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ABSTRACT
Acyclic path profile is an abstraction of dynamic control flow paths
of procedures and has been found to be useful in a wide spectrum
of activities. Unfortunately, the runtime overhead of obtaining such
a profile can be high, limiting its use in practice.

In this paper, we present partitioned path profiling (P3) which
runs K copies of the program in parallel, each with the same in-
put but on a separate core, and collects the profile only for a sub-
set of intra-procedural paths in each copy, thereby, distributing the
overhead of profiling. P3 identifies “profitable” procedures and as-
signs disjoint subsets of paths of a profitable procedure to different
copies for profiling. To obtain exact execution frequencies of a sub-
set of paths, we design a new algorithm, called PSPP. All paths of
an unprofitable procedure are assigned to the same copy. P3 uses
the classic Ball-Larus algorithm for profiling unprofitable proce-
dures. Further, P3 attempts to evenly distribute the profiling over-
head across the copies. To the best of our knowledge, P3 is the first
algorithm for parallel path profiling.

We have applied P3 to profile several programs in the SPEC 2006
benchmark. Compared to sequential profiling, P3 substantially re-
duced the runtime overhead on these programs averaged across all
benchmarks. The reduction was 23%, 43% and 56% on average
for 2, 4 and 8 cores respectively. P3 also performed better than a
coarse-grained approach that treats all procedures as unprofitable
and distributes them across available cores. For 2 cores, the profil-
ing overhead of P3 was on average 5% less compared to the coarse-
grained approach across these programs. For 4 and 8 cores, it was
respectively 18% and 25% less.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Diagnostics; F.3.2 [Semantics of
Programming Languages]: Program analysis

General Terms
Algorithms, Performance

Keywords
Parallel, Distributed, Path Profiling, Divide and Conquer

1. INTRODUCTION
Collecting execution frequencies of dynamic control flow paths

of procedures reveals a wealth of information about the runtime
behavior and usage patterns of a program. Acyclic path profile [4]
is an abstraction of dynamic control flow paths of procedures and
gives execution frequencies of acyclic paths in a procedure. Acyclic
path profile has been found to be a useful measure in a wide spec-
trum of activities ranging from compiler optimizations [10] to test-
ing [17], debugging [8] and maintenance [13].

Unfortunately, the runtime overhead of obtaining such a profile
can be high, limiting its use in practice. For example, Vaswani et
al. [24] reported an average runtime overhead of 50% with worst
case overhead of 132%. Other studies (e.g. [6]) also report simi-
lar overheads. We believe that, with the prevalence of multi-core
systems and computing clusters, parallelizing acyclic path profiling
has become an attractive option to reduce profiling overhead. Sur-
prisingly, to date, there is no algorithm that exploits parallelism for
path profiling. In this paper, we present such an algorithm.

We propose to run K copies of the program in parallel, each
with the same input but on a separate core (or cluster node), and
collect the profile only for a subset of intra-procedural paths in each
copy, thereby, distributing the overhead of profiling. A straightfor-
ward approach to achieve this is to use the classic Ball-Larus algo-
rithm [4] to instrument only a subset of procedures in each copy,
in a way that, every procedure is profiled in exactly one copy. We
call this approach parallel Ball-Larus profiling (PBL) in contrast to
sequential Ball-Larus profiling (SBL) which profiles all the proce-
dures in one copy.

In practice, the number of (acyclic) paths may differ widely across
procedures, and consequently, also the profiling overheads. For ex-
ample, consider a program M with three procedures P , Q and R
requiring 100, 10 and 5 instrumentation probes to profile all their
paths respectively. An instrumentation probe is a statement added
by a profiling algorithm to a procedure to track the path-ids and
their execution frequencies. The number of probes gives a static es-
timate of the runtime overhead of profiling. If 3 cores are available,
PBL may assign one procedure to each copy (core). The copy pro-
filing the procedure P is likely to be much slower than the others.
The benefit of parallelization is limited by the speedup of the slow-
est copy. Thus, PBL may fail to exploit parallelism to the fullest.

We therefore propose a novel approach which attempts to get
a more uniform distribution of profiling overhead by sub-dividing
the job of profiling all paths of a procedure into sub-jobs of pro-
filing disjoint subsets of paths of the procedure. The subsets are
assigned to different static instances of a procedure which are then
distributed across multiple copies. For example, our approach may
obtain three instances, say P1, P2 and P3, of the procedure P above
and assign them to separate copies. The subsets of paths of a pro-
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cedure are constructed so that they form a partition. Hence, we
call our approach partitioned path profiling (P3). P3 essentially
provides more opportunity for load balancing across cores by con-
structing smaller jobs from bigger jobs.

There are three key challenges that P3 needs to overcome: (1)
which procedures to select for partitioning and how to partition
their paths, (2) how to instrument an instance of a partitioned pro-
cedure so as to obtain exact execution frequencies of the paths pro-
filed in it and (3) how to distribute the instrumented procedures to
achieve good load balancing.

We observe that even if the subsets of paths being profiled are
disjoint across two instances of a procedure, some instrumentation
probes may get duplicated between them (see Section 2.2 for an ex-
ample). We consider profiling of sequential programs. Therefore,
once we fix an input, all copies of the program follow the same
dynamic control flow path and hence, the duplicated probes along
that path get executed in multiple copies. In general, a path which
is not profiled in an instance Pi may still go through some probes
in Pi. Thus, on one hand, we reduce the number of instrumentation
probes per instance. Whereas, on the other hand, we may increase
the runtime overhead due to the possibilities mentioned above. P3
therefore only selectively partitions procedures by identifying what
we call as profitable procedures. The profitable procedures and
the partitioning of their paths are identified by a static analysis that
uses both intra-procedural and inter-procedural control flow infor-
mation. This addresses the first challenge.

We now consider the second challenge. An existing approach,
selective path profiling (SPP) [1], has been proposed to profile only
a subset of paths S. We could have used SPP on each instance of
a profitable procedure to profile the subset of paths assigned to it.
Unfortunately, we noticed that SPP can assign the same path-id to
a path p ∈ S and a path p� �∈ S (see Section 2.2 for an example).
This means that it can over-approximate the execution frequencies
of paths, in particular, by counting the execution frequencies of p�

as those of p. We therefore design a new algorithm called pre-
cise selective path profiling (PSPP) which overcomes this issue in
SPP and use it in P3 for instrumenting the instances of a profitable
procedure. The immediate benefit of PSPP is that we can obtain
the overall profile of a profitable procedure by merely collating the
partial profiles obtained from its instances. For unprofitable pro-
cedures, we use the Ball-Larus algorithm. Thus, the exact acyclic
path profiles of all procedures can be obtained.

Finally, towards addressing the third challenge, P3 uses the num-
ber of instrumentation probes as a cost measure and distributes the
instrumented procedures to different copies. The optimal distribu-
tion in this setting is an NP-complete problem [14]. P3 therefore
uses a round-robin approach that produces a 4/3th approximation
of the optimal distribution [15]. If multiple instances of a prof-
itable procedure are assigned to the same copy, P3 takes the union
of the sets of paths being profiled in them and instruments a single
instance for all the paths in the union.

Our approach differs from the existing approaches that attempt
to lower the profiling overhead. Some approaches attempt to reduce
the memory overhead [24, 9], whereas others attempt to reduce the
runtime overhead by focusing on a subset of paths that are relevant
in specific contexts [1, 24, 5]. In contrast, our goal is to reduce
runtime overhead while profiling all paths. Our approach is also
applicable if only a subset of paths is of interest but we do not make
this assumption about the usage scenario to speed up profiling.

We have implemented the PSPP and P3 algorithms for sequen-
tial C/C++ programs and applied them to profile several programs
in the SPEC 2006 benchmark [16]. Compared to SBL, P3 substan-
tially reduced the runtime overhead on these programs averaged
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Figure 1: A partition (Pa, Pb) of a procedure P

across multiple inputs. The reduction was 23%, 43% and 56% on
average across these programs for 2, 4 and 8 cores respectively. The
profiling overhead for an input is taken to be the maximum of the
number of times instrumentation probes are executed on the same
input across the individual copies. It is essentially the overhead in-
curred by the slowest copy. P3 also performed better than PBL. We
used the round-robin approach of distribution for both P3 and PBL.
For 2 cores, the profiling overhead of P3 was on average 5% less
compared to PBL across these programs. For 4 and 8 cores, it was
respectively 18% and 25% less.

We summarize the main contributions of our work as follows:

• We present P3 – an algorithm for efficient parallelization of
path profiling. To the best of our knowledge, this is the first
algorithm for parallel path profiling.

• We present PSPP – an algorithm to obtain exact execution
frequencies of a subset of paths of a procedure – which is
used in P3. PSPP on its own can be used in applications such
as residual testing [22, 9, 7].

• We have implemented P3 and show its effectiveness com-
pared to the sequential and parallel Ball-Larus profiling on
several SPEC 2006 benchmark programs for 2, 4 and 8 cores.

2. OVERVIEW
We first present the definitions used in the paper and some back-

ground. We then illustrate the key steps of P3 through examples.

2.1 Definitions and Background
Consider a directed acyclic graph (DAG) G which represents

all acyclic intra-procedural paths of a procedure P . We refer the
reader to [4] on how such a DAG is constructed from the control
flow graph of a procedure. Formally, G = (V,E, entry, exit)
where V is a finite set of vertices representing basic blocks of P ,
the set of edges E ⊆ V ×V approximates the control flow between
the respective basic blocks, and entry and exit are respectively
the unique entry and exit vertices of G. For example, Figure 1(a)
shows a DAG for some procedure. For a vertex v ∈ V , the set of
successors is given by succ(v) = {w ∈ V | (v, w) ∈ E}.

Given a path p in G, edges(p) gives the set of edges in p. For
a path p passing through a vertex v, suff(p, v) denotes the suffix
of p starting with v. We use Nv to denote the number of paths
passing through v. A labeling function L associates a natural num-
ber, called an edge label, to each edge in G. The path-id of a path
p is the sum of edge labels of edges in edges(p) and is denoted
by pathid(p). As a convention, zero-valued edge labels are not
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Figure 2: Ball-Larus labeling

shown. The path-id of p = �entry, . . . , v4, v6, v7, v9, . . . , exit�
is 10. A profiling algorithm assigns edge labels and instruments
the edges to compute the path-id at runtime. Thus, each edge with
a non-zero label is instrumented with a statement called an instru-
mentation probe. For a procedure P , overhead(P ) is the total
number of non-zero edges in the DAG of P and is taken as an es-
timate of the runtime overhead of profiling P . Under the labeling
shown in Figure 1(a), the overhead for that procedure is 6.

For a procedure P , if there are multiple instances used for pro-
filing a partition of its paths, we denote the set of paths being
profiled in an instance Pi by interesting(Pi). We call a labeling
function Li for an instance Pi, a valid labeling, if every path p ∈
interesting(Pi) has a unique path-id (under the labeling Li) which
is distinct from the path-ids of paths which are not in interesting(Pi).
Formally, a labeling Li is a valid labeling of an instance Pi if:

(a) ∀p, q ∈ interesting(Pi) : pathid(p) �= pathid(q)

(b) ∀p ∈ interesting(Pi), ∀r �∈ interesting(Pi) :
pathid(p) �= pathid(r)

A valid labeling generates the exact execution frequencies of the
interesting paths of a procedure from a single copy. This in turn
simplifies the job of obtaining exact frequencies of all paths of a
procedure spread across multiple copies. We note that a valid label-
ing may assign the same path-id to two paths not in interesting(Pi).

If there is only one instance of a procedure P (that is, its set of
paths is not sub-divided) then the classic Ball-Larus algorithm [4]
already yields a valid labeling L. We give a brief overview of
the Ball-Larus algorithm. In the first step, it visits the vertices
in the DAG in the reverse topological order and labels a vertex
v by the number of paths Nv passing through it. The algorithm
considers an arbitrary order among the outgoing edges of a ver-
tex. For the first edge e1, L(e1) = 0 and for an ith edge ei,
L(ei) = L(ei−1) + Nvi−1 where ei−1 = (v, vi−1). Figure 2
shows how the outgoing edges of a vertex v0 are labeled. If an
edge (v, vi) is labeled before an edge (v, vj) then the labeling en-
sures that all the paths passing though the edge (v, vj) have greater
path-ids than path-ids of paths passing through the edge (v, vi). In
the next step, a maximum spanning tree of the DAG is computed
and labels are revised using an event counting algorithm [2] and
placed only on the chords (complement of spanning tree edges).

2.2 Examples
Partitioning paths of a profitable procedure. Let a procedure P
whose DAG is shown in Figure 1(a) be a profitable procedure. We
describe our approach of classifying procedures into profitable and
unprofitable in Section 3.2.

Suppose the two instances Pa and Pb of the procedure shown
in Figure 1(a) and Figure 1(b) are constructed for profiling disjoint
sets of paths of P . A path p is profiled in an instance if all the edges
in edges(p) are shown in solid lines in that instance. For example,
the path �entry, v0, exit� is profiled in the instance Pb but not in
Pa. The edges in both the instances are labeled with valid labeling.

We have, overhead(Pa) = 6 and overhead(Pb) = 8. Now,
consider another partition of the paths of P given by two instances
P �
a and P �

b shown in Figure 3(a) and Figure 3(b), also labeled with
valid labeling. Here, overhead(P �

a) = 5 and overhead(P �
b) =
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Figure 3: A partition (P �
a, P

�
b) of the procedure P which results

in less overheads than the partition of Figure 1.

4. Since the maximum overhead of (P �
a, P

�
b) is smaller than the

maximum overhead of (Pa, Pb), the partition (P �
a, P

�
b) is likely to

yield better performance than the partition (Pa, Pb).
We now analyze the cause of inefficiency in (Pa, Pb). Consider

a path p0 = �entry, · · · , v6, v7, v8, · · · , exit�. This path encoun-
ters two probes, respectively at (v6, v7) and at (v8, v10), in Pa and
one probe (v6, v7) in Pb. Thus, the runtime overhead due to ex-
ecution of this path affects both the instances. Similar is the case
for the paths passing through V2 = {v12, v15, v18, v21}. In gen-
eral, it may be difficult to avoid such situations, but P3 performs
a control flow analysis, whereby, it assigns all the paths passing
though a sequence of conditionals, that do not have other condi-
tionals nested within them, to only one instance. This is seen for
the partition (P �

a, P
�
b) shown in Figure 3. Here, all the paths pass-

ing through V1 = {v4, v7, v10} are profiled in P �
a, whereas all the

paths passing through V2 are profiled in P �
b . Due to the resultant

labeling, the runtime overhead due to execution of those paths (in-
cluding p0) will affect only one instance. This partitioning strategy
reduces overlapping profiling overheads. For this example, P3 can
compute (P �

a, P
�
b) as the partition of paths of P .

Computing valid labeling of profitable procedures. The selective
path profiling (SPP) algorithm [1] is designed to compute an edge
labeling that assigns unique path-ids to a chosen subset of paths S.
However, for a labeling to be valid, we additionally require that the
path-ids of paths in S should be distinct from those of paths not in
S. SPP does not satisfy this requirement as demonstrated below.

Consider the set of interesting paths S profiled in an instance
of a procedure P shown in Figure 4(a). An edge that appears in
some uninteresting path is shown in dashed lines in Figure 4(a) and
Figure 4(b). We refer to such edges as uninteresting edges. Sim-
ilar to the Ball-Larus algorithm, in the first step, SPP proceeds in
the reverse topological order except that at each vertex, it processes
all uninteresting (outgoing) edges before the interesting ones. Fig-
ure 4(a) shows the edge labels thus computed. In the next phase,
SPP visits the vertices in the topological order and if (v, w) is the
only incoming edge to w then SPP adds its label to the labels of all
the outgoing edges of w and sets the label of (v, w) to zero. The
labels obtained after this step are shown in Figure 4(b). In the third
and final step, it sets the labels of all uninteresting edges to zero. In
our example, the non-zero labels of uninteresting edges (v3, v11)
and (v14, v15) are set to zero. The other uninteresting edges are
anyway zero after the second step (see Figure 4(b)). The labeling
after the third step is not shown due to space constraints.

487



0

0

0

0
1

1

2

0
0

2

0

0

0

41

0

0

0

0

0

0

0

0

0

1

0 5

0

0

0

0

exit

v0

v1

v2

v3

v4

v5 v6

v7

v8 v9

v10

v11

v12

v13 v14

v15

v16 v17

v18

v19 v20

v21

entry

0

0

0

1
0

0

0

0
0

0

2

1

0

1

4

0

2

0

0

0

0

0

0

10

0

0 0

0

6

0

0

exit

v0

entry

v3

v4

v5 v6

v7

v8 v9

v10

v11

v13 v14

v15

v16 v17

v18

v19 v20

v21

v2
v12

v1

(a) (b)
Figure 4: Steps of SPP: (a) labeling after the first step and (b)
labeling after the second step.

Consider two paths p = �entry, · · · , v6, v7, v8, · · · , exit� and
p� = �entry, · · · , v14, v15, v16, v18, v19, · · · , exit� where p ∈ S
and p� �∈ S. However, under the labeling computed by SPP (in the
third step), the path-ids of the two are the same, equal to 3. Since
the edge (v14, v15) is uninteresting, as stated above, SPP sets its
label to zero in the third step, resulting in this situation.

In order to overcome the overlapping path-ids assigned by SPP
and to obtain valid labeling for individual instances of a profitable
procedure, we design a variant of SPP, called the precise SPP (PSPP)
algorithm. Figure 1(a) shows the labeling obtained by PSPP for the
same subset of paths as in Figures 4(a) and 4(b). In particular, the
paths p and p� identified earlier respectively get distinct path-ids
11 and 3 in Figure 1(a). We explain the computation of the valid
labeling by PSPP in the next section.

3. ALGORITHMS
In this section, we first present the PSPP algorithm for profiling

a subset of paths, followed by the P3 algorithm.

3.1 Precise Selective Path Profiling
Our precise selective path profiling (PSPP) algorithm is a variant

of the SPP algorithm and computes only valid labeling. Before we
design the algorithm, we analyze SPP in more depth.

In-depth analysis of SPP. Let us consider our running example in
Figure 4(a) and understand the reason why SPP cannot construct a
valid labeling. In the first step of SPP, an uninteresting edge may
get a zero label but it may become non-zero after the second step
which propagates edge labels in the topological order as described
in Section 2.2. For example, the uninteresting edge (v3, v11) has a
zero label in Figure 4(a) but gets a non-zero label in Figure 4(b).

In the third step, SPP sets non-zero labels of uninteresting edges
to zero. We use the term absorb to denote when the non-zero label
of an uninteresting edge is made zero in the third step of SPP. A
path p absorbs when an edge in edges(p) absorbs. Since interest-
ing paths do not contain uninteresting edges, they are always unab-
sorbable. Note that before the third step, path-ids produced by SPP
are unique and only after absorption, path-id of some uninteresting
path may overlap with that of some interesting path.

Let pid(p, v), called a partial identifier, denote the sum of edge
labels of the suffix suff(p, v) of a path p from vertex v onwards.
Clearly, pathid(p) = pid(p, entry).

Consider two paths p and p� going through a vertex v such that
they are respectively uninteresting and interesting paths. Further,
let an edge (v, w) be an uninteresting edge that appears in p. Sim-

ilarly, let an edge (v, w�) be an interesting edge that appears in p�.
SPP processes the uninteresting edges before interesting edges at
v in the first step to try to make sure that pid(p, v) < pid(p�, v).
pid(p, v) remains less than pid(p�, v) after the second step and in
particular, after absorption (the third step).

Example 1. At v2, the uninteresting edge (v2, v3) is processed
by SPP before the interesting edge (v2, v4) in Figure 4(a). Con-
sider an uninteresting path p0 = �entry, v1, v2, v3, v11, exit� go-
ing through v2. In Figure 4(a), pid(p0, v2) is less than the pid of
the suffix starting at v2 for any interesting path passing through v2.
After absorption, pid(p0, v2) still remains less than pids of suffixes
starting at v2 for the interesting paths going through v2.

Unfortunately, pid(p, v) of an uninteresting path p which goes
through an interesting outgoing edge of v can be more than that of
an interesting path going through v. SPP does not ensure that they
will not become equal after absorption as shown next.

Example 2. Consider paths p = �entry, · · · , v6, v7, v8, · · · , exit�
and p� = �entry, · · · , v14, v15, v16, v18, v19, · · · , exit� in Fig-
ure 4(b) which get the same path-id (equal to 3) after the edge
(v14, v15) absorbs, as discussed in Section 2.2. The key observa-
tion from Figure 4(a) is the following. In the first step of SPP, while
processing v1’s outgoing interesting edges, (v1, v2) is processed
before (v1, v12). This assigns the value 5 to the edge (v1, v12) as
there are 5 paths passing through v2. This labeling is faulty, as even
though it makes pid(p�, v1) > pid(p, v1), they become equal af-
ter the absorption. The central problem of SPP is that it does not
assign any order in processing of the interesting outgoing edges.

The PSPP algorithm. We now present the PSPP algorithm to rem-
edy the faulty labeling arising in SPP. While SPP picks interesting
outgoing edges of a vertex v during the first step in an arbitrary
order, PSPP enforces a specific order among those edges. For a
vertex v, PSPP processes the outgoing edges (v, w), in the decreas-
ing order of w.min where w.min is defined as the minimum pid
of the interesting paths starting from w. This, together with the
processing of uninteresting outgoing edges before the interesting
outgoing edges ensures valid labeling. Specifically, it ensures that
an uninteresting path p passing through v after absorption results in
pid(p, v) < v.min and therefore will not have same path-ids with
the interesting paths passing through v. This holds irrespective of
whether p starts with an uninteresting or an interesting edge at v.
This is in contrast with SPP, since such a claim is valid for SPP
only if p starts with an uninteresting edge at v as discussed earlier.

With this intuition, we next describe the PSPP algorithm in detail
(see Algorithm 1). PSPP takes a DAG G and an edge set EI of
edges appearing in interesting paths as input and produces a valid
labeling of edges in G. The label of an edge e is denoted by e.val.

Algorithm 1 initializes v.min to ∞ for all vertices of G except
the exit vertex (line 2). For the exit vertex, it initializes exit.min
to zero and Nexit to one (line 3). In the loop at lines 4–13, PSPP
iterates over the vertices of G (excluding the exit vertex) in the
reverse topological order. This is similar to the first step of SPP but
differs from SPP in the order in which interesting outgoing edges
are processed, as explained below. For each vertex v, it initializes
Nv to zero (line 5). In the loop at lines 6–8, it first iterates over the
uninteresting outgoing edges of v and for each uninteresting edge
e = (v, w), it sets e.val to zero. It also accumulates the value of
Nw in Nv (line 7). Then, in the loop at lines 9–12, it iterates over
the interesting outgoing edges in the decreasing order of w.min.
For each such edge e = (v, w), it assigns the current value of
Nv to e.val (line 10), updates Nv by adding Nw (line 10) and
updates the value of v.min by taking the minimum of the current
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Algorithm 1: PSPP(G,EI)
Input: A DAG G = (V,E, entry, exit) and a set of

interesting edges EI ⊆ E
Output: A valid edge labeling of G

1 begin
2 foreach v ∈ V \ {exit} do v.min ← ∞
3 exit.min ← 0; Nexit ← 1
4 foreach non-exit node v in reverse topological order do
5 Nv ← 0
6 foreach uninteresting edge e = (v, w) do
7 e.val ← 0; Nv ← Nv +Nw

8 end
9 foreach interesting edge e = (v, w) in decreasing order

of w.min do
10 e.val ← Nv; Nv ← Nv +Nw

11 v.min ← Minimum(v.min,w.min+ e.val)

12 end
13 end
14 foreach non-exit node v in topological order do
15 if v has only one edge ei = (u, v) and ei.val > 0 then
16 foreach eo = (v, w) do
17 eo.val ← eo.val + ei.val
18 end
19 ei.val ← 0

20 end
21 end
22 foreach edge e not in EI do e.val ← 0

23 end

value of v.min and w.min+ e.val. The loops at lines 14–21 and
line 22 implement the second and third steps of SPP respectively.
In particular, the loop at line 22 performs absorption.

Example 3. We now revisit the scenario of faulty labeling of the
outgoing edges of v1 by SPP discussed in Example 2 and show
how PSPP remedies it. The processing of the first step of PSPP
will yield the same edge labeling as SPP for the subgraphs rooted
at v2 and v12 as shown in Figure 4(a).

When v1 is processed, v2.min = 2 (corresponding to the path
�entry, · · · , v4, v6, v7, v8, · · · , exit�) and v12.min = 4 (corre-
sponding to the path �entry, · · · , v13, v15, v17, v18, v20, · · · , exit�).
Therefore, (v1, v2) is processed later than (v1, v12) which makes
e1.val = 0 and e2.val = 8 where e1 = (v1, v12) and e2 =
(v1, v2). The final labeling obtained after propagation and absorp-
tion of labels by PSPP is shown in Figure 1(a). The paths

p = �entry, · · · , v6, v7, v8, · · · , exit�
p� = �entry, · · · , v14, v15, v16, v18, v19, · · · , exit�

will have path-ids 11 and 3, respectively, after the absorption step
absorbs the label 1 on (v14, v15), propagated from (entry, v1).

Consider another path p1=�entry, v1, v2, v3, v11, exit� in Fig-
ure 1(a). Since it passes through an outgoing uninteresting edge
from v2, pid(p1, v2) (same as pathid(p1) due to absorption) re-
mains less than v2.min and consequently less than v12.min. This
prohibits any chance of colliding with interesting paths passing
through v12. Besides, it can be seen that any uninteresting path p2
having pid(p2, v2) higher than v2.min is unabsorbable and hence,
its path-id will not be changed by PSPP.

Proof of correctness. We show that the final labeling produced
by PSPP is a valid labeling (as defined in Section 2.1). A detailed
proof of this claim is included in Appendix A.

3.2 Partitioned Path Profiling
We now present the partitioned path profiling (P3) algorithm. P3

uses the PSPP algorithm presented in Section 3.1 as a sub-routine.

Data structures and helper functions. A program M is a set of
procedures. For a DAG G = (V,E, entry, exit) of a procedure
P , G.E and G.V respectively denote the set of edges and vertices
of G. For a vertex v ∈ V , v.pathcount gives the number of paths
from the entry vertex to v. T denotes a set of tasks where each
task, denoted by T , corresponds to a subset of paths (say Tp) in
the program. For each T ∈ T , we maintain two fields: T.E and
T.Cost where T.E is the union of edges(p) for all p ∈ Tp and
T.Cost gives the number of instrumentation probes required by
PSPP for profiling the paths in Tp if T.E ⊂ G.E. If T.E = G.E
then T.Cost is the number of probes required by the Ball-Larus
algorithm for profiling the paths in Tp.

The function BL_DAG(P ) returns the DAG based on the DAG
construction algorithm [4] for a procedure P and BL(G) returns
the edge labeling for profiling all paths in a DAG G using the Ball-
Larus algorithm. The function size(X) returns the number of ele-
ments in the set X . The function caller_count(P ) gives the num-
ber of call-sites of P in the program M . For a DAG G, a set of
four vertices {a, b, c, d} forms a diamond if they have the follow-
ing edges among them {(a, b), (a, c), (b, d), (c, d)}. For example,
{v4, v5, v6, v7} in Figure 3(a) forms a diamond. A triangle is a set
of three vertices {a, b, d} such that they have the following edges
among them {(a, b), (a, d), (b, d)}. We call the vertices a and d as
begin and end vertices. These control flow structures respectively
represent if-else and if statements containing only straightline code
within the branches (equivalently, they do not contain nested con-
ditionals). The function reduced_graph(G) returns a new DAG,
called a reduced DAG, where all diamonds and triangles in G are
replaced by new vertices, called dummy vertices. The incoming
edges to the begin vertex of a diamond (or a triangle) in G are
added as incoming edges to the dummy vertex it is replaced with.
The case of outgoing edges of the end vertex is analogous.

Let es be a set of edges in the reduced DAG G� obtained from
a DAG G. For an edge e = (v, d) or e = (d, w) such that d
is a dummy vertex, let original(e) contain the set of edges in
G belonging to the diamond or triangle that d replaced while ob-
taining G�. If x and y are the begin and end vertices of the dia-
mond (or triangle) corresponding to d then we also add {(v, x) |
(v, d) ∈ es} ∪ {(y, w) | (d, w) ∈ es} to original(e). The
function get_original_edges(es,G,G�) returns the set of edges
{(v, w) ∈ es | v, w are not dummy vertices}∪{e ∈ original(e�) |
e� = (v, d) or e� = (d, w) for some dummy vertex d in G� and e� ∈
es}. Finally, the function reachable_edges(v,G�) returns all the
edges reachable from v in G�.

The P3 algorithm. The P3 algorithm is presented in Algorithm 2.
It takes a program M and a finite set C of identical cores. For each
core Ci ∈ C, we maintain the following fields: (1) Ci.E: set of
edges of the paths profiled in Ci, (2) Ci.load: computed as the
number of edges in Ci.E and (3) Ci.P robes: set of probes in Ci

(output of P3).

Lines 3–10. If the paths in the DAG of a procedure are partitioned
and assigned to different copies, there may be overlap of probes
across the copies. This can cause increase in runtime for both the
copies. Since we cannot completely eliminate such overlap, we
try to limit its impact by considering only those procedures that
may get called at most once in any execution. P3 therefore applies
partitioning to procedures (by calling find_partition at line 5) which
have no more than one caller. For the rest of the procedures, it
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Algorithm 2: P3(M,C)
Input: A program M and a finite set C of identical cores
Output: An assignment of instrumented copies of M to the cores

1 T ← ∅ // a global variable to store tasks
2 begin
3 foreach procedure P ∈ M do
4 DAG G ← BL_DAG(P )
5 if call_count(P ) ≤ 1 then find_partition(G)
6 else
7 probes ← BL(G)
8 T.E ← G.E; T.Cost ← size(probes)
9 Add T to T

10 end
11 end
12 foreach task T ∈ T in the decreasing order of T.Cost do
13 Let Ci be the core with the minimum load
14 Ci.E ← Ci.E ∪ T.E
15 Ci.load ← Ci.load+ T.Cost
16 end
17 foreach Ci ∈ C and P ∈ M do
18 G ← BL_DAG(P )
19 EP ← G.E ∩ Ci.E
20 if EP = G.E then Add BL(G) to Ci.P robes
21 else Add PSPP(G,EP ) to Ci.P robes end
22 end
23 end

24 Function find_partition(G)
25 begin
26 Let G = (V,E, entry, exit)
27 G� ← reduced_graph(G)
28 foreach v ∈ G�.V \ {entry} do v.pathcount ← 0, v.SE ← ∅
29 entry.SE ← {∅}; entry.pathcount ← 1
30 totalpathcount ← 1; S ← ∅
31 foreach vertex v ∈ G�.V in topological order do
32 totalpathcount ← totalpathcount− v.pathcount
33 foreach (v, w) ∈ G�.E do
34 add (v, w) to S
35 foreach es ∈ v.SE do
36 Add es ∪ {(v, w)} to w.SE
37 Increment w.pathcount and totalpathcount by 1 each
38 if totalpathcount = Δ then goto LBL
39 end
40 end
41 end
42 LBL: foreach v s.t. ∃(u, v) ∈ S ∧ ∃(v, w) /∈ S do
43 foreach es ∈ v.SE do
44 foreach (v, w) ∈ G�.E ∧ (v, w) /∈ S do
45 add {(v, w)} ∪ reachable_edges(w,G�) to es;
46 end
47 T.E ← get_original_edges(es,G,G�)
48 probes ← PSPP(G,T.E)
49 T.Cost ← size(probes)
50 Add T to T
51 end
52 end
53 end

applies the classic Ball-Larus algorithm to determine the probes
(lines 7-9) and creates a task for each such procedure.

Lines 24–52. The find_partition function combines the paths in
G that pass through some diamonds or triangles into one task. It
does so by first creating a reduced DAG as explained earlier. These
paths will share lots of overlapping instrumentation probes and are
therefore more suited for profiling in the same core.

Example 4. Consider the example in Figure 3. It contains five
diamonds. The corresponding reduced DAG is formed by replacing
the five diamonds with dummy vertices. There will be four paths in

the reduced DAG and corresponding to each such path, P3 creates
one task. Note that the resultant four tasks in the above example
can be profiled without any overlapping probes among them.

For large procedures, the number of paths in the reduced graph
can be large. Therefore, we employ a threshold Δ on the number
of tasks generated from a procedure. The tasks, in the presence of a
threshold, are computed on the reduced DAG as follows. For a ver-
tex v in the reduced DAG, each element of the set v.SE, denoted
by es, refers to the set of edges corresponding to a path from entry
to v. Starting from entry, the vertices of the reduced DAG are tra-
versed in topological order (line 31). While processing v, w.SE
is updated (line 36) for each successor w of v. The process termi-
nates when the number of paths found (totalpathcount) is equal
to the threshold Δ. S accumulates all the edges covered during
this process. In the loop beginning at line 42, a vertex v is selected
which is either exit or not all of its successors are processed in the
previous iteration. For v, all edges reachable from v to exit pass-
ing through uncovered edges are added to each edge-set in v.SE
(line 45). Each such edge-set is mapped to the edges in G using the
function get_original_edges (line 47) and a task is created using
the edge-set defined over G.

For some procedures (e.g., those without diamonds or triangles),
even if find_partition is invoked at line 5, it will return only a single
task. A procedure on which find_partition is invoked and it returns
multiple tasks is called a profitable procedure.

Lines 12–16. For getting optimal benefit out of the distribution,
one has to minimize the maximum time taken across all cores. It
turns out that the optimal distribution to minimize the maximum
cost across all cores is an NP-complete problem. The hardness
can be shown by reduction from multiprocessor scheduling prob-
lem [14]. In the multiprocessor scheduling problem (MSP), we are
given m identical machines M1, . . . ,Mm and n jobs J1, . . . , Jn.
Job Ji has a processing time pi > 0 and the goal is to assign jobs
to the machines so as to minimize the maximum load. The load
of a machine is defined as the sum of the processing times of jobs
that are assigned to that machine. In our context, a task (T ) is con-
sidered as equivalent to a job in MSP and T.Cost is considered as
the processing time pi for a job Ji. We use a known 4/3th approx-
imation algorithm [15] for multiprocess scheduling for distribution
in P3. Here, in a loop, the highest-cost task among the remaining
non-distributed tasks is assigned to the core with least load.

Example 5. In the example in Figure 3, the four tasks have cost
1 (�entry, · · · , v0, · · · , exit�), 1 (�entry, · · · , v3, · · · , exit�), 3
(for the 4 paths passing through v4), and 7 (for the 8 paths pass-
ing through v12). If only two cores are available, the 4th task is
assigned to the first core and first three tasks are assigned to the
second core. This results into the distribution shown in Figure 3.

Lines 17–21. Finally, for each core, P3 collects all the interesting
edges of the same procedure in the core and calls PSPP or BL to
get the final set of probes for the procedure on those edges.

4. EXPERIMENTAL EVALUATION
In this section, we explain our implementation and experimental

setup. We then report the experimental results on several programs
from the SPEC 2006 benchmark [16].

4.1 Implementation
We have implemented the PSPP and P3 algorithms for sequential

C/C++ programs using the LLVM 3.3 infrastructure [19]. LLVM
has an implementation of the Ball-Larus algorithm and we use it as
a sub-routine in P3’s implementation. For the experiments, for each
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Table 1: Benchmark characteristics

ID Program name LOC #Procedures #Profitable
procedures

1 473.astar 4694 167 12 (7%)
2 403.gcc 1738852 4347 540 (12%)
3 445.gobmk 158600 2476 556 (22%)
4 456.hmmer 22049 471 163 (35%)
5 464.h264ref 37694 518 97 (19%)
6 470.lbm 1159 17 1 (6%)
7 462.libquantum 3353 115 14 (12%)
8 429.mcf 2225 24 5 (21%)
9 433.milc 10560 235 35 (15%)
10 998.rand 339 3 1 (33%)
11 999.rand 339 3 1 (33%)
12 458.sjeng 10896 144 14 (10%)
13 482.sphinx3 17585 319 69 (22%)

procedure, we choose the threshold on the number of partitions that
P3 creates as the maximum of the out-degree of the entry vertex of
its DAG and the number of cores. Note that, BL_DAG can create a
DAG having vertices with out-degree more than two.

We specialized our P3 implementation to derive an implementa-
tion of the parallel Ball-Larus strategy (PBL) outlined in the Intro-
duction. More specifically, in our PBL implementation, all proce-
dures are considered as unprofitable and are instrumented using the
Ball-Larus algorithm to be distributed subsequently. The sequential
Ball-Larus strategy (SBL) is same as the Ball-Larus profiling on a
single core. We compare the profiling overheads of three different
techniques: P3, PBL and SBL.

4.2 Experimental Setup
Setup. We use programs from the SPEC 2006 benchmark [16] for
experimental evaluation. SPEC benchmarks are popular evaluation
targets in the profiling literature. We could run the Ball-Larus im-
plementation supplied with LLVM on 13 C/C++ programs from
this benchmark. We evaluate the profiling algorithms on all these
programs (see Table 1). These comprise both large programs such
as 403.gcc and some small programs such as 999.rand. Most pro-
grams have several thousand lines of code and a few hundred proce-
dures. The SPEC benchmark also provides a few tests per program.
To evaluate the runtime overhead of profiling, we run each of the
programs in Table 1 on all the tests available for it.

The experiments were conducted on Ubuntu Linux 12.04 on an
Intel Xeon W3520 2.67GHz machine with 4 cores and 8 GB RAM.
We simulate different cores by running the distinct copies generated
by the profiling algorithms separately on a single core of this ma-
chine. We present results of the parallel path profiling techniques
on 2, 4 and 8 cores.

Quantifying profiling overhead. We quantify the runtime over-
head of profiling using a metric, called hit count. The hit count of
a procedure P on a test X is the number of times instrumentation
probes inserted into P got executed while running the test X . The
hit count of a copy C on a test X is the summation of the hit counts
of all the procedures in that copy on X . The time overhead for
profiling P under X on a copy C is proportionate to its hit count.
Measuring real-time can have some inaccuracies based on the pro-
cessor load and other environmental factors. Further, we have to
accurately distinguish between the actual execution time and the
time taken by instrumentation probes. Hit count directly quantifies
the profiling overhead independent of these issues.

If an algorithm A generates K copies C1, . . . , CK for a program
M then the profiling overhead of A for M on a test X is taken as
the maximum of the profiling overheads of Ci for M on X , for
1 ≤ i ≤ K. For a program M and an algorithm A, we consider
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Figure 5: Profiling overhead of P3 and PBL relative to SBL on
2 cores (lower is better): Avg is the average over the programs.

the average of the profiling overhead of A across all the tests of M
as the profiling overhead. Average across all programs is simply
referred to as average and identified by Avg in the figures.
4.3 Experimental Results
RQ1. How many procedures were deemed to be profitable by P3?

As discussed in Section 3.2, P3 automatically identifies prof-
itable procedures by a static control flow analysis. Table 1 shows
the number and percentage of procedures that P3 deemed profitable
for each of the programs. For each of them, P3 could generate at
least 2 disjoint subsets of paths. The profitable procedures range
from 6–35% of all procedures across the programs. Thus, in each
of the programs, P3 could identify opportunities for load balancing
across cores through profitable procedures.

RQ2. Does P3 reduce profiling overhead compared to SBL?
The key test of effectiveness of P3 is whether and how much

reduction in profiling overhead (defined in Section 4.2) does P3
achieve compared to the sequential Ball-Larus (SBL) strategy.

In Figure 5, we plot the profiling overhead of P3 relative to SBL
on 2 cores. On the X-axis, we represent different program IDs
assigned to the programs in Table 1. The Y-axis is labeled with
the percentage of the profiling overhead of SBL at the intervals
of 20%. A filled gray bar shows the percentage of P3’s profiling
overhead relative to that of SBL for the same program. Lower the
value of a Y-coordinate, the more reduction in profiling overhead
P3 achieved. It can be seen that with only 2 cores, P3 could reduce
the profiling overhead for most of the programs. For 8 programs,
the reduction is more than or equal to 20%, whereas for 3 programs
(IDs 6, 10 and 11), it is only marginal. The average reduction across
all the programs is 23% as shown in the last bar of Figure 5.

In Figure 6 and Figure 7, we plot the profiling overhead of P3
relative to SBL for 4 and 8 cores respectively. For 4 cores, the
reduction is more than or equal to 47% for 8 programs, whereas for
5 programs (IDs 4, 6, 7, 10 and 11), it is less than or equal to 30%.
The average reduction for 4 cores is 43%. Finally, for 8 cores, the
reduction is more than or equal to 50% for 11 programs, whereas
it is less than or equal to 25% for the remaining two programs.
The average reduction for 8 cores is 56%. Overall, P3 achieved
substantial parallelization benefits for most of the programs across
2, 4 as well as 8 cores.
RQ3. Does P3 reduce profiling overhead compared to PBL?

We now compare P3 and PBL. Similar to P3, for each of the

491



1 2 3 4 5 6 7 8 9 10 11 12 13 Avg
0

20

40

60

80

100

Program ID

%
Pr

ofi
lin

g
ov

er
he

ad
of

SB
L

P3
PBL

Figure 6: Profiling overhead of P3 and PBL relative to SBL on
4 cores (lower is better): Avg is the average over the programs.
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Figure 7: Profiling overhead of P3 and PBL relative to SBL on
8 cores (lower is better): Avg is the average over the programs.

programs, we plot the profiling overhead of PBL relative to SBL
for 2, 4 and 8 cores in Figures 5, 6 and 7 respectively. The bars
with cross lines correspond to PBL.

For 2 cores (Figure 5), for 8 programs P3 shows more reduction
compared to that of PBL. On an average across all the programs, the
profiling overhead of P3 is 5% less compared to PBL. For 4 cores
(Figure 6), P3 gives more reduction than PBL on all but 1 programs.
On an average across all the programs, the profiling overhead of
P3 is 18% less compared to PBL. Finally, for 8 cores (Figure 7),
P3 outperforms PBL in all except 2 cases. On an average, it has
25% less overhead than PBL. We see two reasons behind the cases
where P3 could not perform better than PBL: (1) overlapping of
probes among the copies and (2) selection of profitable procedures
did not have any effect on the result.

In summary, P3 is more effective in exploiting parallelism in path
profiling compared to PBL. P3’s strategy of automatically identify-
ing profitable procedures and sub-dividing the task of profiling their
paths helps reduce profiling overhead compared to PBL’s coarse-
grained strategy of distributing entire procedures.

RQ4. How much time does P3 take to construct different instru-
mented copies and assign them to different cores?

P3 constructs different instrumented copies of a program M and
assigns them to different cores by a static analysis of M . P3 took a
maximum of 48m for the largest program in Table 1. On an aver-
age, it took 5m across all the programs with 9 programs taking less
than 2 minutes. We highlight that this is only a one-time cost for
any program for a given number of cores. The program can then be
profiled in parallel for any number of inputs.

4.4 Discussion
Trade-off between overlapping probes and load balancing. Over-
lapping probes are those probes that may get executed in an in-
stance Pi for a path profiled in another instance Pj . An important
factor in achieving reduction in profiling overhead through P3 is to
achieve a trade-off between overlapping probes (which can increase
the profiling overhead) and load balancing that can be achieved
through profiling only a subset of paths in each core. Our exper-
imental results show that this is indeed possible in practice. In par-
ticular, we observed that in several cases, multiple acyclic paths of
a procedure were exercised on the same core while using PBL but
they were profiled on different copies when P3 was used. In addi-
tion, the overlapping probes between those copies for the procedure
did not overshadow the benefit of distribution of the paths.

Threats to validity. There are some threats to validity for our exper-
imental results. The main among them being the limited number of
programs and test inputs for them. We attempt to mitigate it by con-
sidering the SPEC benchmarks which are widely used in the profil-
ing literature and generally, in performance analysis. Nevertheless,
in future, we wish to run our experiments on other programs. The
second threat is due to possible non-determinism in the paths being
explored in different copies. However, we consider only sequential
programs and evaluate them on the same machine (see Section 4.2).
Thus, once we fix an input, all copies of the program follow the
same dynamic control flow path. We give a detailed proof (see Ap-
pendix A) of correctness of PSPP to eliminate the possibility of a
theoretical glitch. Finally, we reduced the possibility of bugs in our
implementation by manual inspection and repeated experiments on
both smaller, hand-written examples and the SPEC benchmarks.

5. RELATED WORK
Program profiling. Ball and Larus [4] introduced the notion of
acyclic intra-procedural path profiling and provided an algorithm to
compute it. The Ball-Larus algorithm has been extended to profile
inter-procedural paths by Melski et al. [21] and to cyclic paths by
D’Elia et al. [11]. We believe that P3 can be extended to cover
these extensions. Extending P3 to profile inter-procedural paths is
an immediate future work for us.

Recently, Li et al. [20] presented an algorithm to overcome the
impreciseness of SPP [1]. Their algorithm, called Modified SPP
(MSPP), deletes a label from an uninteresting edge only if it does
not result in an invalid labeling. MSPP is an exponential algorithm
in worst-case whereas PSPP is linear in the size of the DAG.

Vaswani et al. [24] introduced preferential path profiling (PPP)
which reduces the overhead of path profiling by profiling a given
set of paths with an objective of compact numbering. The compact
numbering facilitates the use of arrays for updating the frequency
for each acyclic path, thereby reducing the overhead caused by the
use of hashtable. It can be shown with an example that their algo-
rithm does not ensure computation of valid labeling. In contrast, the
PSPP algorithm computes only valid labeling. As a workaround,
PPP uses Ball-Larus’ labeling for distinguishing interesting and un-
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interesting paths. This workaround cannot be used in our scenario
as the overhead will be same as overhead for Ball-Larus’ labeling
irrespective of the interesting paths. Chilimbi et al. [9] extended
PPP for inter-procedural paths and used it for residual path profil-
ing. We plan to extend PSPP for efficient residual path profiling.

Pertinent path profiling [5] introduced a new control-flow entity,
namely, pertinent paths that pass though a given set of nodes called
pertinent nodes. It generates a unique numbering for pertinent paths
and generates compact numbering of path-ids. They do not try to
reduce the number of probes, instead try to reduce the path-table
size. Targeted path profiling [18] addressed the profiling overhead
problem by leveraging edge profiling information in the context of
staged dynamic optimization systems. Parallelizing edge-profile in
itself can be an interesting research problem. In P3, the task cost
can take into account such profiling information for better distribu-
tion of tasks into cores.

One program, many copies. Closest to our work is distributed pro-
gram tracing [23]. It collects a single program trace corresponding
to a given input by distributing the witnesses across multiple copies
of the program and run them parallel on the same input to collect
the partial traces. The partial traces are then merged to produce the
whole trace. Though the same code-replication based divide-and-
conquer strategy is applied in the context of a different problem,
the challenge there was to devise the necessary and sufficient con-
dition which guarantees that the original order of basic blocks can
be constructed by merging. The distribution of witnesses and merg-
ing algorithm are therefore crucial for soundness of the algorithm.
In contrast, here, the distribution is addressing the efficiency of the
technique and the PSPP algorithm, applied on each procedure lo-
cally on each core, is ensuring the soundness. In both the works,
the distribution strategies further address the efficiency of profiling
or tracing. In tracing, a sequence of diamonds is put together in one
copy as they can be covered by less number of witnesses, whereas
P3 uses the notion of profitable procedures to optimize.

Software tomography [7] splits monitoring tasks across many in-
stances of the software, so that partial information may be collected
from users by means of light-weight instrumentation and merged to
gather the overall monitoring information. Although sounds sim-
ilar, the main difference is that they do not try to obtain accurate
profiling information for a given set of paths. There technique dis-
tributes the monitoring tasks to different users who can use the soft-
ware at will with different inputs. Their goal is to gather enough in-
formation for each sub-task. For example, for path coverage, they
discover whether each path is executed in a given set of execu-
tions, whereas our goal is to obtain precise execution frequencies
in a given task. Thus, their framework is more suitable towards effi-
cient distributed profiling (estimation based) whereas our algorithm
is more suitable towards accurate parallel path profiling. Addition-
ally, their algorithm is not accurate as it is as based on SPP [1].

Diep et al. [12] consider distribution of probes to multiple pro-
gram variants, where each variant contains a subset of probes, where
the subset size can be bounded to meet the overhead requirements.
However, the aim there is to profile a set of events and not paths.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an algorithm called P3 for parallel

path profiling. To the best of our knowledge, this is the first algo-
rithm for parallel path profiling. P3 profiles the path of a program
by distributing all acyclic paths into multiple cores, running on the
same input. P3 judiciously performs partitioning of paths of some
selected (profitable) procedures to reduce the common overhead
caused by the execution of a path in multiple cores. It uses an ap-

proximation algorithm to evenly distribute the overhead based on
number of probes. To precisely estimate execution frequencies for
each subset of paths in a profitable procedure, we have developed
an algorithm called PSPP which we use in P3.

This paper opens up some interesting research problems: how
to extend P3 for inter-procedural or cyclic paths which poses the
challenge of extending PSPP for such paths. As the Ball-Larus al-
gorithm can benefit by previously available profiling information
for determining low frequency chords to place the probes, P3’s dis-
tribution algorithm can be extended to get benefit from such infor-
mation. In the absence of dynamic profiling information, it is possi-
ble to do static estimation [3] based on program’s inter-procedural
CFG. This paper also opens up possibility of optimizations based
on better selection strategy of profitable procedures and threshold.

APPENDIX A. CORRECTNESS OF PSPP
We now show that the final labeling produced by PSPP is a valid
labeling (as defined in Section 2.1). We first define local validity of
a labeling L at a vertex v. Let Iv and Īv denote the set of interesting
and uninteresting paths passing through the vertex v respectively.
The labeling L is locally valid at v if the following conditions hold
for pids obtained using L:

(A) ∀p, q ∈ Iv : pid(p, v) �= pid(q, v)
(B) ∀p ∈ Iv, ∀r ∈ Īv : pid(p, v) �= pid(r, v)

This definition is similar to the definition of valid labeling but uses
partial identifiers pids instead of pathids.

Since pathid(p) = pid(p, entry), a locally valid labeling for
v = entry is same as a valid labeling. Thus, by proving local
validity for each vertex, we can prove the validity of the labeling
produced by PSPP. We now give names to the different steps of
PSPP for simplicity. The loop at lines 4–13 is called the initial
step. The loop at lines 14–21 is called the propagation step and
finally, the loop at line 22 is called the absorption step.

It is easy to see that local validity holds at every vertex for the
(edge) labeling obtained after the initial step. In PSPP, the prop-
agation and absorption steps are performed after the initial step is
over for all the vertices. To show that local validity holds for each
vertex after the absorption step, we define a variant of the PSPP
algorithm called PSPP’ in which propagation and absorption steps
are interleaved with the loop of the initial step. In particular, the
propagation and absorption loops are run within the loop of the ini-
tial step, immediately after a vertex v is processed in each iteration
of the loop at lines 4–13, by treating v as the entry vertex of the
subgraph of G rooted at v. We first show equivalence of PSPP and
PSPP’, and then prove correctness of PSPP’.

LEMMA 1. The edge labeling computed by PSPP and PSPP’
are identical.

PROOF. This follows from the fact that PSPP’ also performs the
propagation and absorption at the entry vertex, same as that in
PSPP. Since the propagation step is iterative and it considers each
vertex in the topological order for propagation of edge labels to the
outgoing edges of vertices with in-degree 1, the final edge labeling
of the interesting edges is the same for both PSPP and PSPP’. All
the uninteresting edges are labeled 0 in both PSPP and PSPP’.

Let succi(v) = {w | (v, w) ∈ EI}. Henceforth, we refer to
visit of a vertex v by PSPP’ as the visit of v in its outermost loop.

LEMMA 2. For a vertex v, the value v.min is only updated
(line 11 of Algorithm 1) for the first interesting edge (v, w1) PSPP
(and also PSPP’) visits in the initial step. The value v.min is at
least w1.min. Also, ∀wi ∈ succi(v), wi.min ≤ v.min .
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Figure 8: (a) Case 1: First non-interesting edge of p starts from
v; (b) Case 2: First non-interesting edge of p starts after prefix
q from v

PROOF. PSPP essentially follows Ball-Larus’ edge labeling for
interesting edges and the above lemma follows from the fact that
Ball-Larus’ edge labeling always gives higher pid to the paths pass-
ing through the edges that are visited later. Thus, the interesting
path from v with minimum path-id always passes through the first
interesting edge visited by PSPP. Since the value assigned to an
interesting edge is at least 0, the minimum path-id of an interest-
ing path through v is atleast w1.min. Also, ∀ wi ∈ succi(v), as
wi.min ≤ w1.min, we deduce wi.min ≤ v.min.

LEMMA 3. After PSPP’ visits a vertex v, it ensures that an un-
interesting path p having pid(p, v) higher than pid(p�, v) of any
interesting path p� is always unabsorbable.

PROOF. We prove this by contradiction. Suppose there exists
such an uninteresting path p which is absorbable. Let w1, w2...., wn

be the successors of v. Let (a, b) be the first uninteresting edge of
p reachable from v. We consider two cases for p.

First case: (a, b) is the leading edge of the subgraph rooted at
v (means a = v). Refer to Figure 8(a) for an illustration. All
the interesting paths will be assigned higher pids than the pid of
the uninteresting path p since interesting edges are processed after
uninteresting edges. This contradicts our assumption.

Second case: (a, b) is not the leading edge (see Figure 8(b)).
That means there exists a prefix q consisting of all interesting edges
(without more than one incoming edge) till the edge (a, b) of this
path which makes it absorbable. Now, consider a path q equal
to �entry, . . . , v, w1, x1, x2, . . . , xn, a, . . . , exit�. For an inter-
esting edge e passing through the vertex a, e.val will get higher
value than the pid of the uninteresting path with respect to a be-
cause interesting edges are processed later than uninteresting edges.
Thus, the value of a.min will be higher than the pid(p, v) as af-
ter PSPP’ completes processing of v, all labels of edges in q and
(a, b) are zero due to propagation and absorption from v. Using
Lemma 2, xn.min ≥ a.min. Lemma 2 can be used to show the
inequality X.min ≥ a.min for X ranging over all the vertices
xn−1, . . . , x1, w1, v, since each of the vertices is the successor of
the next node. Hence, v.min ≥ a.min. This means that the min-
imum pid of the interesting path passing from v is at least a.min.
But a.min > pid(p, v). This contradicts our assumption.

THEOREM 1. Given a DAG and a set of interesting edges, after
PSPP’ visits a vertex v, the labeling obtained is locally valid at v.

PROOF. The proof is by induction on the height of a vertex in
the DAG. The height of a vertex v is the smallest number of edges
between v and the exit vertex of the DAG.

Base case: v has height equal to zero (that is, v = exit). The
theorem trivially holds.

Induction step: We show that the theorem holds for any vertex
v of height H > 0. Since we are considering a DAG, all succes-
sors w1, w2...., wn of v have height less than H , so by induction
hypothesis the local validity holds on all wi. The algorithm assigns
Ball-Larus’ edge labeling to the interesting edges and after comput-
ing propagation and absorption steps, the pid of all the interesting
paths remains intact since there are no uninteresting edges in inter-
esting paths. So the pids of the interesting paths satisfy part (A)
of the definition of locally valid labeling. For proving part (B) of
the local validity definition, partition the uninteresting paths pass-
ing through v in two groups N1 and N2. N1 consists of all the
uninteresting paths which pass through leading uninteresting edges
of v, whereas N2 consists of all the uninteresting paths passing
through leading interesting edges of v. Again, its trivial to see that:
∀p ∈ N1 and ∀q ∈ Iv , pid(p, v) < pid(q, v), since all the inter-
esting edges are processed later than the uninteresting edges and
interesting edges are assigned in increasing order.

For proving the distinctness of pids of paths in Iv and those in
N2, we consider following two cases:

Case a = Paths passing through the same interesting edge from
v: We first prove the distinctness of the path-ids of interesting paths
Iv and path-ids of the paths in N2 which pass through the same out-
going edge e = (v, wi) of v. Consider two such paths p1 ∈ N2

and p2 ∈ Iv . By induction hypothesis, pid(suff (p1, wi), wi) �=
pid(suff (p2, wi), wi). We need to prove that after propagation and
absorption of e’s edge label (say α) their pids (w.r.t. v) are disjoint.
By Lemma 3 on wi, p1 is absorbable if pid(suff (p1, wi), wi) <
pid(suff (p2, wi), wi). As no absorption happens to interesting paths,
pid(p2, v) = α+pid(suff (p2, wi), wi). For such a p1, pid(p1, v) <
α+pid(suff (p1, wi), wi) as some absorption happens in p1. There-
fore pid(p1, v) < α + pid(suff (p2, wi), wi) = pid(p2, v). In the
other case, p1 is not absorbable therefore its pid(p1, v) will not
change after absorption and remain different than pid(p2, v).

Case b = Paths passing through different outgoing edges from
v: We now prove the distinctness of the pids of the interesting
paths and the path-ids of uninteresting paths in N2 passing through
different edges (v, wi) and (v, wj). Let, without loss of generality
wi.min >= wj .min.

PSPP’ processes edge (v, wi) before edge (v, wj) and assigns
(v, wj).val a value which is greater than all the pids of the paths
passing through (v, wi). Thus, all the interesting paths passing
through v, wj have higher pids than the uninteresting paths pass-
ing through (v, wi).

Consider an uninteresting path p1 passing through (v, wj) and an
interesting path passing through (v, wi). Say (v, wj).val = α and
(v, wi).val = β. If p1 is unabsorbable, then pid(p1, v) > α >
pid(p2, v). If p1 is absorbable, then by Lemma 3 pid(p1, v) =
pid(suff (p1, wj), wj) < wj .min. Since wj .min ≤ wi.min,
pid(p1, v) < wi.min. Since by definition, pid(p2, v) ≥ wi.min,
therefore pid(p1, v) < pid(p2, v).

Theorem 1 proves the correctness of PSPP’. If local validity of
the labeling L computed by PSPP’ holds at the entry vertex then
validity of L also holds. The output of both PSPP’ and PSPP are
same by Lemma 1. We therefore have the following theorem.

THEOREM 2. Given a DAG and a set of interesting edges, PSPP
computes a valid labeling.

Note that PSPP is same as the Ball-Larus algorithm if all paths
in the DAG are marked as interesting and additionally, if all edges
are interesting (even though some paths are uninteresting) the PSPP
algorithm is same as the Ball-Larus algorithm. Finally, for two sets
of paths S and S� where S ⊂ S�, the number of zero edges obtained
by PSPP for S is more than or equals to that of S�.
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