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ABSTRACT 
Cross-company defect prediction (CCDP) learns a prediction 
model by using training data from one or multiple projects of a 
source company and then applies the model to the target company 
data. Existing CCDP methods are based on the assumption that 
the data of source and target companies should have the same 
software metrics. However, for CCDP, the source and target 
company data is usually heterogeneous, namely the metrics used 
and the size of metric set are different in the data of two 
companies. We call CCDP in this scenario as heterogeneous 
CCDP (HCCDP) task. In this paper, we aim to provide an 
effective solution for HCCDP. We propose a unified metric 
representation (UMR) for the data of source and target companies. 
The UMR consists of three types of metrics, i.e., the common 
metrics of the source and target companies, source-company 
specific metrics and target-company specific metrics. To construct 
UMR for source company data, the target-company specific 
metrics are set as zeros, while for UMR of the target company 
data, the source-company specific metrics are set as zeros. Based 
on the unified metric representation, we for the first time 
introduce canonical correlation analysis (CCA), an effective 
transfer learning method, into CCDP to make the data 
distributions of source and target companies similar. Experiments 
on 14 public heterogeneous datasets from four companies indicate 
that: 1) for HCCDP with partially different metrics, our approach 
significantly outperforms state-of-the-art CCDP methods; 2) for 
HCCDP with totally different metrics, our approach obtains 
comparable prediction performances in contrast with within-
project prediction results. The proposed approach is effective for 
HCCDP. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management-Software quality 
assurance (SQA), D.2.5 [Software Engineering]: Testing and 
Debugging-Code inspections and walk-throughs. 

General Terms 
Experimentation, Measurement, Reliability, Verification 

Keywords 
Heterogeneous cross-company defect prediction (HCCDP), 
common metrics, company-specific metrics, unified metric 
representation, canonical correlation analysis (CCA). 

1. INTRODUCTION 
Software defect prediction (SDP) is one of the most important 
research topics in software engineering, which has attracted a lot 
of attention from both academic and industrial communities [1-5]. 
Most prior studies on this issue attempt to train predictors based 
on historical data to detect the defect proneness of new software 
modules within the same company [6-11], which is called within-
company defect prediction (WCDP). However, for a new 
company or companies with limited historical data, there is not 
enough training defect data to build a prediction model. In this 
case, it is hard to perform within-company defect prediction. 

Fortunately, there are many open source defect datasets available, 
such as the PROMISE repository [12]. A potential way of 
predicting defects in projects without historical data is to make 
use of these public data sets. In recent years, several cross-
company defect prediction (CCDP) methods have been developed 
[13-15], such as nearest-neighbor filter (NN-filter) [16], transfer 
Naive Bayes (TNB) [17], double transfer boosting (DTB) [18], 
CLIFF+MORPH [19], etc. They learn prediction model by using 
sufficient training data from existing source projects and then 
apply the model to the target project. 

1.1 Motivation 
Existing CCDP methods are based on the assumption that the data 
of source and target companies should have the same software 
metrics. In fact, since different companies might select different 
programming languages, develop software modules according to 
different user requirements, and test software modules from 
different aspects, there usually exist different metrics in the data 
of different companies. Table 1 tabulates the numbers of metrics 
in defect data of companies including NASA [12, 20-21], 
SOFTLAB [12], ReLink [22-23] and AEEEM [23-24]. Table 2 
shows the numbers of common metrics between projects of these 
four companies. Figure 1 illustrates the detailed metrics used in 
defect data of four companies. In the figure, we outline the 
common metrics shared by two different companies with 
rectangle boxes in different colors. Specifically, the red 
rectangle box outlines the common metrics of NASA and 
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@relation CM1 from NASA

@attribute LOC_BLANK numeric
@attribute BRANCH_COUNT numeric
@attribute CALL_PAIRS numeric
@attribute LOC_CODE_AND_COMMENT numeric
@attribute LOC_COMMENTS numeric
@attribute CONDITION_COUNT numeric
@attribute CYCLOMATIC_COMPLEXITY numeric
@attribute CYCLOMATIC_DENSITY numeric
@attribute DECISION_COUNT numeric
@attribute DECISION_DENSITY numeric
@attribute DESIGN_COMPLEXITY numeric
@attribute DESIGN_DENSITY numeric
@attribute EDGE_COUNT numeric
@attribute ESSENTIAL_COMPLEXITY numeric
@attribute ESSENTIAL_DENSITY numeric
@attribute LOC_EXECUTABLE numeric
@attribute PARAMETER_COUNT numeric
@attribute HALSTEAD_CONTENT numeric
@attribute HALSTEAD_DIFFICULTY numeric
@attribute HALSTEAD_EFFORT numeric
@attribute HALSTEAD_ERROR_EST numeric
@attribute HALSTEAD_LENGTH numeric
@attribute HALSTEAD_LEVEL numeric
@attribute HALSTEAD_PROG_TIME numeric
@attribute HALSTEAD_VOLUME numeric
@attribute MAINTENANCE_SEVERITY numeric
@attribute MODIFIED_CONDITION_COUNT numeric
@attribute MULTIPLE_CONDITION_COUNT numeric
@attribute NODE_COUNT numeric
@attribute NORMALIZED_CYLOMATIC_COMPLEXITY numeric
@attribute NUM_OPERANDS numeric
@attribute NUM_OPERATORS numeric
@attribute NUM_UNIQUE_OPERANDS numeric
@attribute NUM_UNIQUE_OPERATORS numeric
@attribute NUMBER_OF_LINES numeric
@attribute PERCENT_COMMENTS numeric
@attribute LOC_TOTAL numeric

@relation AR3 from SOFTLAB

@attribute total_loc numeric
@attribute blank_loc numeric
@attribute comment_loc numeric
@attribute code_and_comment_loc numeric
@attribute executable_loc numeric
@attribute unique_operands numeric
@attribute unique_operators numeric
@attribute total_operands numeric
@attribute total_operators numeric
@attribute halstead_vocabulary numeric
@attribute halstead_length numeric
@attribute halstead_volume numeric
@attribute halstead_level numeric
@attribute halstead_difficulty numeric
@attribute halstead_effort numeric
@attribute halstead_error numeric
@attribute halstead_time numeric
@attribute branch_count numeric
@attribute decision_count numeric
@attribute call_pairs numeric
@attribute condition_count numeric
@attribute multiple_condition_count numeric
@attribute cyclomatic_complexity numeric
@attribute cyclomatic_density numeric
@attribute decision_density numeric
@attribute design_complexity numeric
@attribute design_density numeric
@attribute normalized_cyclomatic_complexity numeric
@attribute formal_parameters numeric

@relation Apache from ReLink

@attribute AvgCyclomatic numeric
@attribute AvgCyclomaticModified numeric
@attribute AvgCyclomaticStrict numeric
@attribute AvgEssential numeric
@attribute AvgLine numeric
@attribute AvgLineBlank numeric
@attribute AvgLineCode numeric
@attribute AvgLineComment numeric
@attribute CountLine numeric
@attribute CountLineBlank numeric
@attribute CountLineCode numeric
@attribute CountLineCodeDecl numeric
@attribute CountLineCodeExe numeric
@attribute CountLineComment numeric
@attribute CountSemicolon numeric
@attribute CountStmt numeric
@attribute CountStmtDecl numeric
@attribute CountStmtExe numeric
@attribute MaxCyclomatic numeric
@attribute MaxCyclomaticModified numeric
@attribute MaxCyclomaticStrict numeric
@attribute RatioCommentToCode numeric
@attribute SumCyclomatic numeric
@attribute SumCyclomaticModified numeric
@attribute SumCyclomaticStrict numeric
@attribute SumEssential numeric

@relation EQ from AEEEM

@attribute ck_oo_numberOfPrivateMethods numeric
@attribute LDHH_lcom numeric
@attribute LDHH_fanIn numeric
@attribute numberOfNonTrivialBugsFoundUntil: numeric
@attribute WCHU_numberOfPublicAttributes numeric
@attribute WCHU_numberOfAttributes numeric
@attribute CvsWEntropy numeric
@attribute LDHH_numberOfPublicMethods numeric
@attribute WCHU_fanIn numeric
@attribute LDHH_numberOfPrivateAttributes numeric
@attribute CvsEntropy numeric
@attribute LDHH_numberOfPublicAttributes numeric
@attribute WCHU_numberOfPrivateMethods numeric
@attribute WCHU_numberOfMethods numeric
@attribute ck_oo_numberOfPublicAttributes numeric
@attribute ck_oo_noc numeric
@attribute numberOfCriticalBugsFoundUntil: numeric
@attribute ck_oo_wmc numeric
@attribute LDHH_numberOfPrivateMethods numeric
@attribute WCHU_numberOfPrivateAttributes numeric
@attribute CvsLogEntropy numeric
@attribute WCHU_noc numeric
@attribute LDHH_numberOfAttributesInherited numeric
@attribute WCHU_wmc numeric
@attribute ck_oo_fanOut numeric
@attribute ck_oo_numberOfLinesOfCode numeric
@attribute ck_oo_numberOfAttributesInherited numeric
@attribute ck_oo_numberOfMethods numeric
@attribute ck_oo_dit numeric
@attribute ck_oo_fanIn numeric
@attribute LDHH_noc numeric
@attribute WCHU_dit numeric
@attribute ck_oo_lcom numeric
@attribute WCHU_numberOfAttributesInherited numeric
@attribute ck_oo_rfc numeric
@attribute LDHH_wmc numeric
@attribute LDHH_numberOfAttributes numeric
@attribute LDHH_numberOfLinesOfCode numeric
@attribute WCHU_fanOut numeric

SOFTLAB, the green rectangle box outlines the common metrics 
of NASA and ReLink, and the blue rectangle box outlines the 
common metrics of SOFTLAB and ReLink. It is noted that only 
40 metrics of AEEEM are listed in the figure. From Tables 1, 2 
and Figure 1, we can see that the types of metrics and the sizes of 
metric sets are varied in these companies. 

Table 1. Number of metrics in projects of four companies 
Company NASA SOFTLAB ReLink AEEEM 
Number 

of metrics 38 29 26 61 
 

Table 2. Number of common metrics between projects of 
different companies 

Company A∩ 
Company B 

NASA∩SOFT
LAB 

NASA∩ReLi
nk 

NASA∩A
EEEM 

Number 28 3 0 
Company A∩ 
Company B 

SOFTLAB∩R
eLink 

SOFTLAB∩A
EEEM 

ReLink∩
AEEEM 

Number 3 0 0 
 
If we want to detect the defect proneness of modules in NASA by 
regarding the defect data from SOFTLAB, ReLink or AEEEM as 
training data, existing CCDP methods can only make use of the 
common metrics shared by NASA and SOFTLAB or ReLink. 
However, the size of common metric set across different 
companies may be very small (like the common metric set 
between NASA and ReLink), and the metrics except the common 
metrics might have favorable discriminant ability. Since no 
common metrics exist in NASA and AEEEM, existing CCDP 
methods cannot make use of defect data in AEEEM. We call 
CCDP in this scenario as heterogeneous CCDP (HCCDP). 

In this paper, we answer the following three research questions: 

RQ 1: How to design an effective approach for HCCDP? 

RQ 2: Is the heterogeneous cross-company defect data helpful for 
cross-company defect prediction? 

RQ 3: If the heterogeneous cross-company defect data can help 
prediction, when it helps the most? 

1.2 Contribution 
The contributions of our study are summarized as the following 
two points: 

1. Focusing on heterogeneous CCDP (HCDDP), we propose a 
unified metric representation (UMR) for the data of source and 
target companies. The UMR consists of three types of metrics 
including the common metrics of the source and target companies, 
source-company specific metrics, and target-company specific 
metrics. We set the target-company specific metrics as zeros when 
constructing the UMR for source company data, and set the 
source-company specific metrics as zeros when constructing the 
UMR for target company data. 

2. Based on the unified metric representation, we for the first time 
introduce the transfer learning method named canonical 
correlation analysis (CCA) [25] into CCDP for making the data 
distribution of target company similar to that of source company. 
CCA is an effective machine learning method, which can 
maximize the correlation of source and target data. 

We call the proposed approach for HCCDP as CCA+. We conduct 
experiments on 14 public datasets from four companies including 
NASA [12, 20-21], SOFTLAB [12], ReLink [22-23] and AEEEM 
[23-24]. Experimental results demonstrate that the proposed 
approach can obtain desirable prediction results for HCCDP. 

1.3 Organization 
The rest of this paper is organized as follows: Section 2 reviews 
the related work. Section 3 describes the proposed CCA+ 
approach. Experimental results are reported in Section 4 and 
conclusions are drawn in Section 5. 

2. RELATED WORK 
In this section, we briefly review existing cross-company defect 
prediction (CCDP) methods, cross-project defect prediction 
(CPDP) methods, and canonical correlation analysis (CCA) and 
transfer learning methods. 

Figure 1. List of the metrics used in defect data of four companies. 
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2.1 Cross-company Defect Prediction (CCDP) 
Methods 
CCDP refers to using data from other companies to build defect 
predictors. There exist two mainstream ways for CCDP. The first 
one is to find the best suitable training data for the target modules. 
Turhan et al. [16] found that defect predictors built on all 
available cross-company data dramatically increase defect 
detection ability, but with unacceptably high false alarm rates. 
They reckoned that the irrelevancies in the cross-company data 
lead to the false alarms and presented a nearest-neighbor filter 
(NN-filter) method to select training data close to within-company 
data. Peters et al. [13] developed the Peters filter to select training 
data for CCDP. 

The second mainstream way for CCDP is to design effective 
machine learning algorithms with high generalization ability for 
constructing the defect predictor. Ma et al. [17] presented a cross-
company prediction algorithm named transfer Naive Bayes (TNB), 
which estimates the distribution of the test data, transfers cross-
company data information into the weights of the training data, 
and then builds defect prediction model on these weighted data. 
Recently, Chen et al. [18] developed the double transfer boosting 
(DTB) method for CCDP, which firstly uses data gravitation for 
reshaping the whole distribution of cross-company data to fit 
within-company data, and then designs the transfer boosting 
algorithm to remove negative samples in cross-company data with 
a small ratio of labeled within-company data. 

However, existing CCDP methods are based on the restrictive 
assumption that the software metrics used in source and target 
company data should be the same. They do not apply to 
the scenario of heterogeneous CCDP. 

2.2 Cross-project Defect Prediction (CPDP) 
Methods 
Cross-project defect prediction (CPDP) refers to predicting 
defects in a project using prediction models trained from historical 
data of other projects [26-28]. When we only use one project in a 
specific company for training the prediction model, CCDP can be 
considered as CPDP. 

Over the past recent years, we have witnessed lots of interest in 
developing new CPDP methods. Using 12 applications, 
Zimmermann et al. [29] performed 622 cross-project predictions. 
The results indicate that CPDP is a serious challenge, i.e., simply 
using models from projects in the same domain or with the same 
process does not lead to accurate predictions. Careful selection of 
training data and the characteristics of data and process play 
important roles in successful CPDP. He et al. [30] investigated 
CPDP by focusing on training data selection. They showed that 
the prediction results were related to the distributional attributes 
of datasets, which is useful for training data selection. Rahman et 
al. [31] introduced the measure called area under the cost 
effectiveness curve (AUCEC) to investigate the feasibility of 
CPDP and drew a conclusion that CPDP is no worse than within-
project prediction in terms of AUCEC. Turhan et al. [32] 
introduced a mixed model for CPDP, which uses both the within- 
and cross-project data as training data. They concluded that the 
performance of the mixed model could be comparable to that of 
within-project prediction. Recently, Nam et al. [23] applied 
transfer component analysis (TCA) to CPDP, which is a feature-
based transfer learning method. Furthermore, they extended TCA 
to TCA+ by using the normalization techniques to preprocess data, 

which exhibits good performance for defect prediction. Ryu et al. 
[33] developed the value-cognitive boosting with support vector 
machine method for class-imbalance issue of CPDP. 

Existing CPDP methods are also based on the assumption that the 
data of source and target companies should have the same 
software metrics. If there exist partially different metrics between 
the source and target projects, existing CPDP methods can only 
make use of common metrics. When no common metrics exist 
between source and target projects, existing CPDP methods 
cannot be used for defect prediction. 

2.3 Canonical Correlation Analysis (CCA) 
and Transfer Learning Methods 
Canonical correlation analysis (CCA) [25] is a powerful tool in 
multivariate data analysis to find the correlation between two sets 
of variables. The two sets of variables can be associated with two 
different objects or two different views of the same object. CCA 
aims to learn a pair of projective transformations corresponding to 
the two sets of variables such that the projected variables are 
maximally correlated. 

CCA has been applied in many areas, such as signal processing 
[34], pattern classification [35] and multi-view feature learning 
[36-37]. Recently, CCA has been used for transfer learning. Wu et 
al. [38] addressed the heterogeneous transfer discriminant analysis 
of canonical correlations (HTDCC) method for cross-view action 
recognition, which learns a discriminative common feature space 
for linking source and target views to transfer knowledge between 
them. Zhang and Shi [39] presented the cross-domain CCA 
algorithm, which attempts to learn a semantic space of multi-view 
correspondences from different domains and transfer the 
knowledge by using dimensionality reduction in a multi-view way. 
Yeh et al. [40] employed CCA to derive a joint feature space for 
associating cross-domain data and developed a new support 
vector machine (SVM) algorithm that incorporates the domain 
adaptation ability observed in the derived subspace for cross-
domain pattern classification application. 

The difference between our approach and the above CCA-based 
methods is that we for the first time introduce CCA into the field 
of cross-company software defect prediction, and propose a novel 
metric representation for the heterogeneous source and target data, 
with which we propose the CCA+ approach. 

3. OUR APPROACH 
To answer the RQ 1 “How to design an effective approach for 
HCCDP”, we propose the CCA+ approach for heterogeneous 
CCDP. Our approach includes two parts: unified metric 
representation for heterogeneous source and target data, and CCA 
for transfer learning. 

3.1 Unified Metric Representation for 
Heterogeneous Source and Target Data 
To effectively utilize the heterogeneous data from two domains, 
Li et al. [41] introduced a common subspace for the source and 
target data so that the heterogeneous data can be compared. 
Specifically, for any source sample sx  and target sample tx , the 
feature mapping functions sϕ  and tϕ  are defined as: 

( ) ; ;0
t

s s s
s dx Px xϕ  =    and ( ) ;0 ;

s

t t t
t dx Qx xϕ  =   , where P  and 

Q  are two projective matrices, sd  and td  separately denote the 
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dimensionalities of source and target data. Promising results have 
been shown in [41]. 

Inspired by [41], we design a unified metric representation (UMR) 
for the heterogeneous source and target defect data. Assume that 

{ }1 2, , , N
S S S SX x x x=   and { }1 2, , , M

T T T TX x x x=   separately denote 

the source and target company data, where i
Sx  denotes the thi  

module in SX , N  and M  represent the numbers of modules in 

SX  and TX , respectively. A module in the source company can 

be represented as 1 2; ; ; sidi i i
S S S Sx a a a =    and a module in the 

target company can be represented as 1 2; ; ; tidi i i
T T T Tx a a a =   . Here, 

ij
Sa  represents the metric value corresponding to the thj  metric of 
i
Sx , sd  and td  are the numbers of metrics in source and target 

data, respectively. Usually, the metrics used in SX  and TX  are 
different and s td d≠ . 

Considering the large difference in values of different metrics, we 
firstly employ the z-score normalization [42] (without using the 
pooled standard deviation) to preprocess data, which is similar to 
the N2 normalization in [23]. Note that the normalization is 
applicable to either source or target company data. We then search 
the common metrics from the metrics used in SX  and TX . We 
select row vectors that are associated with the common metrics 
from SX  and TX  to construct cd NC

SX ×∈  and cd MC
TX ×∈ . It is 

noted that the thk  rows in C
SX  and C

TX  correspond to the same 
common metric. To make heterogeneous data from source and 
target companies can be compared, we define the unified metric 
representation (UMR) as follows: 

( )0
t c

C
S
s

S S

d d N

X

X X

− ×

 
 

=  
 
 

 and ( )0
s c

C
T

T d d M

s
T

X
X

X
− ×

 
 

=  
 
  

,                 (1) 

where s
SX  is the data in SX  containing source-company specific 

metrics (that are metrics except the common metrics in SX ) and 
s
TX  is the data in TX  containing target-company specific metrics. 

After obtaining the unified metric representation, defect data from 
two companies can be readily compared. Figure 2 illustrates the 
construction of UMR for heterogeneous source and target data. It 
is noted that when there exist no common metrics in the data from 
two companies, the UMR can be defined as: 

0
t

S
S

d N

X
X

×

 
=  
 

 and 
0

sd M
T

T

X
X
× 

=  
 

.                       (2) 

3.2 CCA for Transfer Learning 
Based on the obtained UMR for the heterogeneous source and 
target company data, we can employ the effective transfer learning 
method CCA to make the distributions of source and target 
company data similar. CCA is presented to find a common space 
for data from two domains such that the correlation between the 
projected data in the space is maximized. 

CCA seeks to obtain two projection directions Sw  and Tw , one 
for each company data, to maximize the following linear 
correlation coefficient: 

( )
( ) ( ) ( )( )

,T T T
S S T T S ST T

T T T T
S S T T S SS S T TT T

cov w X w X w C w

var w X var w X w C w w C w
= ,       (3) 

where ( )cov ⋅  denotes the covariance function, ( )var ⋅  denotes 

the auto-variance function, ( )T⋅  refers to the transpose of a vector 

or a matrix. With the projection directions Sw  and Tw , we can 

separately project SX  and TX  into a common space, where the 

projected samples T
S Sw X  and T

T Tw X  are maximally correlated, 
that is, their distributions can be made to be similar. This is why 
CCA can be used for CCDP. SSC  and TTC  denote the within-

company covariance matrices of SX  and TX , respectively. STC  

refers to the cross-company covariance matrix of SX  and TX . 

SSC , TTC  and STC  are separately defined as:  

( )( )
1

1 N Ti i
SS S S S S

i
C x m x m

N =

= − −∑ ,                       (4) 

( )( )
1

1 M Ti i
TT T T T T

i
C x m x m

M =

= − −∑ ,                      (5) 

( )( )
1 1

1 N M Ti j
ST S S T T

i j
C x m x m

NM = =

= − −∑∑ ,                  (6) 

where i
Sx  denotes the thi  module vector with the unified metric 

representation in SX , Sm  and Tm  are the mean modules of SX  

and TX : 

1

1 N
i

S S
i

m x
N =

= ∑  and 
1

1 M
i

T T
i

m x
M =

= ∑ .                   (7) 

Since Formula (3) is invariant with respect to scaling of Sw  and 

Tw , the objective function of CCA can be defined as follows: 

,max

. . 1, 1
S T

T
w w S ST T

T T
S SS S T TT T

w C w

s t w C w w C w= =
.                    (8) 

Formula (8) can be solved by generalized eigenvalue problem as 
follows: 

ST S SS S

ST T TT T

C w C w
C w C w

λ
       

=       
      

.                 (9) 

λ  is the generalized eigenvalue corresponding to the generalized 

eigenvector S

T

w
w
 
 
 

. Suppose that we get p  pairs of projective 

vectors ( ),S Tw w  corresponding to the largest eigenvalues, we can 

Figure 2. Illustration of UMR construction for 
heterogeneous source and target data. 
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construct the projective transformation [ ]1, ,S S SPW w w=   and 

[ ]1, ,T T TPW w w=  . 

When obtaining the projected samples T
S SW X  and T

T TW X , we use 
the nearest neighbor (NN) classifier [43] with the Euclidean 
distance for prediction. Specifically, for each projected target 
sample, we predict label (defective or defect-free) for it with the 
label of the projected source sample that is nearest to it according 
to Euclidean distance. Algorithm 1 realizes the proposed CCA+ 
approach. 

Algorithm 1 CCA+ Approach 
Require: Source company data SX , target company data TX  
and the class labels of SX . 
Output: Class labels for TX . 
1. Use the z-score normalization to preprocess SX  and TX . 
2. Search the common metrics from the heterogeneous SX  and 

TX , and construct the unified metric representation as Formula 

(1) or (2) to obtain SX  and TX . 
3. Construct the covariance matrices SSC , TTC  and STC . 
4. Obtain the projective transformations SW  and TW  by using 
Formula (9). 
5. Based on the obtained T

S SW X  and T
T TW X , use the NN 

classifier with the Euclidean distance for defect prediction. 

4. EXPERIMENTS 
In this section, we evaluate the proposed CCA+ approach for 
heterogeneous CCDP empirically. We firstly introduce the 
benchmark datasets and three commonly used evaluation 
measures. Then, we perform experiment of HCCDP with partially 
different metrics, followed by the experiment of HCCDP with 
totally different metrics. 

4.1 Data Set 
In the experiment, we employ 14 publicly available and 
commonly used datasets (projects) from four different companies 

including NASA [12, 20-21], SOFTLAB [12], ReLink [22-23] 
and AEEEM [23-24] as the test data. Table 3 tabulates the details 
about the datasets we used and Figure 1 illustrates the detailed 
metrics used in these companies. 

Each dataset in NASA represents a NASA software system or sub-
system, which contains the corresponding defect-marking data 
and various static code metrics. The NASA data was collected 
from across the United States over a period of five years from 
numerous NASA contractors working at different geographical 
centers [16]. Static code metrics of NASA datasets include size, 
readability, complexity and etc., which are closely related to 
software quality. 

Turkish software company (SOFTLAB) contains three datasets, 
i.e., AR3, AR4 and AR5, which are controller software for a 
washing machine, a dishwasher and a refrigerator, respectively. 
The used datasets from SOFTLAB and those from NASA are 
obtained from PROMISE repository [12]. There exist 28 common 
metrics between these two companies. Although the defect data of 
these two companies are from the same repository, these 
companies are very different from each other. 

ReLink was collected by Wu et al. [23] and the defect information 
in ReLink has been manually verified and corrected. ReLink has 
26 complexity metrics, which are widely used in defect prediction 
[23]. Among three used datasets, the size of each one (the number 
of modules) ranges from 56 to 399, while the number of attributes 
is fixed to 26. 

The AEEEM data set was collected by D’Ambros et al. [24]. 
AEEEM consists of 61 metrics: 17 source code metrics, 5 
previous-defect metrics, 5 entropy-of-change metrics, 17 entropy-
of-source-code metrics, and 17 churn-of-source code metrics [24]. 
In particular, AEEEM includes linearly decayed entropy (LDHH) 
and weighted churn (WCHU). Both LDHH and WCHU have been 
verified as informative defect predictors [24]. Figure 1 lists part of 
the metrics used in AEEEM. 

4.2 Evaluation Measures 
In the experiment, we employ three commonly used evaluation 
measures to evaluate the performance of defect prediction models, 

Table 3. Details of dataset used in the experiment 

Company Project Description Number 
of metrics 

Number of 
total modules 

Number of 
defective modules 

Percentage of 
defective 
modules 

NASA 
CM1 Spacecraft instrument 37 327 42 12.84% 
MW1 A zero gravity experiment 37 253 27 10.67% 
PC1 Flight software 37 705 61 8.65% 

SOFTLA
B 

AR3 Embedded controller 29 63 8 12.70% 
AR4 Embedded controller 29 107 20 18.69% 
AR5 Embedded controller 29 36 8 22.22% 

ReLink 

Apache HTTP 
Server (Apache) Web server 26 194 98 50.52% 
OpenIntents Safe 

(Safe) Security 26 56 22 39.29% 
ZXing Bar-code reader library 26 399 118 29.57% 

AEEEM 

Equinox (EQ) OSGi framework 61 324 129 39.81% 
Eclipse JDT 
Core (JDT) Development 61 997 206 20.66% 

Apache Lucene 
(LC) Text search engine library 61 691 64 9.26% 

Mylyn (ML) Task management 61 1862 245 13.16% 
Eclipse PDE UI 

(PDE) Development 61 1497 209 13.96% 
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including recall rate, false positive rate and F-measure. These 
measures can be defined by using A , B , C  and D  in Table 4. 
Here, A , B , C  and D  are the number of defective modules that 
are predicted as defective, the number of defective modules that 
are predicted as defect-free, the number of defect-free modules 
that are predicted as defective, and the number of defect-free 
modules that are predicted as defect-free, respectively.  

Table 4. Four kinds of defect prediction results 

 Predict as defective Predict as defect-free 
Defective modules A  B  

Defect-free modules C  D  
 
The recall rate is defined as ( )A A B+ . It denotes the ratio of the 
number of defective modules that are correctly classified as 
defective to the total number of defective modules. This measure 
is very important for SDP, because prediction models intend to 
find out defective modules as much as possible. 

The false positive rate is defined as ( )C C D+ . It denotes the 
ratio of the number of defect-free modules that are wrongly 
classified as defective to the total number of defect-free modules. 

For SDP, the prediction precision of a model denotes the ratio of 
the number of defective modules that are correctly classified as 
defective to the number of modules that are classified as defective. 
The prediction precision evaluates the correct degree of prediction 
model and is defined as ( )A A C+ . Obviously, a good prediction 
model desires to achieve high value of recall rate and precision. 
However, there exists trade-off between the recall rate and 
precision. Therefore, a comprehensive measure of recall rate and 
precision is necessary. F-measure is the harmonic mean of recall 
rate and precision, which is defined as: 

2- recall precisionF measure
recall precision
× ×

=
+

. 

All the above evaluation measures range from 0 to 1. Obviously, 
an ideal defect prediction model should hold high values of recall 
rate and F-measure, and low value of false positive rate. In the 
experiment, we evaluate the performances of all defect prediction 
models in terms of recall (Pd), false positive (Pf) and F-measure 
values. It is noted that we do not specially report results with 
respect to the precision measure since it has been included in the 
comprehensive F-measure. 

4.3 Heterogeneous CCDP with Partially 
Different Metrics 
4.3.1 Compared Methods and Experimental Setting 
To validate the effectiveness of the proposed CCA+ approach for 
heterogeneous CCDP where the metrics of source and target data 
are partially different, we compare CCA+ with two state-of-the-art 
cross-company defect prediction methods, namely NN-filter [16] 
and TNB [17], and a state-of-the-art cross-project defect 
prediction method, namely TCA+ [23]. In these compared 
methods, NN-filter attempts to select suitable training samples to 
learn predictors. And for NN-filter, each target sample selects 5 
nearest neighbors to construct the training set. TCA+ and TNB 
employ effective machine learning methods for prediction. 

We design the following two experiments to evaluate our 
approach: 

(1) One-to-one heterogeneous CCDP. We conduct cross-company 
prediction using all modules in only one project as the source 
company data, which can also be called cross-project defect 
prediction. For example, AR4=>CM1, CM1=>Apache, etc. Here, 
the left side of “=>” denotes the source company data and the 
right side of “=>” represents the target company data. 

(2) Many-to-one heterogeneous CCDP. We conduct cross-
company prediction using all modules in multiple projects as the 
source company data. For example, {CM1,MW1,PC1}=>AR3, 
{CM1,MW1,PC1}=>Apache, etc. 

For both experiments, we observe the prediction results when the 
number of common metrics is large and when the number of 
common metrics is very small. Note that all the compared 
methods can only use the common metrics in the source and target 
companies. The evaluation of heterogeneous CCDP does not 
involve any randomness, because all modules in a project or 
multiple projects from source company constitute the training set 
and all modules in a project from the target company constitute 
the test set. 

4.3.2 One-to-one Heterogeneous CCDP 
Table 5 shows the Pd and Pf values of one-to-one heterogeneous 
CCDP when 28 common metrics exist in source and target data. 
“M” denotes the measure. Table 6 tabulates the corresponding F-
measure values. In these tables, the numbers presented with 
boldface denote the best results in the corresponding prediction 
scenes. From Tables 5 and 6, we can see that CCA+ can obtain 
better Pd and Pf values in most prediction scenes as compared 
with other competing methods, and it always obtains the best F-
measure values. The reason is that our approach uses all the 
metrics rather than only using the common metrics, and the 
company-specific metrics usually contain some useful 
discriminant information. 

 
Table 5. Pd and Pf values of one-to-one heterogeneous CCDP 

with 28 common metrics 

Source=>Target M TCA+ NN-
filter TNB CCA+ 

AR4=>CM1 Pd 0.59 0.15 0.76 0.78 
Pf 0.40 0.02 0.52 0.03 

CM1=>AR4 Pd 0.60 0.58 0.74 0.70 
Pf 0.32 0.09 0.65 0.01 

AR4=>MW1 Pd 0.58 0.64 0.51 0.96 
Pf 0.08 0.09 0.13 0.06 

MW1=>AR4 Pd 0.32 0.75 0.50 0.60 
Pf 0.10 0.18 0.38 0.02 

AR4=>PC1 Pd 0.47 0.40 0.65 0.85 
Pf 0.23 0.15 0.21 0.04 

PC1=>AR4 Pd 0.30 0.60 0.50 0.60 
Pf 0.06 0.23 0.36 0.00 

CM1=>AR3 Pd 0.75 0.37 0.50 0.50 
Pf 0.40 0.08 0.41 0.01 

CM1=>AR5 Pd 0.37 0.25 0.50 0.62 
Pf 0.17 0.05 0.43 0.03 

PC1=>AR3 Pd 0.37 0.75 0.75 0.75 
Pf 0.16 0.10 0.21 0.01 

PC1=>AR5 Pd 0.37 1.00 0.50 0.62 
Pf 0.03 0.25 0.37 0.00 

Average Pd 0.47 0.55 0.59 0.70 
Pf 0.20 0.12 0.36 0.02 
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Table 6. F-measure values of one-to-one heterogeneous CCDP 
with 28 common metrics 

Source=>Target TCA+ NN-filter TNB CCA+ 
AR4=>CM1 0.27 0.23 0.28 0.78 
CM1=>AR4 0.40 0.60 0.32 0.80 
AR4=>MW1 0.43 0.52 0.38 0.77 
MW1=>AR4 0.38 0.58 0.31 0.70 
AR4=>PC1 0.23 0.27 0.33 0.74 
PC1=>AR4 0.37 0.54 0.32 0.75 
CM1=>AR3 0.33 0.40 0.22 0.61 
CM1=>AR5 0.37 0.28 0.33 0.71 
PC1=>AR3 0.30 0.61 0.46 0.80 
PC1=>AR5 0.50 0.50 0.36 0.76 

Average 0.36 0.45 0.33 0.74 
Ranksum 155.0 154.0 155.0  

 
Table 7. Pd and Pf values of one-to-one heterogeneous CCDP 

with 3 common metrics 

Source=>Target M TCA+ NN-
filter TNB CCA+ 

CM1=>Apache Pd 0.60 0.60 0.52 0.68 
Pf 0.35 0.28 0.41 0.10 

Apache=>CM1 Pd 0.35 0.16 0.26 0.55 
Pf 0.23 0.15 0.15 0.27 

PC1=>Safe Pd 0.13 0.54 0.61 0.83 
Pf 0.08 0.20 0.55 0.25 

Safe=>PC1 Pd 0.54 0.12 0.70 0.72 
Pf 0.38 0.10 0.47 0.08 

AR4=>ZXing Pd 0.47 0.11 0.23 0.48 
Pf 0.36 0.16 0.21 0.23 

ZXing=>AR4 Pd 0.20 0.26 0.27 0.75 
Pf 0.13 0.07 0.24 0.24 

AR3=>Apache Pd 0.17 0.75 0.53 0.92 
Pf 0.07 0.62 0.47 0.50 

Apache=>AR3 Pd 0.37 0.25 0.12 0.75 
Pf 0.14 0.17 0.10 0.30 

MW1=>ZXing Pd 0.38 0.36 0.23 0.48 
Pf 0.25 0.25 0.21 0.21 

ZXing=>MW1 Pd 0.55 0.45 0.35 0.61 
Pf 0.31 0.13 0.34 0.11 

Average Pd 0.38 0.36 0.38 0.67 
Pf 0.23 0.21 0.31 0.22 

 
To statistically analyze the F-measure results given in Table 6, we 
perform the Wilcoxon rank-sum test [44-45], which is one of non-
parameter statistical significance test for comparison of two 
methods, at a confidence level of 95%, and the rank sum values 
are shown in the last low of Table 6. According to the 
critical value [46], the proposed approach makes a significant 
difference in comparison with other methods. In following 
experiments (Tables 8, 10 and 12), we also conduct the statistical 
test and the test results indicate the significant difference exists. 

Tables 7 and 8 show the Pd, Pf, and F-measure values of one-to-
one heterogeneous CCDP when only three common metrics exist 
in defect data from two companies. We can see that when very 
few common metrics exist in source and target data, three 
compared methods have unsatisfactory performances. However, 
CCA+ can still achieve “normal” prediction results. Generally, the 
average F-measure of CCA+ in Table 8 is significantly inferior to 
that in Table 6. The reason is that larger size of common metrics 
in fact means more useful information can be explored and the 
large common metric set can relieve the stress of good prediction 
model learning in aspect of metric difference. 

4.3.3 Many-to-one Heterogeneous CCDP 
In this subsection, we perform the many-to-one heterogeneous 
CCDP experiments. Since TCA+ [23] is designed for cross-
project defect prediction, we just take the NN-filter and TNB 
methods as compared methods. We firstly report the prediction 
results when the source and target company data have 28 common 
metrics. The Pd, Pf and F-measure values are shown in Tables 9 
and 10. In general, as compared with the results in Tables 5 and 6, 
all the compared methods gain some improvement with respect to 
three used evaluation measures, especially Pd and F-measure. In 
addition, our CCA+ always outperforms the other compared 
methods in terms of F-measure. 

Table 8. F-measure values of one-to-one heterogeneous CCDP 
with 3 common metrics 

Source=>Target TCA+ NN-filter TNB CCA+ 
CM1=>Apache 0.61 0.64 0.54 0.76 
Apache=>CM1 0.24 0.13 0.22 0.32 

PC1=>Safe 0.21 0.59 0.48 0.73 
Safe=>PC1 0.19 0.10 0.20 0.56 

AR4=>ZXing 0.40 0.14 0.26 0.47 
ZXing=>AR4 0.22 0.32 0.22 0.52 
AR3=>Apache 0.27 0.63 0.53 0.76 
Apache=>AR3 0.31 0.21 0.13 0.38 
MW1=>ZXing 0.38 0.36 0.26 0.48 
ZXing=>MW1 0.26 0.35 0.15 0.47 

Average 0.31 0.34 0.30 0.55 
Ranksum 144.5 131.5 138.5  

 
Table 9. Pd and Pf values of many-to-one heterogeneous 

CCDP with 28 common metrics 
Source=>Target M NN-filter TNB CCA+ 

{CM1,MW1,PC1}=>AR3 Pd 1.00 0.87 0.75 
Pf 0.11 0.12 0.00 

{CM1,MW1,PC1}=>AR4 Pd 0.50 1.00 0.80 
Pf 0.07 0.96 0.00 

{CM1,MW1,PC1}=>AR5 Pd 0.62 0.50 0.75 
Pf 0.07 0.37 0.03 

{AR3,AR4,AR5}=>CM1 Pd 0.85 0.78 0.83 
Pf 0.08 0.43 0.03 

{AR3,AR4,AR5}=>MW1 Pd 0.58 0.62 0.85 
Pf 0.07 0.17 0.01 

{AR3,AR4,AR5}=>PC1 Pd 0.40 0.70 0.90 
Pf 0.13 0.19 0.02 

Average Pd 0.65 0.74 0.81 
Pf 0.09 0.37 0.02 

 
Table 10. F-measure values of many-to-one heterogeneous 

CCDP with 28 common metrics 
Source=>Target NN-filter TNB CCA+ 

{CM1,MW1,PC1}=>AR3 0.76 0.63 0.85 
{CM1,MW1,PC1}=>AR4 0.57 0.32 0.88 
{CM1,MW1,PC1}=>AR5 0.66 0.36 0.80 
{AR3,AR4,AR5}=>CM1 0.69 0.54 0.81 
{AR3,AR4,AR5}=>MW1 0.54 0.40 0.86 
{AR3,AR4,AR5}=>PC1 0.29 0.37 0.85 

Average 0.59 0.44 0.84 
Ranksum 57.0 57.0  

 
We also report the prediction results (Pd, Pf and F-measure values) 
corresponding to many-to-one heterogeneous CCDP with three  
common metrics existing in source and target companies, as 
shown in Tables 11 and 12. We can see that our approach 
performs the best in terms of F-measure, and sufficient source 
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company data can improve the prediction performances as 
compared with the prediction results in Tables 7 and 8. 
 

Table 11. Pd and Pf values of many-to-one heterogeneous 
CCDP with 3 common metrics 

Source=>Target M NN-filter TNB CCA+ 

{CM1,MW1,PC1}=>Apache Pd 0.68 0.48 0.81 
Pf 0.38 0.27 0.16 

{Apache,Safe,ZXing} 
=>CM1 

Pd 0.21 0.57 0.92 
Pf 0.14 0.30 0.08 

{CM1,MW1,PC1}=>Safe Pd 0.51 0.45 0.81 
Pf 0.05 0.21 0.23 

{Apache,Safe,ZXing}=>PC1 Pd 0.32 0.52 0.83 
Pf 0.29 0.26 0.06 

{AR3,AR4,AR5}=>ZXing Pd 0.13 0.46 0.97 
Pf 0.06 0.15 0.22 

{Apache,Safe,ZXing}=>AR4 Pd 0.40 0.32 0.65 
Pf 0.10 0.15 0.06 

{AR3,AR4,AR5}=>Apache Pd 0.71 0.42 0.94 
Pf 0.48 0.12 0.01 

{Apache,Safe,ZXing}=>AR3 Pd 0.37 0.37 0.87 
Pf 0.23 0.38 0.36 

{CM1,MW1,PC1}=>ZXing Pd 0.40 0.48 0.91 
Pf 0.13 0.25 0.19 

{Apache,Safe,ZXing} 
=>MW1 

Pd 0.45 0.47 0.92 
Pf 0.10 0.32 0.12 

Average Pd 0.41 0.45 0.86 
Pf 0.19 0.24 0.15 

 
Table 12. F-measure values of many-to-one heterogeneous 

CCDP with 3 common metrics 
Source=>Target NN-filter TNB CCA+ 

{CM1,MW1,PC1}=>Apache 0.66 0.55 0.82 
{Apache,Safe,ZXing}=>CM1 0.18 0.31 0.75 

{CM1,MW1,PC1}=>Safe 0.62 0.51 0.75 
{Apache,Safe,ZXing}=>PC1 0.14 0.24 0.66 
{AR3,AR4,AR5}=>ZXing 0.20 0.46 0.77 

{Apache,Safe,ZXing}=>AR4 0.43 0.30 0.66 
{AR3,AR4,AR5}=>Apache 0.65 0.54 0.96 

{Apache,Safe,ZXing}=>AR3 0.25 0.18 0.40 
{CM1,MW1,PC1}=>ZXing 0.46 0.46 0.77 

{Apache,Safe,ZXing}=>MW1 0.38 0.21 0.61 
Average 0.40 0.37 0.72 
Ranksum 146.0 150.0  

 

4.4 Heterogeneous CCDP with Totally 
Different Metrics 
4.4.1 Experimental Setting 
For heterogeneous CCDP where source and target companies 
have totally different metrics, existing CCDP methods cannot be 
used for prediction. In this part, we perform within-project 
(Target=>Target) prediction experiments and use the within-
project prediction results as references, which is similar to the 
performance comparison strategy in [23]. Specifically, we employ 
our previously proposed cost-sensitive discriminative dictionary 
learning (CDDL) [11] method to conduct within-project defect 
prediction, which is a state-of-the-art within-project prediction 
method. Here, 50% modules in the target project are randomly 
selected for training and the remained modules are used for testing. 
The random selection process for training and test data may be 
biased and may affect the prediction performance. Thus, we repeat 
this process 20 times and report the average prediction results.  

It is noted that the proposed CCA+ approach is only evaluated 
once for each prediction scene, because the evaluation of 
heterogeneous CCDP with CCA+ does not involve any 
randomness. When we conduct HCCDP with CCA+, all modules 
in a project or multiple projects from source company constitute 
the training set and all modules in a project from the target 
company constitute the test set. 

We also design two experiments including one-to-one 
heterogeneous CCDP and many-to-one heterogeneous CCDP to 
evaluate CCA+. Since the metrics used in AEEEM are totally 
different from those of other companies, we use the projects in 
AEEEM as the source or target data in all prediction cases. 

 

Table 13. Pd and Pf values of within-project prediction and 
heterogeneous CCDP (one-to-one) with no common metrics 

Source=>Target M CCA+ Within 
(Target=>Target) 

JDT=>PC1 Pd 0.75 0.86 
Pf 0.11 0.29 

PC1=>JDT Pd 0.45 0.69 
Pf 0.06 0.17 

JDT=>AR4 Pd 0.70 0.66 
Pf 0.22 0.23 

AR4=>JDT Pd 0.66 0.69 
Pf 0.12 0.17 

JDT=>ZXing Pd 0.61 0.68 
Pf 0.41 0.43 

ZXing=>JDT Pd 0.80 0.69 
Pf 0.15 0.17 

ML=>PC1 Pd 0.73 0.86 
Pf 0.08 0.29 

PC1=>ML Pd 0.33 0.58 
Pf 0.08 0.20 

ML=>AR4 Pd 0.53 0.66 
Pf 0.06 0.23 

AR4=>ML Pd 0.49 0.58 
Pf 0.18 0.20 

ML=>ZXing Pd 0.50 0.68 
Pf 0.21 0.43 

ZXing=>ML Pd 0.60 0.58 
Pf 0.19 0.20 

PDE=>PC1 Pd 0.31 0.86 
Pf 0.00 0.29 

PC1=>PDE Pd 0.40 0.77 
Pf 0.09 0.33 

PDE=>AR4 Pd 0.45 0.66 
Pf 0.03 0.23 

AR4=>PDE Pd 0.51 0.77 
Pf 0.14 0.33 

PDE=>ZXing Pd 0.67 0.68 
Pf 0.44 0.43 

ZXing=>PDE Pd 0.85 0.77 
Pf 0.27 0.33 

EQ=>CM1 Pd 0.44 0.74 
Pf 0.30 0.37 

CM1=>EQ Pd 0.63 0.75 
Pf 0.29 0.37 

LC=>Apache Pd 0.17 0.67 
Pf 0.00 0.31 

Apache=>LC Pd 0.95 0.71 
Pf 0.44 0.19 

Average Pd 0.57 0.71 
Pf 0.18 0.28 
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Table 14. F-measure values of within-project prediction and 
heterogeneous CCDP (one-to-one) with no common metrics 

Source=>Target CCA+ Within (Target=>Target) 
JDT=>PC1 0.51 0.41 
PC1=>JDT 0.54 0.59 
JDT=>AR4 0.51 0.49 
AR4=>JDT 0.62 0.59 

JDT=>ZXing 0.47 0.50 
ZXing=>JDT 0.67 0.59 

ML=>PC1 0.55 0.41 
PC1=>ML 0.36 0.40 
ML=>AR4 0.59 0.49 
AR4=>ML 0.37 0.40 

ML=>ZXing 0.49 0.50 
ZXing=>ML 0.42 0.40 
PDE=>PC1 0.45 0.41 
PC1=>PDE 0.40 0.40 
PDE=>AR4 0.56 0.49 
AR4=>PDE 0.42 0.40 

PDE=>ZXing 0.49 0.50 
ZXing=>PDE 0.47 0.40 

EQ=>CM1 0.25 0.38 
CM1=>EQ 0.60 0.65 

LC=>Apache 0.29 0.68 
Apache=>LC 0.30 0.44 

Average 0.47 0.48 
 

Table 15. Pd and Pf values of within-project prediction and 
heterogeneous CCDP (many-to-one) with no common metrics 

Source=>Target M CCA+ Within (Target=>Target) 
{JDT,ML,PDE}

=>PC1 
Pd 0.66 0.86 
Pf 0.05 0.29 

{CM1,MW1,PC
1}=>JDT 

Pd 0.55 0.69 
Pf 0.05 0.17 

{JDT,ML,PDE}
=>AR4 

Pd 0.52 0.66 
Pf 0.16 0.23 

{AR3,AR4,AR5}
=>JDT 

Pd 0.57 0.69 
Pf 0.04 0.17 

{JDT,ML,PDE}
=>ZXing 

Pd 0.63 0.68 
Pf 0.38 0.43 

{Apache,Safe,Z
Xing}=>JDT 

Pd 0.75 0.69 
Pf 0.10 0.17 

{CM1,MW1,PC
1}=>ML 

Pd 0.55 0.58 
Pf 0.19 0.20 

{AR3,AR4,AR5}
=>ML 

Pd 0.60 0.58 
Pf 0.21 0.20 

{Apache,Safe,Z
Xing}=>ML 

Pd 0.73 0.58 
Pf 0.24 0.20 

{CM1,MW1,PC
1}=>PDE 

Pd 0.69 0.77 
Pf 0.24 0.33 

{AR3,AR4,AR5}
=>PDE 

Pd 0.81 0.77 
Pf 0.25 0.33 

{Apache,Safe,Z
Xing}=>PDE 

Pd 0.36 0.77 
Pf 0.02 0.33 

{PDE,ML,EQ} 
=>CM1 

Pd 0.49 0.74 
Pf 0.00 0.37 

{CM1,MW1,PC
1}=>EQ 

Pd 0.70 0.75 
Pf 0.28 0.37 

{PDE,ML,LC} 
=>Apache 

Pd 0.66 0.67 
Pf 0.25 0.31 

{Apache,Safe,Z
Xing}=>LC 

Pd 0.72 0.71 
Pf 0.18 0.19 

Average Pd 0.62 0.70 
Pf 0.17 0.27 

4.4.2 One-to-one Heterogeneous CCDP 
Table 13 gives the Pd and Pf values of our approach for one-to-
one heterogeneous CCDP where no common metric exists in the 

source and target data. For comparison, the Pd and Pf values of 
within-project (Target=>Target) defect prediction are also 
reported in this Table. Table 14 shows the corresponding F-
measure values. We can see that CCA+ can obtain comparable 
results in contrast with the within-project prediction results. 

 
Table 16. F-measure values of within-project prediction and 

heterogeneous CCDP (many-to-one) with no common metrics 

Source=>Target CCA+ Within 
(Target=>Target) 

{JDT,ML,PDE}=>PC1 0.59 0.41 
{CM1,MW1,PC1}=>JDT 0.63 0.59 
{JDT,ML,PDE}=>AR4 0.60 0.49 
{AR3,AR4,AR5}=>JDT 0.66 0.59 

{JDT,ML,PDE}=>ZXing 0.49 0.50 
{Apache,Safe,ZXing}=>JDT 0.70 0.59 

{CM1,MW1,PC1}=>ML 0.39 0.40 
{AR3,AR4,AR5}=>ML 0.40 0.40 

{Apache,Safe,ZXing}=>ML 0.44 0.40 
{CM1,MW1,PC1}=>PDE 0.42 0.40 
{AR3,AR4,AR5}=>PDE 0.47 0.40 

{Apache,Safe,ZXing}=>PDE 0.49 0.40 
{PDE,ML,EQ}=>CM1 0.34 0.38 

{CM1,MW1,PC1}=>EQ 0.66 0.65 
{PDE,ML,LC}=>Apache 0.69 0.68 

{Apache,Safe,ZXing}=>LC 0.41 0.44 
Average 0.52 0.48 

4.4.3 Many-to-one Heterogeneous CCDP 
Tables 15 and 16 report the performances (Pd, Pf and F-measure 
values) of our approach for many-to-one heterogeneous CCDP 
when the source and target data has totally different metrics. 
Within-project (Target=>Target) prediction results are also shown 
in these two tables. It is obvious that the many-to-one prediction 
results of our approach are better than the one-to-one prediction 
results shown in Tables 13 and 14. In many-to-one heterogeneous 
CCDP, our approach can achieve better or comparable prediction 
results as compared with the within-project prediction results, 
which indicates the effectiveness of the proposed approach. 

4.5 Answers to Research Questions 
1.    RQ 2: Is the heterogeneous cross-company defect data helpful 

for cross-company defect prediction? 

From the tables above, we can conclude that the heterogeneous 
cross-company defect data is helpful for defect prediction. For 
HCCDP with partially different metrics, existing CCDP 
methods can only make use of the common metrics and show 
unsatisfactory performances. Our approach makes full use of all 
the metrics of source and target companies, and show desirable 
prediction results. For HCCDP with totally different metrics, 
our approach can obtain comparable or even better prediction 
results as compared with within-project prediction results. 

2.    RQ 3: If the heterogeneous cross-company defect data can help 
prediction, when it helps the most? 

According to the prediction results in Tables 5-16, we can find 
that, in general, the results of HCCDP with partially different 
metrics are better than those of HCCDP with totally different 
metrics. In addition, the results of many-to-one HCCDP are 
better than those of one-to-one HCCDP. Specifically, the 
prediction performances of many-to-one HCCDP with 28 
common metrics are the best. Therefore, we conclude that when 
there exist multiple projects in the source company and a large 
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number of common metrics between source and target company 
data, the heterogeneous cross-company defect data can help 
prediction most. 

4.6 Further Experiment 
4.6.1 Performance with Other Classifiers 
In this subsection, we report the prediction performances of our 
approach with other classifiers including support vector machine 
(SVM), random forest (RF) and logistic regression (LR). Table 17 
tabulates the results of CCA+ with SVM, RF, LR and NN 
classifiers in some representative heterogeneous CCDP cases. We 
can see that CCA+ obtains favorable prediction results with 
various classifiers and achieves the best prediction results with the 
NN classifier. 
 

Table 17. F-measure values of CCA+ in some specific 
heterogeneous CCDP cases 

Source=>Target SVM RF LR NN 
AR4=>CM1 0.77 0.76 0.74 0.78 

CM1=>Apache 0.73 0.70 0.76 0.76 
{CM1,MW1,PC1}=>AR3 0.83 0.78 0.79 0.85 

{CM1,MW1,PC1}=>Apache 0.80 0.75 0.77 0.82 
JDT=>PC1 0.51 0.47 0.49 0.51 

{JDT,ML,PDE}=>PC1 0.56 0.51 0.57 0.59 
average 0.70 0.66 0.69 0.72 

 
Table 18. MCC values of CCA+ in some specific heterogeneous 

CCDP cases 

Source=>Target TCA+ NN-
filter TNB CCA+ 

Within 
(Target=> 

Target) 
AR4=>CM1 0.19 0.23 0.25 0.76 — 

CM1=>Apache 0.25 0.32 0.11 0.59 — 
{CM1,MW1,PC1} 

=>AR3 — 0.90 0.75 0.77 — 
{CM1,MW1,PC1} 

=>Apache — 0.30 0.22 0.65 — 
JDT=>PC1 — — — 0.48 0.43 

{JDT,ML,PDE} 
=>PC1 — — — 0.64 0.58 

4.6.2 Performance with the MCC Measure 
Considering that the source data may be class-imbalanced, 
especially for one-to-one CCDP, for this part, we also measure the 
prediction performance of CCA+ using the comprehensive 
matthews correlation coefficient (MCC) measure [47]. MCC 
includes all A , B , C  and D  in the confusion matrix of Table 4, 
and can be regarded as taking the class-imbalance issue into 
consideration. MCC is defined as follows: 

* *
( ) * ( ) * ( ) * ( )

A D B CMCC
A B A C B D C D

−
=

+ + + +
. 

The MCC measure ranges from -1 to 1, and an ideal defect 
prediction model should hold high values of MCC. Table 18 
reports the results of CCA+ with MCC as the measure in some 
representative heterogeneous CCDP cases. The heterogeneous 
CCDP cases in the table correspond to those in Tables 5-16, and 
we fill the table with “-” where the compared methods are not 
performed in some specific cases. According to Table 18, our 
CCA+ approach can obtain better results in terms of MCC as 
compared with other related methods in most cases. 

4.7 Threats to Validity 
Followings are several potential threats to the validity with respect 
to the experiments: 

(1) Bias of evaluation measures. One bias is the measures we used 
to report the performance of defect prediction. Other measures, 
such as area under curve (AUC) and g-measure (harmonic mean 
of pd and 1-pf) are not used. They are also comprehensive 
measures. In this work, we employ the widely used pd, pf, F-
measure and MCC indices to show the empirical evaluation of 
defect prediction. 

(2) Comparison accuracy. The authors of the three compared 
methods do not provide the program codes. We carefully 
implement these methods by following their papers. 

5. CONCLUSIONS 
In this paper, we propose an effective solution for heterogeneous 
cross-company defect prediction (HCCDP) problem, which refers 
to the cross-company prediction scenario where source and target 
company data has different metrics. We present a novel metric 
representation. By effectively combining the common metrics, 
company-specific metrics and an appropriate number of zeros, we 
can obtain a unified metric representation for data from two 
different companies. Then, we for the first time introduce the 
transfer learning method CCA into CCDP, such that the data 
distributions of source and target data with the unified metric 
representation can be made similar. We call the proposed 
approach for heterogeneous CCDP as CCA+. 

We conduct HCCDP experiments on the 14 widely-used open 
source projects from four companies. And we separately design 
the one-to-one and many-to-one experiments to evaluate the 
performances of the proposed approach. The experimental results 
of one-to-one prediction indicate that our approach is superior to 
state-of-the-art CCDP methods in terms of three widely-used 
measures. In many-to-one HCCDP experiments, our approach 
also shows desirable prediction effects that are comparable to 
within-project prediction. All in all, the proposed approach is an 
effective solution for heterogeneous cross-company defect 
prediction. 

For the future work, we would like to employ more company data 
that contains both open source and commercial proprietary closed 
projects to validate the generalization ability of our approach. We 
will also evaluate the application of our solution for cross-
company data containing some other static code metrics. 
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