
What Change History Tells Us
about Thread Synchronization∗

Rui Gu3 Guoliang Jin4 Linhai Song1 Linjie Zhu1 Shan Lu2

1University of Wisconsin-Madison, USA 2 University of Chicago, USA
3Columbia University, USA 4 North Carolina State University, USA

ABSTRACT
Multi-threaded programs are pervasive, yet difficult to write.
Missing proper synchronization leads to correctness bugs
and over synchronization leads to performance problems.
To improve the correctness and efficiency of multi-threaded
software, we need a better understanding of synchronization
challenges faced by real-world developers.

This paper studies the code repositories of open-source
multi-threaded software projects to obtain a broad and in-
depth view of how developers handle synchronizations.

We first examine how critical sections are changed when
software evolves by checking over 250,000 revisions of four
representative open-source software projects. The findings
help us answer questions like how often synchronization is an
afterthought for developers; whether it is difficult for devel-
opers to decide critical section boundaries and lock variables;
and what are real-world over-synchronization problems.

We then conduct case studies to better understand (1)
how critical sections are changed to solve performance prob-
lems (i.e. over-synchronization issues) and (2) how soft-
ware changes lead to synchronization-related correctness
problems (i.e. concurrency bugs). This in-depth study
shows that tool support is needed to help developers tackle
over-synchronization problems; it also shows that concur-
rency bug avoidance, detection, and testing can be improved
through better awareness of code revision history.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Reliability

Keywords
Locks, Empirical Study, Repository Mining, Concurrency
Bugs, Performance Bugs, Multi-Threaded Software

∗Supported in part by NSF-CCF grants 1439091, 1217582,
1054616; and an Alfred P. Sloan Research Fellowship.

1. INTRODUCTION

1.1 Motivation
Multi-threaded programs are pervasive, yet difficult to

write. In particular, thread synchronization is challeng-
ing. Missing proper synchronization causes correctness bugs,
such as data races [11, 21, 37, 52, 68] and atomicity viola-
tions [12, 13, 30, 63], while over synchronization causes per-
formance problems [7]. Better understanding of real-world
synchronization challenges is needed to ease the develop-
ment process and improve the correctness and efficiency of
multi-threaded programs.

To achieve such an understanding, previous studies often
resort to open-source bug databases [14, 19, 26, 29]. These
databases contain detailed information of reported bugs, in-
cluding diagnosis discussion, source code, and patches. Such
information has enabled previous studies to motivate and
guide a wide variety of concurrency-bug research.

Unfortunately, since many real-world software projects are
complicated and quickly evolving, a lot of important infor-
mation, such as the following, is buried in the code revision
history and cannot be obtained from bug databases alone:

Information that goes beyond bug reports. Developers con-
duct synchronization-related code development and mainte-
nance for performance enhancement, functionality changes,
readability improvement, and others. These tasks are all
important and effort-consuming. They rarely, if ever, get
reflected by bug databases. Even for correctness bugs, some
of them may be fixed in the code repository but are never
reported in bug databases.

Information that is scattered over multiple versions of
source code. How is a concurrency bug introduced by code
revision? Different patterns could imply different short-cuts
for bug avoidance, detection, and testing. How is a critical
section formed — is the lock-and-unlock typically introduced
together with or after the critical section body? These two
different scenarios would demand different tool support for
developers. How often are the lock variable and boundaries
adjusted for a critical section? Specialized tools may be
needed for these adjustments. None of these questions can
be answered by checking one version of source code alone or
by checking the bug databases alone.

Information that hides within the whole revision history.
We have to study a long history to understand trends, like
whether the synchronization problem is getting more diffi-
cult with software getting more mature and whether a crit-
ical section is more likely to change when it ages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08
http://dx.doi.org/10.1145/2786805.2786815

426

The above information can provide insights for the de-
sign of new language features, analysis tools, run-time sys-
tems, and code development tools. It can also shed light
on new research directions, such as incremental bug detec-
tion, synchronization change impact analysis, synchroniza-
tion change prediction, over-synchronization detection and
fixing, and others.

Unfortunately, collecting the above information is chal-
lenging. Revision histories of large projects are difficult to
study due to their huge volumes. For example, each ver-
sion of MySQL database contains about four million lines
of code. Its repository contains about 7,000 code versions,
Facing these many lines of code, a lot of program analysis
cannot scale, not to mention manual inspections. Without
careful planning and trade-offs, the study will fail.

1.2 Contributions
We study the code repositories of open-source multi-

threaded software along several directions to better under-
stand synchronization challenges encountered by developers.

General Study We study how lock-protected critical sec-
tions are changed when software evolves. For this study,
we design a hierarchical taxonomy for all critical-section
changes, based on their structural patterns and purposes.

With this taxonomy in mind, we look at all the code
changes in the publicly available code repositories of four
representative open-source C/C++ software projects. These
repositories contain more than 250,000 revisions in total and
have 8 – 19 years of code development history. While study-
ing how many changes are there under each category, why
these changes are made, and when these changes are made,
we have made interesting observations:

• For a notable portion of critical sections (20–25% in
our study), the surrounding lock-and-unlock is intro-
duced after the enclosed code body. In many cases,
the lock synchronization and the code body should
have been introduced together, but developers forgot
the synchronization. In other cases, software changes
bring new and unsafe way of data sharing, and hence
demand extra synchronization in old code regions.

• More than three quarters of critical sections in MySQL
and Apache code repositories are modified or removed.
More than a quarter of critical sections in our study
have synchronization adjustments, such as critical sec-
tion boundary movement and lock variable changes.
Developers need tool support to figure out synchro-
nization details, and to keep the synchronization cor-
rect and efficient during constant code changes.

• The number of critical section changes remain stable
when software ages, but decreases significantly when
a critical section ages. Changes that improve perfor-
mance or fix bugs often happen at a much older age of
a critical section than other types of changes.

• Fixing correctness bugs is one of the most common
reasons for critical section changes. Enhancing per-
formance is not as common, but still non-negligible,
leading to nearly 10% of critical section changes sam-
pled by us.

This study provides motivations, guidelines, and bench-
marks for several lines of research, such as synchronization-
related change-impact analysis, performance- and

correctness-oriented synchronization maintenance (i.e.,
adjusting existing synchronization locations and variables),
over-synchronization detection and fixing, etc. More details
are presented in Section 3. All the scripts and results from
our study will be released.

In-Depth Case Study Following the above general
study, we conduct case studies to better understand over-
synchronization issues (i.e., unnecessary synchronization de-
grades execution performance) and concurrency bug issues
(i.e., lack of or incorrect synchronization hurts execution
correctness).

For over-synchronization issues, we manually studied 20
randomly sampled critical-section changes that are used to
improve synchronization performance. Our study shows
that over-synchronization is a real issue in practice and is
cared by real-world developers. When developers change
critical sections to alleviate over-synchronization, they
struggle with synchronization-correctness reasoning, lock-
variable management, and code refactoring. Tool support
is needed to help tackle these problems. More details are in
Section 4.

For concurrency bug issues, we manually studied the ori-
gins of 25 concurrency bugs to see how they are introduced
by code revisions. Since this study often requires much
deeper understanding of bugs than what change logs pro-
vide, some of these 25 bugs are sampled from the change his-
tory study mentioned above, and some are from real-world
bugs widely used by previous concurrency-bug research
[2, 15, 20, 21, 29, 30, 32, 42, 45, 53, 60, 61, 63, 66, 70, 71].

This study reveals interesting findings that can help im-
prove the scalability and accuracy of concurrency-bug detec-
tion, including the following, with more details in Section 5.

• Over half of these bugs are introduced under old
synchronization contexts (i.e., surrounding locks, pre-
ceding barriers/waits, etc.) that are completely un-
changed by bug-introducing revisions. This indicates
that synchronization analysis can be greatly simplified
in concurrency-bug detection and testing when exploit-
ing code history information.

• About half of these bugs only involve shared variables
and memory-access instructions that are newly intro-
duced by the bug-introducing revision. This indicates
that memory-access analysis can be greatly simplified
in concurrency-bug detection and testing when exploit-
ing revision information.

2. METHODOLOGY
This section presents the methodology of our general

study about critical-section changes.
Software and Bug Sources We study four represen-

tative C/C++ open-source software projects, as shown in
Table 11. They are all large and mature projects under ac-
tive development, with millions lines of code in each version
and 8 – 19 years of repository history. Our study looks at
all the publicly available revisions2 from their version con-
trol systems — SVN for Apache and MPlayer, Mercurial for
Mozilla [35], and Bazaar for MySQL [10]. Duplicate revi-
sions, mainly caused by revision merging, are pruned out.

1We will refer to “critical section” as CS .
2We will use revision and version interchangeably.

427

Table 1: Applications used in the study (all-CS : all unique CSes in the repository, each of which could live through many

revisions; added-CS : CSes added since the first version; all-CS are more than added-CS , as some CSes exist in the initial code

image; Section 2 discusses how we count CSes.)

Application Repository Info. Latest Version

Period #Rev. Rev. Size (avg. LoC) #all-CS #added-CS Size (LoC)

Apache HTTPD Web Server 1996 - 2014 25897 47 366 138 258K
Mozilla Browser Suite 2007 - 2014 188000 78 2898 2036 8.17M
MPlayer Media Player 2001 - 2014 37000 56 76 65 448K
MySQL Database Server 2000 - 2013 6800 494 2095 1548 3.91M

Table 2: Taxonomy of changes (“body”: the code region

enclosed by lock-and-unlock in a CS ; “synchronization vari-

able”: lock variable; “synchronization primitive”: different

types of lock operations)

Structural Patterns

Add Adding CSes
AddAll Synchronization and body added together
AddSyn Synchronization introduced after body

Rem Removing CSes
RemAll Synchronization and body removed together
RemSyn Synchronization removed alone

Mod Modifying existing CSes
ModBody Critical section body modified
ModSyn Critical section synchronization modified

ModSynV Synchronization variable modified
ModSynP Synchronization primitive modified
ModSynB Critical section boundary moved
ModSynS Critical section split
ModSynU Adding unlock operations

Purpose Patterns

Correctness Fixing functional bugs
Functionality Adding or changing code functionality
Maintainability Code refactoring
Performance Improving performance
Robustness Adding sanity checks

Taxonomy Our categorization follows two dimensions —
structure and purpose, as shown in Table 2.

Study Mechanisms Accurate categorization requires
inter-procedural control-flow and pointer-alias analysis,
which unfortunately cannot scale to large code repositories.
We choose to use regular-expression based Python scripts,
as it offers us the best balance between complexity and accu-
racy. Alternative approaches like AST-based analysis offers
little accuracy increase, while more sophisticated analysis
would not scale. Given the complexity constraints, we only
consider CSes that start and end in the same function.

For each version in the code repository, our script con-
ducts three-step analysis for each line i that appears in the
“diff” between this version, referred to as new below, and
the previous version, referred to as old below. The “diff” is
obtained through commands like svn diff.

First, identifying the innermost enclosing CS of i, denoted
as C. This is achieved by searching backward and forward
from i within the function that contains i, examining every
lock-acquisition statement, lock-release statement, as well
as the lock variables used by these statements. If no CS is
found to enclose i, the next two steps are skipped.

Second, identifying CSes corresponding to C in the other
version (i.e., old or new version depending on which ver-

sion i is from). To achieve this, we identify all unchanged
statements in C and find each such statement’s innermost
enclosing CS in the other version. If multiple unique CSes
are found, we discover a CS split (ModSynS), a CS removal
(Rem), or an adding-unlock (ModSynU). If no CS is found,
we discover a CS addition (Add) or removal (Rem), depend-
ing on i is from the new or the old version. If exactly one
CS C′ is found, we go to the third step.

Third, checking the lock-and-unlock operations of C and
C′ to identify body changes, boundary changes, synchroniza-
tion primitive changes, lock-variable changes, and so on.

Due to space constraints, some analysis details, such as
more detailed categorization and comments handling, are
skipped. Manually checking 500 randomly sampled catego-
rization results from our script shows that the false positive
rate of our script is below 5%. Our script makes the least
accurate categorization for AddSyn and RemSyn, when in-
significant statements appeared before the synchronization
enclosing them were added or remained after the synchro-
nization enclosing them were removed.

We use the identity of lock-acquisition function to
uniquely identify each CS . One lock acquisition followed by
multiple releases is counted as one CS . We also use the“diff”
mechanism to connect the same lock-acquisition function in
different versions, so that we can track the changes of one
CS throughout the software change history.

The lock and unlock primitives considered by our script
are obtained by key-word search — lock, latch, and mutex
— in the four software projects under study.

About half of Mozilla CSes are protected by AutoLock, a
scope-lock that releases at the end of its current scope. We
handle it slightly different from basic locks, and hence have
no information about CS body change (ModBody), CS split
(ModSynS), and adding unlocks (ModSynU) for AutoLock.
We will discuss Mozilla results with and without considering
AutoLock separately in Section 3.

Threats to Validity Due to the huge amount of code
under study, we intentionally trade off some analysis ac-
curacy for analysis speed and hence could miss some CS
changes. First, CSes that start in one function and end in
another are not identified. Second, if two pointers p1 and
p2 point to the same lock, a CS surrounded by lock(p1)

and unlock(p2) is not recognized; heap-based locks may
also cause inaccuracy when we count lock-variable changes
(ModSynV)3. Third, changes inside functions called by a CS
are not considered for that CS . Furthermore, like all empir-
ical studies, our study cannot cover all software projects in
the world. It also cannot cover code changes not committed
to the code repository.

3 Global and heap locks are similarly common in our study.

428

Even with the above caveats, we believe our study will
provide valuable observations and guidelines for future
synchronization-related research for two reasons. First, our
counting is mostly accurate. The first two issues mentioned
above are rare for CSes in real-world software. Our manual
checking of 500 randomly sampled script results shows that
our script has lower than 5% false positive rate. Second,
the inaccuracy does not affect the main observations and
implications of our study. For example, since we focus on
synchronization challenges, the inaccuracy in counting CS
body changes (e.g., not considering callee changes or not
considering body changes in AutoLock CSes) does not affect
our main observations. We could miss some ModSynV cases
due to heap locks, but this does not invalidate our observa-
tions, such as “synchronization adjustments are common.”

Overall, our study represents our best effort of under-
standing CS related changes in widely used C/C++ open-
source software projects. Our methodology takes a trade-off
that is suitable for our goal. All results from this study are
cross checked by multiple people. All findings below should
be interpreted with the above methodology in mind. We will
release all our scripts and results together with the paper.

3. CRITICAL SECTION CHANGES

3.1 Observations

3.1.1 How Many Changes Are There?
How Many Changes for Each Pattern? The total

number of changes ranges from 157 in MPlayer to 7260
in MySQL, as shown in Table 3. The three major pat-
terns, Add, Rem, and Mod, are about equally common.
All sub-patterns, except for removing-synchronization-alone
(RemSyn) and CS -split (ModSynS), each contributes to at
least 1.5% of all changes and affects at least 3.8% of all
CSes, as shown in Table 3 and 4. We discuss most com-
mon patterns below, and some interesting but less common
patterns in Section 3.1.2.4

Add, AddAll-vs-AddSyn: Adding CSes contributes to
17–40% of CS changes in four projects. The ratio between
AddAll and AddSyn are around 3:1 to 4:1. Introducing lock-
and-unlock after the CS body is not rare.

Rem, RemAll-vs-RemSyn: CS removals are about as
often as additions. Different from AddSyn, removing syn-
chronization separately from the CS body (RemSyn) is rare.

Mod, ModBody-vs-ModSyn: Modifications happen
more frequently to the body of a CS than to the lock-unlock
synchronization. However, modifications to synchronization
are non-negligible, contributing to 38% of all modifications
and involving 26% of all CSes in our study.

ModSynP: Changing synchronization primitives are quite
common in Apache, Mozilla, and MySQL. They are mainly
due to three reasons: (1) functionality enhancement that al-
lows lock profiling and deadlock monitoring, which happens
in both MySQL (in mysql mutex) and Mozilla (in AutoLock);
(2) performance enhancement, such as replacing regular

4 As mentioned in Section 2, we will present Mozilla results
with and without considering AutoLock separately in Table
3, Table 4, and Figure 1 – 3. For consistency, all the numbers
presented in the text of this section consider basic locks only;
all the qualitative observations presented here are true for
both considering and not considering AutoLock. We will also
discuss AutoLock changes at the end of this sub-section.

Table 3: Number of changes with certain pattern
(Subscripts in Mozilla column are AutoLock numbers)

Apache Mozilla MPlayer MySQL

Add 138 2271809 65 1548
AddAll 111 1831379 48 1182
AddSyn 27 44430 17 366

Rem 199 2721088 59 1411
RemAll 199 2721086 59 1395
RemSyn 0 02 0 16

Mod 467 204671 33 4301
ModBody 291 165n/a 23 2622
ModSyn 176 39671 10 1679

ModSynV 17 6182 3 117
ModSynP 109 6489 0 816
ModSynB 38 7n/a 4 577
ModSynS 0 0n/a 0 28
ModSynU 12 11n/a 0 141

all changes 804 7033568 157 7260

Table 4: Number of CSes w/ specific modifications
(The subscripts in Mozilla column are AutoLock numbers)

Apache Mozilla MPlayer MySQL

Mod 261 149500 23 1173
ModBody 196 139n/a 23 932
ModSyn 93 15500 9 640

ModSynV 14 5234 2 88
ModSynP 73 6410 0 555
ModSynB 32 5n/a 4 467
ModSynS 0 0n/a 0 28
ModSynU 12 11n/a 0 141

all CSes 366 3572541 76 2095

locks with reader-writer locks; (3) fixing bugs introduced
by earlier primitive changes, which happens in MySQL; (4)
readability enhancement through wrapper functions.

How Many Changes for Each CS? Change is the
norm. As shown by Figure 1, only about 10% of CSes have
encountered no changes after being added to Apache. This
ratio is around 30% for MySQL and MPlayer, and higher
for Mozilla, likely because Mozilla has the youngest code
repository.

The majority of CSes that have been changed (modified or
removed) are changed for 1 – 4 times throughout the revision
history, as shown in Figure 1. Of course, highly changed
CSes do exist. MySQL and Apache each has more than 2%
of CSes changed for more than 10 times. For example, a
668-line CS in MySQL was changed for 39 times in 6 years.

Statistical Correlation Test We use Spearman’s rank
correlation coefficient [54] to explore what features are most
correlated with the number of changes to a CS c. We con-
sider three sets of features: (1) features reflecting the prop-
erty of c itself, including length and age; (2) features reflect-
ing the file f holding c, including the number of revisions
that involves f , the number of CSes inside f , and the total
number of changes to other CSes in f ; (3) features reflect-
ing the lock v that protects c, including the total number of
CSes protected by v, and the total number of CS changes to
other CSes protected by v. Our data set includes all CSes
protected by global locks5 in the latest version of MySQL.
Results show that, among all the features under comparison,

5We cannot accurately know which CSes share a heap lock.

429

(a) MySQL (b) Mozilla (c) Apache (d) MPlayer

Figure 1: Cumulative distribution of #changes encountered by each CS (CS additions are not counted; the

dashed line also considers AutoLock)

Table 5: Purposes of CS changes

Apache Mozilla MPlayer MySQL Tot.

Correctness 13 9 20 21 63
Functionality 13 22 12 10 57
Maintainability 16 9 17 11 53
Performance 6 9 1 1 17
Robustness 2 1 0 7 10

Total 50 50 50 50 200

the number of ModBody changes and the number of ModSynB

changes to a CS c are most correlated with c’s size; the num-
ber of changes of other patterns and the total number of all
changes to c are most correlated with the number of total
revisions involving file f . These are all statistically strong
correlations.
AutoLock in Mozilla About half of the CSes in the latest

version of Mozilla use AutoLock. Since AutoLock was intro-
duced later than the basic lock in Mozilla, the code repos-
itory contains many more activities associated with it than
basic lock, as shown in Table 3 and 4. As we can see from the
tables and figures above, the observations discussed above
apply to both basic-lock CSes and AutoLock CSes. Specif-
ically, for AutoLock CS changes, the ratio between AddAll

and AddSyn is about 3:1; CS removals are common, as well
as CS additions; synchronization changes are common for
AutoLock CSes. These are all similar with non-AutoLock
CS changes. In comparison, an even larger portion of Au-

toLock CSes went through changes in Mozilla. Due to the
similarity between the change patterns of basic CSes and
AutoLock CSes, we will not separately discuss them for the
remainder of this paper.

3.1.2 Why Did Changes Happen?
To understand change purposes, we manually investigate

randomly sampled changes.
General Purposes Table 5 shows the purpose break-

down of 200 randomly sampled changes, with 50 from each
software project. As we can see, correctness fixes, function-
ality changes, and code refactoring are almost equally com-
mon, each leading to about 25% of all changes. Performance
enhancement is not negligible, leading to 8.5% of changes.

Pattern-Specific Purposes Due to space constraints,
we only discuss the purpose break-downs of five structural
patterns in Table 6 and below. We sampled 30 cases for
patterns that have more than 400 changes (AddSyn and
ModSynV), 10 cases for patterns that have fewer than 100
total changes (ModSynS), and 20 for the other two patterns.

Table 6: Purposes of changes w/ different patterns

Robu. Main. Func. Correct. Perf. Tot.

AddSyn 0 0 0 30 0 30
ModSynV 0 5 5 5 15 30
ModSynB 0 4 0 13 3 20
ModSynS 0 0 2 2 6 10
ModSynU 0 2 5 13 0 20

AddSyn: When lock-and-unlock synchronization is added
around a code region, it is always for avoiding concurrency
bugs. To understand why the lock-and-unlock was not
added earlier, we further studied the code change history for
30 cases. In 6 cases, synchronization was not needed when
the code region was first introduced, but was demanded later
due to software changes. In all other cases, not adding lock-
and-unlock together with the CS body is buggy.

ModSynV: Interestingly, more changes are made for per-
formance reasons, where fine granularity locks replace coarse
granularity locks, than for correctness reasons.

ModSynB: Boundary adjustments are quite common, af-
fecting almost 20% of all CSes. They are mainly used for
fixing concurrency bugs, where code regions right outside a
CS should be moved inside to avoid atomicity violations.

ModSynS: Splits are not common, maybe because they
are complicated to reason about, which will be discussed
more in Section 4. In 6 out of 10 examined cases, splits are
conducted to avoid blocking competing threads for too long
and hence to improve performance. In one case, the CS is
split to fix a deadlock bug; in another case, the split moves
part of the CS earlier to fix an order violation bug.

ModSynU: Adding unlocks have happened to 5.6% of
CSes. More than half of these are simply because developers
forgot to release a lock, particularly on error-handling paths
right before function returns.

3.1.3 When Did Changes Happen?
Regarding Software Age As we can see in Figure 2,

the number of changes is relatively stable over the time,
not getting significantly more or less with software getting
older. Probably not surprisingly, the number of CS changes
and the lines of changed code roughly follow the same trend
over time, as shown in Figure 2. Based on Spearman’s rank
correlation coefficient and Z test, these two sequences in-
deed have strong correlation in all four projects, with 95%
statistical confidence.

Regarding CS Age As we can see in Figure 3, the
change frequency of a CS does drop with the CS get-
ting older. 60–80% of changes to a CS happen within the

430

(a) MySQL (b) Mozilla (c) Apache (d) MPlayer

Figure 2: Number of CS changes, shown by solid red lines, and lines of changed code, shown by dashed lines,
over software ages. (We compute software age by counting how long the software has lived since its first publicly

released version; the dotted blue line in Mozilla figure also considers AutoLock.)

(a) MySQL (b) Mozilla (c) Apache (d) MPlayer

Figure 3: Percentage of cumulative changes over the age of CSes (CS additions not counted; the dashed curve

in Mozilla also considers AutoLock.)

first two months of the CS birth in Mozilla, Apache, and
MPlayer. Among the changes that happen after two years
of a CS ’s birth, the most common pattern is CS body mod-
ification, followed by CS removals.

Performance vs. Correctness One might wonder
whether performance-enhancement changes tend to happen
at older ages of a CS than correctness bug fixing changes.
After checking 20 changes sampled from each type, t-test
shows that the difference between these two is not statis-
tically significant. In fact, the average CS ages for both
types of changes are around 4 years, much larger that of all
changes, which is around 1 year.

3.2 Discussion
To Lock or Not to Lock? That is a difficult ques-

tion. For as many as 20–25% of CS additions in the stud-
ied projects, lock-and-unlocks are added after CS bodies.
According to our manual check, many of these CS bodies
should have been protected from the very beginning (24 out
of 30 sampled cases), while developers’ ignorance of syn-
chronization needs caused concurrency bugs. In other cases
where locks were not needed at the beginning (6 out of 30
cases), developers had to track software changes and add ex-
tra synchronization to previously implemented code regions.
Making things more complicated, CS removals are almost as
common as additions. This further burdens developers with
synchronization decisions.

This part of study further motivates concurrency-bug
avoidance and detection research — it is very common for
developers to forget locks when they implement new code. It
also calls for tool support that can analyze software changes
and infer changing synchronization needs on old code re-
gions, which will guide developers to add or remove locks in
old code regions. This has not been well studied in the past.

To (Un)Lock Here or There? To Lock A or B?
These are difficult questions. Our study shows that, af-

ter recognizing the need to synchronize, deciding the de-
tails of synchronization is difficult. Adjusting lock and un-
lock locations (ModSynS, ModSynB, ModSynU), lock variables
(ModSynV), and lock primitives (ModSynP) of existing CSes
are common tasks for developers. Altogether, they con-
tribute to more than 40% of all CS modifications and affect
about a quarter of all CSes (ModSyn in Table 3 and 4).

This part of study calls for tool support to decide syn-
chronization details — a tool that can automatically ad-
just the boundaries and lock variables of existing CSes with
both correctness and performance in mind. This is differ-
ent from generic concurrency-bug detection or fixing tools.
Specifically, synthesizing all the synchronization in a large
software project from scratch is probably unfeasible. How-
ever, automating the adjustment process is not only fea-
sible, but also very helpful. It can leverage the common
adjustment patterns taken by developers, as well as previ-
ous work on concurrency-bug detection, fixing, and lock-
insertion [4, 24, 34, 61]. It will relieve developers’ burden of
synchronization changes (i.e., ModSynB, ModSynP, ModSynS,
ModSynU, ModSynV).

How Common Are Correctness and Performance
Problems? Correctness is behind a significant portion of
all changes (31%). Performance changes are also not rare
(8.5%), and are a big part of synchronization modifications
and removals, as shown in Table 6. Furthermore, the real
problem could be more than what reflected by changes,
because developers may not realize problems in their soft-
ware. This results further indicate that research support for
both synchronization correctness and synchronization per-
formance is needed. More studies along these two directions
will be presented in Section 4 and 5.

Are Synchronization Problems Getting Harder or
Easier with Software Evolving? Our study shows that
synchronization problems are a common theme for an evolv-
ing software. Inevitably, functionality changes, robust-

431

ness enhancement, and others would happen inside existing
CSes. Even when existing CSes become stable, new CSes
are introduced with software evolving. Fortunately, the four
projects under study have shown no sign of synchronization
problems getting worse with software getting larger/older.

How about Other Types of Synchronization? Apart
from locks, condition variables are the second most popular
synchronization primitive in C/C++ programs. We studied
all changes to condition-variable signal/wait operations in
these four software projects. We briefly discuss main obser-
vations below.

First, signal/wait changes are common, especially con-
sidering the number of signals and waits in each code ver-
sion. For example, the latest version of MySQL contains 271
signal/wait operations, fewer than 1

10
th of lock/unlock op-

erations, while the code repository contains 1484 changes to
signals and waits.

Second, many changes are made to adjust existing sig-

nal–wait pairs. Across these four projects, 20 – 60% of
signal (or wait) changes are made without accompanying
wait (or signal) changes. We consider a signal change and
a wait change to accompany each other, if they are from the
same revision and use the same condition variable.

Third, a big portion of changes are made due to correct-
ness issues. Among the 40 randomly sampled cases, about
40% of them are made for avoiding concurrency bugs.

Overall, developers have to frequently adjust synchroniza-
tion details, such as where to signal for given waits or
where to wait for given signals, to avoid concurrency bugs.
Tool support will be useful.

Summary The study above shows that good tools are
needed to help (1) judge whether there is a need for adding
(for both newly written code and already existing code)
or removing lock synchronization; (2) adjust synchroniza-
tion details for performance and correctness concerns, which
applies to both lock synchronization (i.e., adjusting CS
boundaries and variables) and condition-variable synchro-
nization (i.e., adjusting signals and waits); (3) tackling
over-synchronization issues; and others.

4. OVER SYNCHRONIZATION STUDY
Over-synchronization happens when unnecessary synchro-

nization is added to the software. It would overly constrain
software interleaving and lead to performance degradation.

Although many empirical studies have looked at real-
world concurrency bugs [9, 14, 29, 45, 70], almost no study
has focuses on how developers handle over-synchronization
problems in real world. It will be the focus of this section.

Table 7: 20 over-synchronization related changes

Apache Mozilla MPlayer MySQL

ModSynV 3 2 0 6
ModSynB 0 0 0 3
ModSynS - - - 6

Total 3 2 0 15

4.1 Methodology and Threats to Validity
Following the study in Section 3.1.2, we focus on three

types of CS changes with dense population of over-
synchronization issues — ModSynV, ModSynS, and ModSynB.

lock(&LOCK_thread_count);
while ((tmp=it++)) {
if (...) {

- expensive_operation(tmp);
+ lock(&tmp->LOCK_delete);

break;
}

}
unlock(&LOCK_thread_count);

+ if (...) {
+ expensive_operation(tmp);
+ unlock(&tmp->LOCK_delete);
+ }

Figure 4: A CS split from MySQLr1233

Among the cases in Table 6, these three patterns provide
20 changes that fix/relieve over synchronization issues, as
shown in Table 7.

Note that over-synchronization goes far beyond these 20
cases, which are collected from 30, 20, and 10 randomly
sampled ModSynV, ModSynS, and ModSynB changes. They
do not cover all over-synchronization issues fixed by these
three types of changes, not to mention over-synchronization
issues fixed by other types of changes. There are also over-
synchronizations not fixed yet, which might be many given
the preliminary support for over-synchronization detection
and fixing. These 20 cases serve as a starting point of un-
derstanding real-world over-synchronization issues.

4.2 Observations
Where to Apply the Changes Naturally, these three

types of over-synchronization fixes are typically applied to
CSes with highly contended locks and time-consuming oper-
ations, such as system calls and the processing of big data-
structures. For example, three MySQL split cases relieve
the contention on LOCK thread count, which is a hot lock
used by more than 10 CSes, including four sections invoked
during every iteration of busy loops. As another example,
Mozillar166150 helps relieve the contention on globalMutex, a
default lock shared by CSes in Mozilla-ICU component.

How to Conduct ModSynS Conceptually, a split cuts
a CS C protected by lock L into at least two parts, C1 and
C2, each protected by a lock. Conducting a split involves
several challenges: (1) how to protect the split-out code; (2)
how to protect the newly created gap between C1 and C2;
(3) how to re-structure the code to complete the split.

For the first issue, in about half of the cases, every split
is still protected by the original lock, such as that shown in
Figure 56; in the other cases, the split-out code is protected
by a different lock that is more specialized, such as the per-
object tmp→LOCK delete replacing the original global lock
LOCK thread count shown in Figure 4.

For the second issue, in about half of the cases, C1 and C2

do not need to be put inside one CS . They were put together
due to code-structure/readability benefits, as shown in Fig-
ure 4. In other cases, C1 and C2 were intended to be atomic
together. The developers had to play some tricks, such as
making the lock protecting C2, which is different from L,
also protect part of C1 (MySQLr4591), or copying the values
of some shared variables used by both C1 and C2 into lo-
cal variables (e.g., ncell in Figure 5). Sometimes, developers
made semantic sacrifices to enable the split. For example,

6 Throughout the paper, ‘+’ denotes lines added by a revi-
sion; ‘-’ denotes lines deleted by a revision; the code shown
in figures is simplified for demonstration purpose; all com-
ments are added by authors.

432

lock(&btr_search_latch);
+ ncell = hash_get_n_cells(hash_index);
+ for (i=0; i<ncell; i++) {
- for (i=0; i<hash_get_n_cells(hash_index); i++) {
+ if ((i!=0)&&((i%CHUNK_SIZE)==0)) {
+ unlock(&btr_search_latch);
+ os_thread_yield();
+ lock(&btr_search_latch);
+ }

...
}
unlock(&btr_search_latch);

Figure 5: A CS split from MySQLr2121

after the CS split in MySQLr4591, SHOW GLOBAL STATUS
can no longer guarantee to aggregate the status information
of all active threads.

The third issue is surprisingly tricky. Naively, if a CS only
contains straight-line code, it can be split by simply inserting
an unlock and a lock. The reality is more complicated due
to control flows, particularly loops, surrounding the CS , as
demonstrated in Figure 4.

How to Conduct ModSynV Changing lock variables
mainly involve two challenges: (1) selecting a new lock; (2)
finding all CSes that need lock-variable replacement.

Surprisingly, in all 11 cases under study, the original lock
is replaced by a brand-new lock, newly declared and intro-
duced into the software in the corresponding revision. In
about half the cases, the newly introduced lock is only used
to protect one static code region, making this region safe to
be executed by multiple threads in parallel. In five cases, a
global lock is replaced by per-object locks. In other cases,
global locks are replaced by more specialized global locks.

Finding all CSes that need lock-variable replacement is
an error prone process. Although not related to over-
synchronization, Apache HTTPD once tried to rename a
lock from proxy module−>mutex to proxy mutex. Develop-
ers kept missing CSes and took four revisions to finally finish
all the needed replacement, which introduced bugs.

How to Conduct ModSynB The key challenge in
boundary change is to identify a code region near the bound-
ary of a CS that can be moved out without introducing con-
currency bugs or damaging data dependency. Sometimes,
this reasoning is easy. For example, MySQLr300 moves a
condition-variable broadcast out of a CS . Sometimes, this
requires more program semantics knowledge. For example,
in MySQLr152, developers realize that their code only reads
one log entry, instead of multiple, and hence can be con-
ducted outside the CS .

4.3 Discussion
Over-synchronization is a real problem, and is cared by

developers. Developers change synchronization primitives
to enable lock-contention profiling in MySQL and Mozilla,
and sometimes relieve over synchronization at the cost of
code readability or functionality (Figure 4 and 5).

Our study demonstrates that discovering and fixing over-
synchronization take a lot of manual effort and are er-
ror prone. (1) All three types of changes/fixes discussed
above can potentially introduce concurrency bugs and de-
mand non-trivial synchronization correctness reasoning. (2)
Many new lock variables are introduced during these fixes
(ModSynS and ModSynV). The ad-hoc way of introducing
these variables can easily lead to correctness and/or mainte-
nance problems. (3) The code movement during these fixes

is often non-trivial and could break single-thread semantics
(ModSynS and ModSynB).

Our study also shows that it is feasible to develop tools to
automate part of the over-synchronization detection and fix-
ing process. Some common patterns of ModSynS, ModSynV,
and ModSynB discussed above can help build such tools. A
large part of over-synchronization reasoning is about syn-
chronization correctness, which is shared by previous re-
search on concurrency bugs. Language and run-time tech-
niques [4, 24, 34, 58] may also help transparently address
some of these issues.

5. CONCURRENCY BUG ORIGINS

5.1 Methodology and Threats to Validity
Software and Bug Sources Concurrency bugs used by

this study come from two sources. The first includes all 28
real-world concurrency bugs, coming from more than ten
widely used C/C++ software projects, repeated and evalu-
ated in four recent concurrency-bug papers [20, 53, 70, 71].
This is our main source, because (1) the root cause of these
bugs are well understood, which allows us to accurately iden-
tify their origins; and (2) these bugs have been widely used
as benchmarks in state-of-the-art concurrency-bug literature
[2, 15, 21, 29, 30, 32, 42, 45, 60, 61, 63, 66]. In our work,
for each bug, we manually checked the user-reported buggy
version and all the related previous versions to identify at
which version the bug was introduced.

The second source is our critical-section change study. We
check the origins of 12 randomly sampled concurrency bugs
whose root causes are described in the revision log. We did
not use more cases from this source, because revision log
often does not describe bug root causes in detail and hence
is not a good source for our in-depth bug-origin study.

Taxonomy Our categorization is based on three key in-
gredients of a concurrency bug: (1) shared variable(s); (2)
instructions accessing these shared variables; and (3) syn-
chronization contexts, such as surrounding locks and pre-
ceding barriers, that fail to enforce correct ordering among
these instructions. The code revision that introduces a con-
currency bug, referred to as buggy revision, must bring some
or all of these ingredients into the software. Our categoriza-
tion is based on which ingredients are introduced.

Study Mechanisms None of the bugs studied here have
their origins mentioned in the bug reports or revision logs.
For each bug, we first understand its three key ingredients
and then manually search through the corresponding code
repository for the first version that contains all ingredients.

Threats to Validity Due to difficulty of identifying bug
origins, we choose to focus on bugs that have been repeated
and hence can be thoroughly understood, in order to pro-
vide accurate results. The trade-off is that there are not
many real-world C/C++ concurrency bugs that have been
repeated and discussed in research literature. We checked
all real-world C/C++ concurrency bugs used by a set of
recent work [20, 53, 70, 71] without any bias. We also com-
plement the above bug suite with randomly sampled bugs
whose fixes are mentioned in the revision logs. One possi-
ble and uncontrollable bias is that bugs with complicated
root causes may be less likely to get repeated by previous
research or discussed in logs.

Having said that, we believe our study is a necessary
step in understanding concurrency-bug origins. Our suite of

433

Table 8: How concurrency bugs are introduced (The subscripts represent b(ug) ids or r(evision) ids. The
superscripts, A/O/D/Am, represent common root-cause patterns [29]: single-variable atomicity violations,
order violations, deadlocks, and multi-variable atomicity violations. Td represents thread.)

New New Instruction New Context

Variable Td 1 Td 2 Td 1 Td 2

Type 1
AgetAm , ApacheDb42031, MozillaDr996770 - X - - -
MySQLA

b791, MySQLAm
r1810.2246.1, MySQLD

r1110.10.2

Type 2 ApacheAb25520, ClickO, MySQLA
b3596 - X - X -

Type 3
HTTrackO

b20247 MozillaDb79054, Mozilla
A/O
b142651, MozillaDb679524 X X X - -

MPlayerDr30851 MySQLA
r703, SQLiteDb1672, TransmissionO

b1818, x264O

Type 4
ApacheDr88671, ApacheAr103588, ApacheAr1201146, CherokeeAb326 X * X X X
MozillaOb61369, MySQL

Am/O
b2011 , ZSNESO

b10918

/* Log Thread */

/*log status was OPEN*/
... //close old log

+ log_status = CLOSED;
... //open new log
log_status = OPEN;

/* Query Thread */
/*log after transaction*/
if(log_status==OPEN){
... // log update (#)

}else{
//Failure:transaction
// not logged

}

Figure 6: How the MySQL791 bug was introduced

bugs come from a representative set of open-source multi-
threaded C/C++ software, cover a wide variety of root-
cause patterns and failure patterns, and have been widely
used in the research community. The two different sources
of bugs in our study end up showing consistent trends of
origins, as shown below.

5.2 Observations
Among the 40 bugs that we studied (28 from previous pa-

pers and 12 from revision logs), 15 have unknown origins,
as they exist in the first publicly available version of their
respective projects. The remaining 25 bugs are introduced
in four different ways, as shown in Table 8. In the discus-
sion below, we will call the items introduced by the buggy
revision as new and the ones that exist prior to the buggy
revision as old.

Type 1: One Thread, New Instructions in Old
Contexts A concurrency bug is introduced by changes in
a single thread, where some new memory instructions are
inserted in old synchronization contexts. This happens to
both atomicity violation bugs and deadlocks in our study.

For example, Figure 6 explains how a single-variable atom-
icity violation was introduced in MySQL. In one revision, de-
velopers decide to update log status to be CLOSED, shown
by ‘+’ in Figure 6. This change makes perfect sense for the
semantics of the logging thread. However, it could cause the
query thread to skip transaction logging, a severe security
vulnerability, if the query thread reads log status after it is
set to CLOSED and before it is set back to OPEN. Note that,
the old version had no logging-related problems, because the
logging code in the query thread, denoted by # in Figure 6,
can handle temporarily unavailable logs.

Type 2: One Thread, New Instructions in New
Contexts The buggy revision introduces a new code region
with a new synchronization context, which is not well syn-
chronized with some old code in another thread. We observe
both atomicity violations and order violations in this cate-

+ static httrackp *g_opt = NULL;

/* Main Thread */
int main() {
...
pthread_create(child, ...);

+ mutexlock(&g_opt->s.l);
...

}

/* Child Thread */
void child(...) {
...
/*Initialize g_opt*/

+ g_opt = create_opt();
...

}

Figure 7: How HTTrackb20247 was introduced

gory. Specifically, the buggy revisions of Click, x264, and
MySQLb3596, all create new threads that do not synchronize
well with old threads. Click’s new thread could read shared
variables after they are destroyed by old threads; x264’s new
thread could read shared variables before they are initialized
by old threads; MySQLb3596’s new thread accesses shared
variables without using the proper lock used by old threads.

Type 3: Multiple Threads, New Variables Ac-
cessed in Old Contexts There exists code regions r1
and r2 that can execute concurrently in the old version.
The buggy revision introduces a new variable accessed by
both regions. The lack of synchronization between these
two regions leads to concurrency bugs. In Transmissionb1818

and HTTrackb20247, concurrent accesses from two concur-
rent regions cause a new shared variable to be read be-
fore initialization (i.e., order violations); in Apacheb25520,
Mozillab142651, and MySQLr703, the concurrent read-and-
write accesses from two concurrent regions lead to atomicity
violations. In several other cases, two threads can request
lock A concurrently in the old version. Inserting lock-B ac-
quisitions to be before and after the lock-A acquisitions in
these two threads causes deadlocks.

Type 4: Multiple Threads, New Instructions in
New Context(s) This typically happens when the revision
introduces new multi-threaded components into the soft-
ware or significant re-implementation for many threads (e.g.,
Cherokeeb326). The shared variables involved in these bugs
are mostly new variables, except for Apacher1201146.

5.3 Discussion
Facing large real-world multi-threaded software, it is crit-

ical to improve the performance and accuracy of existing
concurrency-bug analysis techniques. This could be helped
through history/change awareness [18, 57, 67], an approach
that has not been well explored. Our study shows how this
approach can help two critical and time-consuming compo-

434

nents of concurrency-bug analysis: analyzing which instruc-
tions access same variables (i.e., memory-access analysis),
and analyzing what are the synchronizations around these
instructions (i.e., synchronization analysis).

First, synchronization analysis can be significantly sim-
plified for many bugs through history awareness. With old
synchronization-context information, about half of the stud-
ied bugs would require no new synchronization analysis to
be detected, because their buggy code is inside completely
old synchronization contexts. Furthermore, another 20% of
the studied bugs involve old synchronization context in one
thread, and hence could also benefit from history awareness.

Second, memory-access analysis can be significantly sim-
plified for many bugs through history awareness. About half
of the studied bugs only involve new variables accessed by
new instructions with pointers propagated through new in-
structions. Therefore, detecting them only requires memory-
access analysis for the changed code, instead of the whole
program. This simplification is huge, as the size of a re-
vision is often less than 0.01% of the whole software. For
the remaining bugs, detecting them can leverage incremen-
tal pointer-alias analysis [31, 51, 59, 69], as they involve old
memory instructions or old shared variables or both.

Third, about a quarter of the studied bugs can benefit
from both almost-no synchronization analysis and revision-
local memory-access analysis discussed above, and hence
would require extremely simple analysis to discover. Fig-
ure 7 illustrates such a case for HTTrackb20247. The revision
introduces a new global pointer variable g opt, which is ini-
tialized by the child thread and dereferenced by the main
thread. The code regions of the initialization and the deref-
erence have been concurrent since the old version. With
history/revision-aware analysis, we can easily tell that the
dereference of g opt could happen before its initialization.

The above features can help improve not only analysis
performance, but also analysis accuracy, as some saved anal-
ysis time can be used for improving accuracy. Furthermore,
knowledge about false positives in analyzing old versions can
help prune false positives in new versions.

The above features can help not only concurrency bug
detection and testing, but also prevention. Since half of
the examined bugs happen in code regions that can exe-
cute concurrently with each other in the old version, an IDE
that highlights concurrent code regions could help prevent
many bugs. Furthermore, lightweight history/change-aware
analysis can provide developers instant feedback about con-
currency bugs introduced by revisions.

Of course, there are also challenges. For example, reusing
synchronization information (e.g., time-stamps and locksets)
from old versions requires extra storage. It is also difficult
to judge whether concurrency bugs are introduced based on
the revision alone, as about three quarters of the studied
bugs involve synchronization contexts or memory accesses
inherited from old versions.

Overall, our origin study of concurrency bugs coming from
different sources has delivered a consistent message — the
awareness of history can help improve the performance and
accuracy of many concurrency-bug related techniques.

6. RELATED WORK
Many characteristics studies have been conducted to un-

derstand general software bugs [6, 16, 41, 55]. Recently,
studies also looked at concurrency bugs [9, 14, 29, 70, 71] and

evaluate new synchronization primitives [48, 49, 60] based
on bug databases and student/researcher experiences. Our
study complements them by checking software code reposito-
ries, which reveals real-world code development information
unavailable in bug databases.

A recent study checks performance bugs in bug databases
[19]. It found 6 synchronization related bug reports among
all its sampled performance bugs, with no details about these
6 cases. None of the 20 over-synchronization fix changes
discussed in Section 4 can be found from bug databases.

Many studies have looked at software code repositories in
the past [23, 25, 28, 40, 46, 50, 65], most of which did not
focus on synchronization issues. Some recent studies look at
parallel programs written using Java concurrent program-
ing constructs [44], MPI [33], and C# Task Parallel Library
[40]. The study by Xin et al. [62] looks at the frequen-
cies of some lock usage patterns over three versions of four
software projects, such as using lock after an if check and
checking the return value of a lock acquisition. The study
by Sadowski et al. [50] looks at how data races evolve over
time in two Java programs. Specifically, they made two
findings: (1) the number of racy variables remains high over
time; (2) variables may go in and out of being racy over the
course of a project. As we can see, although all looking at
multi-threaded software, our study has different goals from
previous studies. Consequently, our study collects different
types of software change information and answers different
types of questions, including over-synchronization issues and
concurrency-bug origin issues, from previous work.

Many concurrency bug detection tools have been proposed
[11–13, 21, 32, 36, 37, 52, 66, 68, 70]. Almost all of them fo-
cus on one software version at a time, and hence can benefit
from our study of concurrency bug origins.

Tools have been built recently to detect performance bugs
[17, 22, 38, 39, 64], detect false sharings [27, 43], and profile
locks [8, 56]. Our study provides motivation and guidance
for future research to tackle over-synchronization issues.

New constructs have been designed to (partly) replace
locks and ease synchronization [1, 3, 24, 58]. Although locks
are still the most commonly used synchronization constructs
in open-source C programs [40], our study shows that devel-
opers indeed face challenges of using locks.

Our concurrency-bug origin study is inspired by tradi-
tional revision impact analysis designed for sequential bugs
[5, 47]. Previous results cannot be applied to concurrency-
bug research, because concurrency bugs involve multiple
threads and synchronization.

7. CONCLUSION
This paper studies code repositories to understand syn-

chronization challenges encountered by real-world develop-
ers. We first check over 250,000 code revisions in the code
repositories of four representative C/C++ software projects
to figure out how many critical section related changes are
there, why the changes are made, and when they are made.
We then conduct thorough case studies to better under-
stand how concurrency bugs are introduced by code changes
and how developers handle over-synchronization problems.
Our findings provide insights and motivation for future re-
search on tackling synchronization problems, both lack-of-
synchronization and over-synchronization problems.

435

8. REFERENCES

[1] Zachary Anderson, David Gay, Rob Ennals, and Eric
Brewer. Sharc: Checking data sharing strategies for
multithreaded c. In PLDI, 2008.

[2] Sebastian Burckhardt, Pravesh Kothari, Madanlal
Musuvathi, and Santosh Nagarakatte. A randomized
scheduler with probabilistic guarantees of finding bugs.
In ASPLOS, 2010.

[3] Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. X10: An
object-oriented approach to non-uniform cluster com-
puting. In OOPSLA, 2005.

[4] Sigmund Cherem, Trishul M. Chilimbi, and Sumit Gul-
wani. Inferring locks for atomic sections. In PLDI,
2008.

[5] Ophelia C. Chesley, Xiaoxia Ren, Barbara G. Ryder,
and Frank Tip. Crisp–a fault localization tool for java
programs. In ICSE, 2007.

[6] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth
Hallem, and Dawson R. Engler. An empirical study of
operating system errors. In SOSP, pages 73–88, 2001.

[7] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-
dovich, Robert Tappan Morris, and Eddie Kohler. The
scalable commutativity rule: designing scalable soft-
ware for multicore processors. In SOSP, 2013.

[8] Florian David, Gael Thomas, Julia Lawall, and Gilles
Muller. Continuously measuring critical section pres-
sure with the free-lunch profiler. In OOPSLA, 2014.

[9] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent
bug patterns and how to test them. In IPDPS, 2003.

[10] Daniel Fischer. Getting started with bazaar for
mysql code. http://dev.mysql.com/tech-resources/
articles/getting-started-with-bazaar-for-mysql.html.

[11] Cormac Flanagan and Stephen N. Freund. Fasttrack:
efficient and precise dynamic race detection. In PLDI,
2009.

[12] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi.
Velodrome: A sound and complete dynamic atomicity
checker for multithreaded programs. In PLDI, 2008.

[13] Cormac Flanagan and Shaz Qadeer. A type and effect
system for atomicity. In PLDI, 2003.

[14] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo
Rodrigues. A study of the internal and external effects
of concurrency bugs. In DSN, 2010.

[15] Qi Gao, Wenbin Zhang, Zhezhe Chen, Mai Zheng, and
Feng Qin. 2ndstrike: Toward manifesting hidden con-
currency typestate bugs. In ASPLOS, 2011.

[16] Kirk Glerum, Kinshuman Kinshumann, Steve Green-
berg, Gabriel Aul, Vince Orgovan, Greg Nichols, David
Grant, Gretchen Loihle, and Galen C. Hunt. Debug-
ging in the (very) large: ten years of implementation
and experience. In SOSP, 2009.

[17] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang,
and Tao Xie. Performance debugging in the large via
mining millions of stack traces. In ICSE, 2012.

[18] Vilas Jagannath, Qingzhou Luo, and Darko Marinov.
Change-aware preemption prioritization. In ISSTA,
2011.

[19] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scher-
pelz, and Shan Lu. Understanding and detecting real-
world performance bugs. In PLDI, 2012.

[20] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and
George Candea. Deadlock immunity: Enabling systems
to defend against deadlocks. In OSDI, 2008.

[21] Baris Kasikci, Cristian Zamfir, and George Candea.
Data races vs. data race bugs: telling the difference
with portend. In ASPLOS, 2012.

[22] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan
Braud, James W. Anderson, and Ranjit Jhala. Finding
latent performance bugs in systems implementations.
In FSE, 2010.

[23] Miryung Kim, Thomas Zimmermann, and Nachiappan
Nagappan. A field study of refactoring challenges and
benefits. In FSE, 2012.

[24] James R. Larus and Ravi Rajwar. Transactional Mem-
ory. Morgan & Claypool, 2006.

[25] Paul Luo Li, Ryan Kivett, Zhiyuan Zhan, Sung-eok
Jeon, Nachiappan Nagappan, Brendan Murphy, and
Andrew J. Ko. Characterizing the differences between
pre- and post- release versions of software. In ICSE,
2011.

[26] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu,
Yuanyuan Zhou, and Chengxiang Zhai. Have things
changed now?: an empirical study of bug characteris-
tics in modern open source software. In ASID, 2006.

[27] Tongping Liu and Emery D. Berger. Sheriff: precise
detection and automatic mitigation of false sharing. In
OOPSLA, 2011.

[28] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Shan Lu. A study of linux file
system evolution. In FAST, 2013.

[29] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan
Zhou. Learning from mistakes – a comprehensive study
of real world concurrency bug characteristics. In ASP-
LOS, 2008.

[30] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou.
AVIO: detecting atomicity violations via access inter-
leaving invariants. In ASPLOS, 2006.

[31] Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. An
incremental points-to analysis with cfl-reachability. In
CC, 2013.

[32] Brandon Lucia and Luis Ceze. Finding concurrency
bugs with context-aware communication graphs. In MI-
CRO, 2009.

436

http://dev.mysql.com/tech-resources/articles/getting-started-with-bazaar-for-mysql.html
http://dev.mysql.com/tech-resources/articles/getting-started-with-bazaar-for-mysql.html

[33] Cristina Marinescu. An empirical investigation on mpi
open source applications. In Proceedings of the 18th In-
ternational Conference on Evaluation and Assessment
in Software Engineering, EASE ’14, pages 20:1–20:4,
New York, NY, USA, 2014. ACM.

[34] Bill McCloskey, Feng Zhou, David Gay, and Eric
Brewer. Autolocker: Synchronization inference for
atomic sections. In POPL, 2006.

[35] Mozilla Developer Network. Getting mozilla source
code using mercurial. https://developer.mozilla.org/
en-US/docs/Mozilla/Developer guide/Source Code/
Mercurial.

[36] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball,
Grard Basler, Piramanayagam A Nainar, and Iulian
Neamtiu. Finding and reproducing heisenbugs in con-
current programs. In OSDI, 2008.

[37] Robert H. B. Netzer and Barton P. Miller. Improving
the accuracy of data race detection. In PPoPP, 1991.

[38] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and
Shan Lu. Caramel: detecting and fixing performance
problems that have non-intrusive fixes. In ICSE, 2015.

[39] Adrian Nistor, Linhai Song, Darko Marinov, and Shan
Lu. Toddler: detecting performance problems via sim-
ilar memory-access patterns. In ICSE, 2013.

[40] Semih Okur and Danny Dig. How do developers use
parallel libraries? In FSE, 2012.

[41] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe
Calvès, Julia L. Lawall, and Gilles Muller. Faults in
linux: ten years later. In ASPLOS, 2011.

[42] Soyeon Park, Shan Lu, and Yuanyuan Zhou. Ctrigger:
Exposing atomicity violation bugs from their finding
places. In ASPLOS, 2009.

[43] Aleksey Pesterev, Nickolai Zeldovich, and Robert T.
Morris. Locating cache performance bottlenecks using
data profiling. In EuroSys, 2010.

[44] Gustavo Pinto, Weslley Torres, Benito Fernandes, Fer-
nando Castor, and Roberto S.M. Barros. A large-scale
study on the usage of java’s concurrent programming
constructs. J. Syst. Softw., 106(C):59–81, August 2015.

[45] Shanxiang Qi, Abdullah Muzahid, Wonsun Ahn, and
Josep Torrellas. Dynamically detecting and tolerating
if-condition data races. In HPCA, 2014.

[46] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and
Premkumar T. Devanbu. A large scale study of pro-
gramming languages and code quality in github. In
FSE, 2014.

[47] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder,
and Ophelia Chesley. Chianti: A tool for change impact
analysis of java programs. In OOPSLA, 2004.

[48] Christopher J. Rossbach, Owen S. Hofmann, and Em-
mett Witchel. Is transactional programming actually
easier? In WDDD, 2009.

[49] Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael
Spear. Transactionalizing legacy code: An experience
report using gcc and memcached. In ASPLOS, 2014.

[50] Caitlin Sadowski, Jaeheon Yi, and Sunghun Kim. The
evolution of data races. In Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories
(MSR), 2012.

[51] Diptikalyan Saha and C. R. Ramakrishnan. Incremen-
tal and demand-driven points-to analysis using logic
programming. In PPDP, 2005.

[52] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A dynamic
data race detector for multithreaded programs. ACM
TOCS, 1997.

[53] Yao Shi, Soyeon Park, Zuoning Yin, Shan Lu,
Yuanyuan Zhou, Wenguang Chen, and Weimin Zheng.
Do i use the wrong definition?: Defuse: Definition-
use invariants for detecting concurrency and sequential
bugs. In OOPSLA, 2010.

[54] Charles Spearman. Spearman’s rank correlation co-
efficient. http://en.wikipedia.org/wiki/Spearman’s rank
correlation coefficient.

[55] M. Sullivan and R. Chillarege. A comparison of software
defects in database management systems and operating
systems. In FTCS, 1992.

[56] Nathan R. Tallent, John M. Mellor-Crummey, and Al-
lan Porterfield. Analyzing lock contention in multi-
threaded applications. In PPoPP, 2010.

[57] Valerio Terragni, Shing-Chi Cheung, and Charles
Zhang. Recontest: Effective regression testing of con-
current programs. In ICSE, 2015.

[58] Mandana Vaziri, Frank Tip, and Julian Dolby. As-
sociating synchronization constraints with data in an
object-oriented language. In POPL, 2006.

[59] Frédéric Vivien and Martin Rinard. Incrementalized
pointer and escape analysis. In PLDI, 2001.

[60] Haris Volos, Andres Jaan Tack, Michael M. Swift, and
Shan Lu. Applying transactional memory to concur-
rency bugs. In ASPLOS, 2012.

[61] Dasarath Weeratunge, Xiangyu Zhang, and Suresh Ja-
gannathan. Accentuating the positive: atomicity in-
ference and enforcement using correct executions. In
OOPSLA, 2011.

[62] Rui Xin, Zhengwei Qi, Shiqiu Huang, Chengcheng
Xiang, Yudi Zheng, Yin Wang, and Haibing Guan.
An automation-assisted empirical study on lock us-
age for concurrent programs. In Software Maintenance
(ICSM), 2013 29th IEEE International Conference on,
pages 100–109, Sept 2013.

[63] Min Xu, Rastislav Bod́ık, and Mark D. Hill. A seri-
alizability violation detector for shared-memory server
programs. In PLDI, 2005.

437

https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Source_Code/Mercurial
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Source_Code/Mercurial
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Source_Code/Mercurial
http://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
http://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient

[64] Dacong Yan, Guoqing (Harry) Xu, and Atanas Roun-
tev. Uncovering performance problems in java appli-
cations with reference propagation profiling. In ICSE,
2012.

[65] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pa-
supathy, and Lakshmi N. Bairavasundaram. How do
fixes become bugs? In FSE, 2011.

[66] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and
Gilles Pokam. Maple: a coverage-driven testing tool for
multithreaded programs. In OOPSLA, 2012.

[67] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel.
Simrt: An automated framework to support regression
testing for data races. In Proceedings of the 36th In-
ternational Conference on Software Engineering, ICSE
2014, pages 48–59, New York, NY, USA, 2014. ACM.

[68] Yuan Yu, Thomas Rodeheffer, and Wei Chen. Race-
track: Efficient detection of data race conditions via
adaptive tracking. In SOSP, 2005.

[69] Jyh-shiarn Yur, Barbara G. Ryder, and William A.
Landi. An incremental flow- and context-sensitive
pointer aliasing analysis. In ICSE, 1999.

[70] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel
Scherpelz, Guoliang Jin, Shan Lu, and Thomas Reps.
ConSeq: detecting concurrency bugs through sequential
errors. In ASPLOS, 2011.

[71] Wei Zhang, Chong Sun, and Shan Lu. ConMem:
Detecting severe concurrency bugs through an effect-
oriented approach. In ASPLOS, 2010.

438

	Introduction
	Motivation
	Contributions

	Methodology
	Critical Section Changes
	Observations
	How Many Changes Are There?
	Why Did Changes Happen?
	When Did Changes Happen?

	Discussion

	Over Synchronization Study
	Methodology and Threats to Validity
	Observations
	Discussion

	Concurrency Bug Origins
	Methodology and Threats to Validity
	Observations
	Discussion

	Related Work
	Conclusion
	References

