their
constructive comments and suggestions. The work described in
this paper was supported by the National Nature Science
Foundation of China under Projects No. 61272273, No.
61233011, No. 61472186, No. 91418202, No. 61472178 and No.
61170071, the China 973 Program under Project No.
2014CB340702, the China 863 Program under Project No.
2015AA016306.

7. REFERENCES
[1] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise

in defect prediction. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE), pages 481-490,
2011.

505

[2] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A
systematic literature review on fault prediction performance
in software engineering. IEEE Transactions on Software
Engineering, 38(6):1276-1304, 2012.

[3] S. Shivaji, E. J. Whitehead, R. Akella, and S. Kim. Reducing
features to improve code change-based bug prediction. IEEE
Transactions on Software Engineering, 39(4):552-569, 2013.

[4] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F.
Shull, B. Turhan, T. Zimmermann. Local versus global
lessons for defect prediction and effort estimation. IEEE
Transactions on Software Engineering, 39(6):822-834, 2013.

[5] M. Shepperd, D. Bowes, and T. Hall. Researcher bias: The
use of machine learning in software defect prediction. IEEE
Transactions on Software Engineering, 40(6):603-616, 2014.

[6] K. Elish and M. Elish. Predicting defect-prone software
modules using support vector machines. Journal of Systems
and Software, 81(5):649-660, 2008.

[7] J. Zheng. Cost-sensitive boosting neural networks for
software defect prediction. Expert Systems with Applications,
37(6):4537-4543, 2010.

[8] Z. B. Sun, Q. B. Song, and X. Y. Zhu. Using coding based
ensemble learning to improve software defect prediction.
IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 42(6):1806-1817, 2012.

[9] S. Wang and X. Yao. Using class imbalance learning for
software defect prediction. IEEE Transactions on Reliability,
62(2):434-443, 2013.

[10] M. Liu, L. Miao, and D. Zhang. Two-stage cost-sensitive
learning for software defect prediction. IEEE Transactions
on Reliability, 63(2):676-686, 2014.

[11] X. Y. Jing, S. Ying, Z. W. Zhang, S. S. Wu, and J. Liu.
Dictionary learning based software defect prediction. In
Proceedings of the 36th International Conference on
Software Engineering (ICSE), pages 414-423, 2014.

[12] G. Boetticher, T. Menzies, and T. Ostrand. The PROMISE
repository of empirical software engineering data.
http://promisedata.org/repository, 2007.

[13] F. Peters, T. Menzies, and A. Marcus. Better cross company
defect prediction. In 10th IEEE Working Conference on
Mining Software Repositories (MSR), pages 409-418, 2013.

[14] P. Singh, S. Verma, and O. P. Vyas. Cross company and
within company fault prediction using object oriented
metrics. International Journal of Computer Applications,
74(8):5-11, 2013.

[15] F. Peters, T. Menzies, and L. Layman. LACE2: better
privacy-preserving data sharing for cross project defect
prediction. In Proceedings of the 37th International
Conference on Software Engineering (ICSE), article in press.

[16] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano. On
the relative value of cross-company and within-company data
for defect prediction. Empirical Software Engineering,
14(5):540-578, 2009.

[17] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer learning for
cross-company software defect prediction. Information and
Software Technology, 54(3):248-256, 2012.

[18] L. Chen, B. Fang, Z. Shang, and Y. Tang. Negative samples
reduction in cross-company software defects prediction.
Information and Software Technology, Article in Press, 2015.

[19] F. Peters, T. Menzies, L. Gong, and H. Zhang. Balancing
privacy and utility in cross-company defect prediction. IEEE
Transactions on Software Engineering, 39(8):1054-1068,
2013.

[20] T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Transactions
on Software Engineering, 33(1):2-13, 2007.

[21] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data quality:
some comments on the NASA software defect datasets. IEEE
Transactions on Software Engineering, 39(9):1208-1215,
2013.

[22] R. Wu, H. Zhang, S. Kim, and S. C. Cheung. Relink:
recovering links between bugs and changes. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software
Engineering (ESEC/FSE), pages 15-25, 2011.

[23] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In
Proceedings of the 35th International Conference on
Software Engineering (ICSE), pages 382-391, 2013.

[24] M. D’Ambros, M. Lanza, and R. Robbes. An extensive
comparison of bug prediction approaches. In 7th IEEE
Working Conference on Mining Software Repositories (MSR),
pages 31-41, 2010.

[25] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical
correlation analysis: An overview with application to
learning methods. Neural Computation, 16(12):2639-2664,
2004.

[26] A. Panichella, R. Oliveto, and A. De Lucia. Cross-project
defect prediction models: L’Union fait la force. In Software
Evolution Week-IEEE Conference on Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE),
pages 164-173, 2014.

[27] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A.
Panichella, and S. Panichella. Multi-objective cross-project
defect prediction. In IEEE 6th International Conference on
Software Testing, Verification and Validation (ICST), pages
252-261, 2013.

[28] S. Herbold. Training data selection for cross-project defect
prediction. In Proceedings of the 9th International
Conference on Predictive Models in Software Engineering
(PROMISE), pages 6-16, 2013.

[29] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B.
Murphy. Cross-project defect prediction. In Proceedings of
the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), pages
91-100, 2009.

[30] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang. An
investigation on the feasibility of cross-project defect
prediction. Automated Software Engineering, 19(2):167-199,
2012.

[31] F. Rahman, D. Posnett, and P. Devanbu. Recalling the
imprecision of cross-project defect prediction. In
Proceedings of the ACM SIGSOFT 20th International

506

Symposium on the Foundations of Software Engineering
(FSE), pages 1-11, 2012.

[32] B. Turhan, A. T. Mısırlı, and A. Bener. Empirical evaluation
of the effects of mixed project data on learning defect
predictors. Information and Software Technology,
55(6):1101-1118, 2013.

[33] D. Ryu, O. Choi, and J. Baik. Value-cognitive boosting with
a support vector machine for cross-project defect prediction.
Empirical Software Engineering, Article in Press, 2014.

[34] Y. O. Li, T. Adali, W. Wang, and V. D. Calhoun. Joint blind
source separation by multiset canonical correlation analysis.
IEEE Transactions on Signal Processing, 57(10):3918-3929,
2009.

[35] T. K. Kim, J. Kittler, and R. Cipolla. Discriminative learning
and recognition of image set classes using canonical
correlations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(6):1005-1018, 2007.

[36] P. Dhillon, D. P. Foster, and L. H. Ungar. Multi-view
learning of word embeddings via CCA. In Advances in
Neural Information Processing Systems (NIPS), pages 199-
207, 2011.

[37] X. Y. Jing, R. M. Hu, Y. P. Zhu, S. S. Wu, C. Liang, and J.
Y. Yang. Intra-view and inter-view supervised correlation
analysis for multi-view feature learning. In 28th AAAI
Conference on Artificial Intelligence (AAAI), pages 1882-
1889, 2014.

[38] X. Wu, H. Wang, C. Liu, and Y. Jia. Cross-view action
recognition over heterogeneous feature spaces. In
International Conference on Computer Vision (ICCV), pages
609-616, 2013.

[39] B. Zhang and Z. Z. Shi. Classification of big velocity data
via cross-domain canonical correlation analysis. In
International Conference on Big Data, pages 493-498, 2013.

[40] Y. Yeh, C. Huang, and Y. Wang. Heterogeneous domain
adaptation and classification by exploiting the correlation
subspace. IEEE Transactions on Image Processing,
23(5):2009-2018, 2014.

[41] W. Li, L. Duan, D. Xu, and I. W. Tsang. Learning with
augmented features for supervised and semi-supervised
heterogeneous domain adaptation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(6):1134-1148,
2014.

[42] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas. Data
preprocessing for supervised leaning. International Journal
of Computer Science, 1(2):111-117, 2006.

[43] T. Cover and P. Hart. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13(1):21-27,
1967.

[44] F. Wilcoxon. Individual comparisons by ranking
methods. Biometrics Bulletin, 80-83, 1945.

[45] J. Demšar. Statistical comparisons of classifiers over multiple
data sets. The Journal of Machine Learning Research, 7:1-30,
2006.

[46] R. C. Milton. An extended table of critical values for the
Mann-Whitney (Wilcoxon) two-sample statistic. Journal of
the American Statistical Association, 59(307):925-934, 1964.

[47] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H.
Nielsen. Assessing the accuracy of prediction algorithms for
classification: an overview. Bioinformatics, 16(5):412-424,
2000.

507

	1. INTRODUCTION
	1.1 Motivation
	1.2 Contribution
	1.3 Organization

	2. RELATED WORK
	2.1 Cross-company Defect Prediction (CCDP) Methods
	2.2 Cross-project Defect Prediction (CPDP) Methods
	2.3 Canonical Correlation Analysis (CCA) and Transfer Learning Methods

	3. OUR APPROACH
	3.1 Unified Metric Representation for Heterogeneous Source and Target Data
	3.2 CCA for Transfer Learning

	4. EXPERIMENTS
	4.1 Data Set
	4.2 Evaluation Measures
	4.3 Heterogeneous CCDP with Partially Different Metrics
	4.3.1 Compared Methods and Experimental Setting
	4.3.2 One-to-one Heterogeneous CCDP
	4.3.3 Many-to-one Heterogeneous CCDP

	4.4 Heterogeneous CCDP with Totally Different Metrics
	4.4.1 Experimental Setting
	4.4.2 One-to-one Heterogeneous CCDP
	4.4.3 Many-to-one Heterogeneous CCDP

	4.5 Answers to Research Questions
	4.6 Further Experiment
	4.6.1 Performance with Other Classifiers
	4.6.2 Performance with the MCC Measure

	4.7 Threats to Validity

	5. CONCLUSIONS
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

