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ABSTRACT
During software maintenance, program slicing is a useful technique
to assist developers in understanding the impact of their changes.
While different program-slicing techniques have been proposed for
traditional software systems, program slicing for dynamic web ap-
plications is challenging since the client-side code is generated from
the server-side code and data entities are referenced across different
languages and are often embedded in string literals in the server-side
program. To address those challenges, we introduce WebSlice, an
approach to compute program slices across different languages for
web applications. We first identify data-flow dependencies among
data entities for PHP code based on symbolic execution. We also
compute SQL queries and a conditional DOM that represents client-
code variations and construct the data flows for embedded languages:
SQL, HTML, and JavaScript. Next, we connect the data flows across
different languages and across PHP pages. Finally, we compute a
program slice for a given entity based on the established data flows.
Running WebSlice on five real-world, open-source PHP systems,
we found that, out of 40,670 program slices, 10% cross languages,
38% cross files, and 13% cross string fragments, demonstrating the
potential benefit of tool support for cross-language program slicing
in dynamic web applications.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Program analysis
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1. INTRODUCTION
Program slicing [47] is an important and useful technique in several
software engineering applications. For example, it is a useful tool
to assist developers in understanding the impact of their changes
for activities such as programming or bug fixing [5]. In general, a
common way to estimate the impact of a change is to compute a
program slice. A (forward) program slice for a variable C at some
program point consists of all the parts of the program that may be

affected by the value of C [47]. Thus, when a developer modifies
some part of the program, performing slicing from the change point
can reveal the potentially affected parts of the change.

While various program-slicing techniques have been developed
for traditional software systems, program slicing for web applica-
tions is challenging due to their dynamic nature. The server-side
code (often in PHP, ASP, JSP, etc.) dynamically generates HTML
pages based on user input and data retrieved from databases. These
pages often contain JavaScript (JS) code to enable interactive usage.
The data from HTML forms can then be transferred back to the
server side. When the server side receives the data, the generation
process begins again with the new page.

The multilingual nature and the dynamic generation of client code
in dynamic web applications raise challenges for program slicing.
First, web applications are written in multiple languages, includ-
ing server-side languages such as PHP and SQL, and client-side
languages such as HTML and JS. Thus, data flows across different
languages should be taken into account when computing a program
slice. Second, client-side program entities (e.g., HTML input fields
and JS variables) are often embedded in PHP string literals or com-
puted via various string operations. A program-slicing technique
would need to identify those embedded entities and recognize the
data flows among them. Finally, the data flows for the embedded
code might be governed by conditions in the server-side code. For
example, the same PHP program may generate different HTML
forms for different types of users; the data flows among the entities
on these forms are dependent on the conditions in the PHP code.

This paper presents WebSlice, a technique to compute program
slices for dynamic, multilingual web applications. We compute a
program slice based on data-flow relations among entities (this type
of slicing is called thin slicing [46]), including def-use relations
(i.e., whether a reference refers to a definition of a variable) and
information-flow relations [7] (i.e., whether a reference affects the
value of a defined variable after executing a statement). We iden-
tify these relations for PHP code using an algorithm based on our
symbolic-execution engine [36]. Symbolic execution also computes
SQL queries and the output of the PHP program (possibly with
symbolic values). To analyze the embedded code, we then parse
this symbolic output with a variability-aware parser into a condi-
tional DOM (called VarDOM) that represents all variations of the
generated client-side code [34]. We analyze the SQL queries and
the VarDOM to construct the data flows for each language of the
embedded code: SQL, HTML, and JS. Next, we identify the data
flows among data entities of different languages and across different
PHP pages. Based on these established data flows, for a given data
entity C at a point, we derive the program slice for C by including all
the definitions and references that have direct or indirect data-flow
relations with C, possibly across different languages.
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To investigate the necessity of program-slicing tool support in
practical scenarios, we have run WebSlice on five real-world PHP
systems. We found that out of 40,670 program slices, 10% cross
languages, 38% cross files, and 13% cross strings. These results
show that it may not be straightforward for developers to identify a
slice manually without tool support. Our key contributions include:

(1) An algorithm to build data-flow relations among data entities
for server-side PHP and embedded code via symbolic execution,

(2) An approach combining symbolic execution, variability-aware
parsing, and data-flow analysis on embedded code to compute cross-
language program slices for dynamic web applications, and

(3) An empirical study to investigate the complexity of data flows
and program slices in PHP web applications.

2. MOTIVATING EXAMPLE
To show the challenges in computing program slices for PHP web
applications, we use a running example adapted from SchoolMate-

1.5.4, an open-source web application for managing a school’s infor-
mation (Figure 1). The excerpt consists of two pages: ManageAn-

noucements.php (Figure 1a) displays all announcements available
in the database and allows a user to select one of them for edit-
ing. Upon selecting an announcement, the user is redirected to
EditAnnouncements.php (Figure 1b) to update the details of the an-
nouncement. From there, the updated information is sent back to
the first page, which updates the database of announcements with
the new details. In this process, the data of the announcement is
propagated across two stages (server side and client side), different
pages, and multiple languages (PHP, HTML, SQL), as exemplified
by the edges in Figure 1. Identifying such program slices is useful
in a number of applications such as debugging and change impact
analysis [19] (e.g., if developers make a change to encrypt the an-
nouncement ID, they can use the forward slice from the change point
to investigate related parts that may be affected by the encryption).

Although desirable, program slicing for dynamic web applications
faces a number of challenges:

1. Cross-language data flows: First, data entities can have rela-
tions across different languages and different PHP pages. That is,
the value of a data entity computed in one language may affect the
value of another entity in another language. For instance, on edge 4,
the PHP variable $id is evaluated into a string and assigned to the
value of the HTML input ‘update’ on the generated page. In addition,
a data entity appearing in the execution of one page may refer to
the value of another data entity appearing in a previous execution
of another page (via different HTTP requests). For example, the
PHP variable $ POST[‘update’] (line 2 of Figure 1b) refers to the
value of the HTML input ‘update’ generated from a prior execution
of another page.

2. Embedded entities: In a web application, there are different
types of program entities written in multiple languages. In our
program slicing analysis, we are interested in program entities that
contain data such as PHP/JS variables and HTML forms and inputs.
Let us call them (data) entities. Such entities appear in a program
as definitions and references. A definition of an entity is the code
location where the entity is declared or assigned with a value. A
reference to an entity is the code location where the entity is referred
to via the entity’s name.

Since the client-side code is dynamically generated from the
server-side code, data entities can be embedded in PHP strings. That
is, a definition/reference of an entity might be embedded within
PHP string literals. As an example, the HTML input ‘update’ is
concatenated from two PHP strings and a PHP variable (line 10 of
Figure 1a). HTML fragments from string literals can be printed

a) ManageAnnouncements.php

1 <?php
2 if ($ POST['edit'] == 1) {
3 mysql query(”UPDATE bulletins SET message=`$ POST['message']`

WHERE sbulletinid = $ POST['announcementid']”);
4 print (”<div>Database updated.</div>”);
5 } ...

6 print (”<form name='announcements' action='EditAnnouncements.
php' method='POST'>”);

7 $query=mysql query(”SELECT sbulletinid,message FROM bulletins..”)
8 while ($announcement = mysql fetch array($query)) {

9 $id = $announcement[0];

10 print (”<input name='update' value ='” . $id . ”'/>... ”) ;
11 }
12 print (”<input type='submit' value='Edit'>
13 </form>...”);
14 ?>

b) EditAnnouncements.php

1 <?php
2 $id = $ POST['update'];
3 $query = mysql query(”SELECT ∗ FROM bulletins

WHERE sbulletinid = $id[0]”);
4 $announcement = mysql fetch array($query);

5 print (”<form name='editform' action='ManageAnnoucements.php'
method='POST'>

6 <input type='text' name='message' value='$announcement[1]' />
7 <input type='button' value='Edit' onclick='checkAndSubmit()' />
8 <input type='hidden' name='edit' />
9 <input type='hidden' name='announcementid' value='”.$id[0].”' />

10 </form>”);
11 ?>

12 <script> function checkAndSubmit() {
13 if (document.editform.message.value != ' ') {
14 document.editform.edit . value = 1;
15 document.editform.submit();
16 }
17 } </script>

Data entity: Forward-slice edge:
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Figure 1: A program slice in an example PHP web application

directly with echo/print statements, but can also be assigned to PHP
variables, propagated through computations, and printed out later.
Thus, the relations between embedded entities could cross string
literals and require an analysis on the semantics of embedded code.

3. Conditional client code: The data flows for embedded code
might be determined by conditions in the server-side code (i.e.,
some of the dependencies are conditional). For instance, if different
HTML forms are generated for different types of users (e.g., mem-
bers or guests), the data flows and program slices for the entities in
these forms are dependent on the conditions in the PHP code for
those user types (not shown by our example).

3. WEB APPLICATION SLICING
In the literature, a (forward) program slice consists of the parts of a
program that may be affected by the values computed at a slicing cri-
terion, which is a point of interest typically specified by a program
point and a set of variables [47]. Various program slicing methods
have been proposed [47], since different properties of slices might
be required for different applications. In this paper, we chose a class
of program slicing that is based on data dependencies. This class
is called thin slicing [46] as opposed to traditional slicing based on
both data and control dependencies, which typically produces slices
that are too large to be useful for human inspection. A full slice
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Table 1: Extension of data-flow relations for dynamic web applications

Relation Direction Within one language Across languages

Def-use Def. to ref. F1. A definition d and a reference r of a variable v
have a def-use relation if there exists a control flow from
the statement containing d to the statement containing r
without intervening redefinitions of v. For example, edge
3 in Figure 1a indicates a def-use relation between the
definition and a reference of the PHP variable $id.

F3. A reference r and a definition d have a cross-
language def-use relation if r and d are written in dif-
ferent languages, and r refers to the entity defined at d.
For instance, the PHP variable $ POST[‘update’] refers
to the value of an HTML input named ‘update’ (edge 5
in Figure 1).

Info-flow Ref. to def. F2. For a statement S, a reference r of variable v1 has an
information-flow relation with a definition d of variable
v2 if the value of v1 on entry to S may affect the value of
v2 on exit from S. As an example, in the statement $x =

$y + $z, the references $y and $z have information-flow
relations with the definition $x.

F4. A reference r in language L1 and a definition d in a
different language L2 have a cross-language information-
flow relation if r generates r∗, and r∗ forms the code
that is used in the computation for the value of d. For
example, in the PHP code echo “<input name=‘input1’

value =‘$x’>”, the value of the PHP variable $x is assigned
to the value of the HTML input ‘input1’.

Data flows
for PHP/SQL

Data flows 
for HTML

Data flows 
for JS

PHP page Parsing
Symbolic Execution

for Data-Flow Analysis
Connecting
Data Flows

Data flows
for HTML/JS

Analyzing 
HTML

Output with 
symbolic values

Computing 
Slice

Slicing criterion C

Program slice
for C

Sym. Exec.
on JS

Connecting
Data Flows

Cross-language
cross-page data flows

(Fig. 4)

Step 4

Conditional DOM
(VarDOM, Fig. 3)

Step 3

Step 2Step 1

Figure 2: Approach overview

can always be easily expanded from a thin slice [46]; we discuss
this expansion at the end of Section 5. Specifically, we define a
(forward, thin) program slice with respect to a slicing criterion C
(specified by the code location of a data entity) as a set of definitions
and references of data entities in the web application that have direct
or indirect data-flow relations from the value computed at C. For
instance, the program slice for the (SQL) data entity sbulletinid on
line 7 of Figure 1a includes all the data entities along the edges 1–10.

Types of data-flow relations: We propose a program-slicing tech-
nique for dynamic web applications that is based on the relations
between the definitions and references of data entities, namely
definition-use (def-use) relations and information-flow (info-flow)
relations [7], which are traditionally used for analyzing programs
written in a single language. In the context of dynamic web applica-
tions, we extend these relations also for entities that are written in
different languages (see Table 1).

4. APPROACH OVERVIEW
We propose WebSlice, an approach to compute program slices in a
PHP web application. WebSlice proceeds in four main steps: (1)
performing symbolic execution on the PHP code to approximate its
output as well as constructing the data flows for server-side code
in PHP and SQL, (2) parsing and analyzing the output to construct
the data flows for client-side code in HTML and JS, (3) connecting
the data flows across different languages, and (4) computing a slice
given a slicing criterion. Figure 2 gives an overview of these steps.

Step 1—Symbolic execution for data-flow analysis: The goal is
two-fold: (1) to approximate the output of a PHP program so that
the data flows within embedded client code can be analyzed in later
steps and (2) to construct the data flows within the server-side code.
For approximating the output, we reuse our symbolic-execution
engine [36]. The result of symbolic execution is the generated client-
side code which possibly contains symbolic values and values that
are produced under specific path constraints. For illustration, the
output of the code in Figure 1a is shown below, with Greek letters
for symbolic values and #if directives (similar to those in C prepro-
cessing) representing texts that are output under some constraints.

1 #if α // $ POST['edit'] == 1
2 <div>Database updated.</div>
3 #endif
4 ... <form name='announcements' ... >
5 #if β // mysql fetch array ($query)
6 <input ... name='update[]' value='θ '> //θ represents $id
7 #endif
8 <input type='submit' value='Edit'></form>...

Symbolic execution explores different paths in a PHP program
and computes/propagates the values of definitions and references
of data entities. Conveniently, this process allows us to track the
data flows within the server-side code. Since we need our symbolic
execution engine anyway to approximate the output, we reuse and
extend it with new mechanisms to record the data flows within PHP
as well as SQL code, which is embedded in PHP strings and is also
resolved by symbolic execution. In addition, an advantage of using
symbolic execution is that we can eliminate some infeasible flows
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<html>

<div>

<body>

<form>

<input>

<input>

β

α

Database updated.

name: "update"

type: "submit"

L10, Fig. 1a

L4, Fig. 1a

<Element> HTML element

HTML text Cond

HTML attributeName: Value

Condition node Attribute

DOM structure

Text

α: $_POST[ edit ] == 1

β: mysql_fetch_array($query)

θ: $id

value: θtype: "checkbox"

value: "Edit"

L12, Fig. 1a

Figure 3: The VarDOM representation for the output of the
program in Figure 1a

by checking the satisfiability of the path constraints under which the
data entities appear.

1 if ($ GET['user'] == 'admin')
2 $message = 'Welcome admin!';
3 else
4 $message = 'Access denied.' ;
5 if ($ GET['user'] == 'admin')
6 echo '<div class=”msg−admin”>' . $message . '</div>';

X

For example, in the code above, the PHP variable definition $mes-

sage on line 4 does not have a def-use relation with the reference
on line 6 since they are under different path constraints. Also, sym-
bolic execution allows us to resolve dynamically included PHP files,
thereby detecting data flows that would otherwise be missed. For
scalability, we have made several approximations to our symbolic ex-
ecutor such as running at most two iterations of a loop and skipping
recursive function calls; we discuss them in Section 5.

Step 2—Embedded code analysis: To detect data flows within
embedded client code, we first parse the output produced from the
previous step with our HTML and JS variability-aware parsers [34].
The parsers were developed using the TypeChef variability-aware
parser framework [25], which enables parsing programs with con-
ditional parts (e.g., an HTML opening tag may have two different
closing tags depending on a constraint). Note that variability-aware
parsing is sound and complete w.r.t. brute-force parsing of all pos-
sible variants, but much faster [25, 16]. The parsing result is a
VarDOM representation [34] of the embedded client code, which
represents the hierarchical DOM structure of a web page, as shown
in Figure 3 for the example in Figure 1a. Unlike an HTML DOM, a
VarDOM contains condition nodes to indicate that certain VarDOM
elements can be conditional (i.e., some parts of the web page are
produced under some path constraints). For example, as seen in
Figure 3, the HTML input field ‘update’ is displayed under con-
straint β (mysql fetch array($query)), and its value attribute has a
symbolic value θ ($id). In this way, the VarDOM represents all
possible generated client pages (with symbolic values) in a single
tree structure. A VarDOM also contains conditional AST(s) for JS
code with conditional and symbolic parts (not shown in Figure 3).

Using the VarDOM representation of the client code, we are able
to analyze the embedded code written in HTML/JS and build their
respective data flows. Since HTML is a declarative language, we
collect the definitions of HTML entities. For JS code, we compute
its data flows using a light-weight symbolic-execution engine with
an algorithm to build data flows similar to that for PHP.

HTML

L3: $_POST[ annoucementid ]

L9: $announcement[0]

1 // x

L10: Inp.  update 

L2: $_POST[ update ]

L2: $id
6   

L9: $id[0]

ManageAnnouncements.php (Fig. 1a) EditAnnouncements.php (Fig. 1b)

L9: Input  announcementid 

L13: document.editform.message.value 

L14: document.editform.edit.value 

L9: $id
     2

4
//L10: $id

     3

//

L8: Inp.  edit 

10 //

L2: $_POST[ edit ]

//

//

x // 5 

Def-use Info-flowDefinition/reference

L6: Inp.  message 

// //Cross-language def-use Cross-language info-flow

9 // x

L3: $id[0]

PHP

SQL

JS

PHP

7
8

L7: sbulletinid

HTML

Figure 4: Data-flow graph (excerpt) for the example of Figure 1

Step 3—Connecting data flows: As seen in Figure 1, data flows
can exist among data entities of different languages and across dif-
ferent pages. Thus, we connect the data flows among those entities
based on cross-language def-use and information-flow relations (F3
and F4 in Table 1). For instance, the input fields in the HTML form
<form action = ‘EditAnnouncements.php’ ... > have cross-language
def-use relations with the corresponding PHP $ GET/$ POST vari-
ables on the page ‘EditAnnouncements.php’ since the inputs field are
submitted to that page. Through this step, we obtain the data flows
for the entire web application. Figure 4 shows the data-flow graph
for our example, in which the nodes represent the definitions/refer-
ences of entities and the edges represent (direct) data-flow relations.

Step 4—Computing slice: Once the data-flow graph is produced,
we can use it to quickly compute any program slice. Given a def-
inition or a reference C, the program slice for C consists of the
definitions and references that are reachable from C in the graph.

5. DATA-FLOW ANALYSIS
This section presents our algorithm to construct the data flows and
to compute the output and SQL queries of PHP code. The algorithm
is built on top of our symbolic-execution engine [36]. We first
introduce the notation that will be used to describe our technique.

5.1 Notation
V is the set of all values (including symbolic ones). C is the set of all
control codes that represents the returned values of statements (e.g.,
‘RETURN’ or ‘BREAK’). S, E, and N are the sets of all statements,
expressions, and identifiers, respectively. Π is the set of all path
constraints; each constraint is a propositional formula. L is the set
of all definitions and references. We use small letters for elements
of a set (e.g., s ∈ S is a statement).

Our symbolic-execution engine processes a PHP program and
considers all unknown values, such as user input and data from a
database, as symbolic values. When reaching a control predicate,
it explores feasible paths and keeps track of the path constraint
for each path. Specifically, we maintain a program state (V,D,π)
where the value store V : N 7→ V is a (total) function mapping a
variable/function name to its value (uninitialized variables have a ⊥
value), the path constraint π encodes the branch decisions taken
to reach the current state. In addition to V and π , which are typical
for symbolic executors, to detect data flows, we track a definition
store D : N 7→ P(L×Π) that maps each variable name to its set
of definitions together with a path constraint under which each
definition appears.
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Initialization:

V(x) =⊥ D(x) = /0 π = TRUE

1. Variable Access:

r = addEntity($n)

addRelation(d,r), ∀(d,πd) ∈D(n), isSat(πd ∧π)

〈$n,V, D ,π〉 → 〈V(n),V, D ,π〉

2. Assignment:

〈e,V, D ,π〉 → 〈v,V′, D′ ,π〉 d = addEntity($n)

addRelation(r,d), ∀r ∈ vars(e) D′′ =D′[n 7→ {(d,π)}]

〈$n = e,V, D ,π〉 → 〈v,V′[n 7→ v], D′′ ,π〉

3. If Statement:

〈e,V, D ,π〉 → 〈v,V′, D′ ,π〉
π ′ = whenEqual(v,TRUE) isSat(π ∧π ′) isSat(π ∧¬π ′)

〈〈s1,V
′, D′ ,π ∧π ′〉〉 → 〈〈c1,V1, D1 ,π ∧π ′〉〉

〈〈s2,V
′, D′ ,π ∧¬π ′〉〉 → 〈〈c2,V2, D2 ,π ∧¬π ′〉〉

V3(x) = ite(π ′,V1(x),V2(x))
D3(x) = {(d,πd ∧π ′)|(d,πd) ∈D1(x)}⋃

{(d,πd ∧¬π ′)|(d,πd) ∈D2(x)}

〈〈if (e) s1 else s2,V, D ,π〉〉 → 〈〈ite(π ′,c1,c2),V3, D3 ,π〉〉

〈e,V, D ,π〉 → 〈v,V′, D′ ,π〉 π ′ = whenEqual(v,TRUE)
¬isSat(π ∧¬π ′) 〈〈s1,V

′, D′ ,π〉〉 → 〈〈c1,V1, D1 ,π〉〉

〈〈if (e) s1 else s2,V, D ,π〉〉 → 〈〈c1,V1, D1 ,π〉〉

4. Function Declaration:
λ is a pointer to function n($n1, ...,$nm){s}
〈〈function n($n1, ...,$nm){s},V, D ,π〉〉

→ 〈〈OK,V[n 7→ λ ], D ,π〉〉

5. Function Invocation:
λ = V0(n) λ is a pointer to function n($n1, ...,$nm){s}
〈ei,Vi−1, Di−1 ,π〉 → 〈vi,Vi, Di ,π〉, ∀i ∈ [1..m]

V f (x) =
{

vi if x = ni
⊥ otherwise

di = addEntity($ni), ∀i ∈ [1..m]

D f (x) =
{

(di,π) if x = ni
/0 otherwise

addRelation(r,di), ∀r ∈ vars(ei) ∀i ∈ [1..m]

〈〈s,V f , D f ,π〉〉 → 〈〈c,V f ′ , D f ′ ,π〉〉
RETre f = addEntity(n)

addRelation(RETde f ,RETre f ),

∀(RETde f ,πd) ∈D f ′(‘RET’)

〈n(e1, ...,em),V0, D0 ,π〉 → 〈V f ′(‘RET’),Vm, Dm ,π〉

6. Return Statement:

〈e,V, D ,π〉 → 〈v,V′, D′ ,π〉 RETde f = addEntity(e)

addRelation(r,RETde f ), ∀r ∈ vars(e)

D′′ =D′[‘RET’ 7→ {(RETde f ,π)}]

〈〈return e,V, D ,π〉〉 → 〈〈RETURN,V′[‘RET’ 7→ v], D′′ ,π〉〉

7. Block of Statements:
〈〈s1,V, D ,π〉〉 → 〈〈c1,V1, D1 ,π〉〉 π ′ = whenEqual(c1,OK)

isSat(π ∧π ′) 〈〈s2,V1, D1 ,π ∧π ′〉〉 → 〈〈c2,V2, D2 ,π ∧π ′〉〉
V3(x) = ite(π ′,V2(x),V1(x))

D3(x) = {(d,πd ∧π ′)|(d,πd) ∈D2(x)}⋃
{(d,πd ∧¬π ′)|(d,πd) ∈D1(x)}

〈〈s1s2,V, D ,π〉〉 → 〈〈ite(π ′,c2,c1),V3, D3 ,π〉〉

8. While Statement:
〈〈if (e) {s if (e) s},V, D ,π〉〉 → 〈〈c,V′, D′ ,π〉〉
〈〈while (e) s,V, D ,π〉〉 → 〈〈c,V′, D′ ,π〉〉

9. Include Expression:
〈e,V, D ,π〉 → 〈v,V1, D1 ,π〉 〈〈s,V1, D1 ,π〉〉 → 〈〈c,V2, D2 ,π〉〉

s =
{

parseFile(v) if v is a concrete value
empty statement otherwise

〈〈include e,V, D ,π〉〉 → 〈〈V2(‘RET’),V2, D2 ,π〉〉

10. Infix Expression:
〈e1,V, D ,π〉 → 〈v1,V1, D1 ,π〉 〈e2,V1, D1 ,π〉 → 〈v2,V2, D2 ,π〉

v =
{

concat(v1,v2) if op is concatenation
sym(e1 op e2) otherwise

〈e1 op e2,V, D ,π〉 → 〈v,V2, D2 ,π〉

11. Echo Statement:
〈e,V, D ,π〉 → 〈v,V′, D′ ,π〉 addOutput(v,π)

〈〈echo e,V, D ,π〉〉 → 〈〈OK,V′, D′ ,π〉〉
12. mysql_query:

〈e,V,D,π〉 → 〈query,V′,D′,π〉

〈msql query(e),V,D,π〉 → 〈parseAndFindSqlDe f s(query),V′,D′,π〉

13. mysql_fetch_array:

〈e,V,D,π〉 → 〈v,V′,D′,π〉

〈msql fetch array(e),V,D,π〉 → 〈v,V′,D′,π〉

14. Array Access of SQL Data:
〈e1,V, D ,π〉 → 〈v1,V1, D1 ,π〉 〈e2,V1, D1 ,π〉 → 〈v2,V2, D2 ,π〉

v1 is a set of SQL definitions d ∈ v1 d has name/index v2

r = addEntity(e1[e2]) addRelation(d,r)

〈e1[e2],V, D ,π〉 → 〈sym(e1[e2]),V2, D2 ,π〉

Notation and auxiliary functions:
- 7→ denotes total functions.
- g = f [x 7→ y] denotes a function same as f except that g(x) = y.
- sym(e) returns a fresh symbolic value mapped to an expression e.
- ite(π,v1,v2) returns an ite value of v1 and v2 depending on π .
- concat(v1,v2) returns a concat value of v1 and v2.
- vars(e) returns a set of references appearing in an expression e
(except for arguments of user-defined function calls).
- isSat(π) returns TRUE if π is satisfiable and FALSE otherwise.
- whenEqual(v,v′) returns the constraint under which v equals v′,
e.g. whenEqual(ite(α,TRUE,FALSE),TRUE) returns α ,
whenEqual(ite(α > 1,TRUE,FALSE),TRUE) returns (fresh) β .
- parseFile(v) parses a PHP file v and returns the parsed program.
- parseAndFindSqlDe f s(query) parses an SQL query and returns
a set of SQL definitions (SQL table columns) in the query.
- addOutput(v,π) records value v under constraint π in the output.
- addEntity(e) creates and returns a new definition/reference from e.
- addRelation(l1, l2) records a def-use/info-flow between l1 and l2.

Figure 5: Excerpt of PHP symbolic execution’s evaluation rules (extensions to PhpSync [36] are highlighted in gray)
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$message =   ;
  ( message ) = {(Line 1, TRUE)}

  ( message ) = {(Line 1, TRUE)}

  ( message ) = {(Line 3, μ)}

  ( message ) = {(Line 5, ¬μ)}

  ( message ) = {(Line 3, μ), (Line 5,¬μ)}

  ( message ) = {(Line 1, TRUE)}

μ: $_GET[ user ] ==  admin 

if ($_GET[ user ] ==  admin ) {

     $message =  Welcome admin! ;

} else {

     $message =  Access denied. ;

}

if ($_GET[ user ] ==  admin )

1

2

3

4

5

6

7

     echo   $message  ;8
  ( message ) = {(Line 3, μ), (Line 5,¬μ)}

X

Figure 6: Detecting data flows at conditional statements

Our symbolic executor evaluates statements in a PHP page and
repeats this process for other pages to build the data flows of the en-
tire web application. Figure 5 shows the key evaluation rules. For a
statement s, a rule 〈〈s,V,D,π〉〉→ 〈〈c,V′,D′,π ′〉〉 denotes that the ex-
ecution of s changes the program state from (V,D,π) to (V′,D′,π ′).
The returned value c is a control code: It returns ‘OK’ if there was
no control-flow breaking instruction in s (i.e., the next sequential
statement can be executed) and other control codes (e.g., ‘RETURN’)
otherwise. For an expression e, a rule 〈e,V,D,π〉 → 〈v,V′,D′,π ′〉
denotes that the evaluation of e results in a new program state and
returns a (non-control) value v.

In Figure 5, we formalize the rules for our previous execution en-
gine [36] and highlight the parts that we extend to identify data-flow
relations. addEntity and addRelation are used to create the nodes
and edges of the data-flow graph (the graph is a global data structure
and is not shown in the program state). We use addOutput to record
a string or symbolic value in the output (under path constraint).
Other notation and auxiliary functions are listed in Figure 5.

5.2 Intraprocedural Data Flows (Rules 1–3)
During symbolic execution, we detect data flows by identifying
def-use and information-flow relations among data entities (F1 and
F2 in Table 1). For def-use relations, since a reference could have
multiple definitions (e.g., a PHP variable can be defined in different
branches and then later accessed after the branches), we need to
keep track of the set of definitions of each reference. Therefore, we
maintain these sets via the definition store D. When a reference
r with name n is found under a path constraint πr, we look up its
definitions in the set D(n) and match πr with the constraints of those
definitions to retain only feasible relations. Specifically, a definition
d with constraint πd in D(n) has a feasible def-use relation with r
if πd ∧πr is satisfiable (i.e., there exists at least one execution path
where both d and r appear), as shown in rule 1 of Figure 5.

To identify information-flow relations, at a variable assignment,
we record the information flow from the variables on the right-
hand side to the one defined on the left-hand side (rule 2). Note
that if the right-hand side of an assignment contains a user-defined
function call, the arguments in the function call do not have direct
information-flow relations with the defined variable; we detect their
relations through interprocedural data flows instead (Section 5.3).
We also update the definition store D with the new definition of the
variable. If a variable is redefined through sequential statements,
we overwrite its previous definitions with the new definition since
values from the previous definitions can no longer be accessed. If a
variable is defined/redefined in branches of a conditional statement,
we keep the values/definitions of the variable independent in the
branches but combine them after executing all branches. Let us
describe the details next.

function createDiv ( $content, $inline) { 

     if ($inline)

          return '<span>' . $content . '</span>';

     else

          return '<div>' . $content . '</div>';

}

$welcome = 'Welcome to my page.';

$div1 = createDiv ( $welcome, false);

$login = 'Please log in.';

$div2 = createDiv($login, true);

$html = $div1 . $div2;

L5: RETdef

L8: RETref

Def-use

Info-flow

1

2

3

4

5

6

7

8

9

10

11

L8: $div1

L11: $div1 L11: $div2

L10: $div2

L10: RETref

L5: $content

L1: $content

L8: $welcome

L7: $welcome L9: $login

L10: $login

L3: RETdef

L3: $content

L1: $content

L11: $html

Figure 7: Interprocedural flows with highlighted RET nodes

Handling conditional statements (rule 3): If the path constraints
of both branches of an if statement are satisfiable, we explore both
branches. The function whenEqual(v,TRUE) is used to compute the
constraint where a value v (evaluated from the if condition) evaluates
to TRUE. For example, the conditions on lines 2 and 7 of Figure 6
are both resolved into α == ‘admin’ where α is the symbolic value
for $ GET[’user’]; thus, we evaluate the both conditions into the
same (fresh) symbolic value µ (to simplify constraint checking).
Modifications to the definition store D (as well as the value store
V) take effect in the corresponding branch only. After executing
the branches, we update the definition store (and the value store)
with the combined definitions (and values) from the two branches
with their corresponding constraints. To represent that a variable
may have multiple values depending on a path constraint, we use
an ite(π,v1,v2) value (short for if-then-else) to denote a selection
between value v1 if the path constraint π evaluates to TRUE and v2
otherwise (we also use ite for control codes). Note that if the path
constraint of one of the branches is unsatisfiable, we execute the
other (satisfiable) branch only. (In rule 3, we show one such case; the
other case is symmetric.) As an illustration, in Figure 6, the variable
$message after line 6 has two definitions from both branches. When
the variable is accessed under constraint µ on line 8, we compare its
constraint with the constraints of the definitions in D to eliminate
an infeasible relation with the definition on line 5.

5.3 Interprocedural Data Flows (Rules 4–6)
Similar to concrete execution, symbolic execution evaluates a func-
tion call in three steps (if the source code is available; otherwise, it
returns a symbolic value): First, it sets up a new context/call stack
for the function and passes the actual parameters to the formal pa-
rameters of the function. Second, it executes the function body and
records all returned values (here represented by a special variable
named ‘RET’) encountered when exploring different paths in the
function. Third, the returned value(s) are propagated to the call site
of the function. Our extended algorithm instruments this process
and tracks the data flows: We create a definition for each formal
parameter and record the data flows from the arguments of the func-
tion call to the parameter definitions in the function declaration. To
track the data flow from the function to its call site, we create two
special RET nodes: a RETde f node representing the return value
computed inside the function and a RETre f node representing the
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propagated return value at the call site. Note that if a function is
invoked multiple times, we create separate entities, RET nodes,
and data flows corresponding to each function invocation (for each
invocation, the execution path in the function body could be differ-
ent depending on the specific input arguments). Since we create
different contexts at function calls, the approach does not suffer
from the calling-context problem [47], caused by analyzing different
function calls in the same context, which would result in infeasible
interprocedural data flows. To illustrate, Figure 7 (right-hand side)
shows the interprocedual data flows for the PHP variable $welcome

(line 7) and $login (line 9). In the code, we show the data flow for
$welcome only; the data flow for $login is similar. Note that one code
location may correspond to several nodes in different contexts (e.g.,
the two nodes labeled L1: $content) since the createDiv function is
executed twice. The detailed rules are shown in rules 4–6.

5.4 Handling Special Statements (Rules 7–9)
Handling a block of statements (rule 7): In a block of state-

ments, the returned control code after executing a statement can be
‘OK’, indicating that the next statement can be executed, or other
control codes otherwise (e.g., ‘RETURN’ for a return statement).
Note that the returned control code can also be an ite code (the
returned code of an if statement). Therefore, after each statement,
we compute the path constraint under which the next statements
can be executed (i.e., the constraint with which the returned control
code equals ‘OK’) and execute them under that restricted constraint.
After executing the block, we update the definition store and the
value store similarly to the case of an if statement. If the computed
constraint is not satisfiable, we simply stop the execution for that
block (not shown). In rule 7, we show the algorithm for a block of
two statements; the rule for a block with more statements can be
generalized from this rule.

Handling loops (rule 8): For a loop, we aim to detect data flows
across different iterations. For instance, in the code snippet below,
there is a def-use relation from the variable $y on line 3 to the
variable $y on line 2 if the loop can be executed multiple times.

1 while ($row = mysql fetch array( $result )) {
2 $x = $y + 1;
3 $y = $x ∗ 2;
4 }

Therefore, to detect such data flows, we execute the body of a loop
at most twice by modeling the loop as two nested if statements and
applying the rule for if. If the loop contains control-flow breaking
instructions (such as break, continue, or exit), we either abort the
loop (for break, return, and exit) or continue the next iteration (for
continue) in their respective constraints (not shown).

Handling dynamically included files (rule 9): A PHP program
can dynamically include other files. During symbolic execution,
we execute these files if the file names can be resolved to concrete
values. Since include is an expression in PHP, we treat the returned
value of include similarly to the returned value of a function call.

Handling aliasing and objects (rule not shown): When a PHP
object is created, we maintain two maps from the object’s fields to
their values and definitions (similar to the stores V and D). There-
fore, even if an object field is written and read via different variables
(through aliasing), our algorithm can still recognize a def-use rela-
tion between the definition and reference, as illustrated below. (The
same mechanism is used to handle assignment/call by reference.)

1 $x = new Foo(); $x−>a = 1; $y = $x;
2 echo $y−>a;

5.5 Approximating the Output (Rules 10–11)
The output of a PHP program is usually a concatenation of multi-
ple string values and is printed out through echo/print statements
or inline HTML code. To keep track of concatenations, we use a
concat(v1,v2) value representing a concatenation of two (possibly
symbolic) values v1 and v2 (rule 10). At echo/print statements or
inline HTML code, we simply record the computed value v for the
output in the corresponding path constraint (rule 11). The use of
concat values (together with ite values) allows us to track the sym-
bolic output with conditional fragments precisely and compactly,
making the subsequent variability-aware parsing on the output effi-
cient while preserving path constraints.

5.6 Data Flows between PHP and SQL (Rules
12–14)

In a web application, to retrieve data from a database, one can
construct an SQL query and invoke PHP functions for database
queries such as mysql query. The returned data is stored in a record
set with rows and columns. To iterate through each row in the
record set, a PHP function such as mysql fetch array can be used.
To access each column in a row, one can access the corresponding
column name/index of the array containing the row. Since such an
array access in PHP retrieves data originating from a database, we
consider it as a data flow (def-use relation) from SQL to PHP. In that
def-use relation, we consider the SQL table column name appearing
in the SQL query as an SQL definition and the corresponding array
access as a PHP reference to an SQL entity. For instance, on line 7
of Figure 1a, sbulletinid is an SQL table column definition, having a
def-use relation with the PHP array access on line 9.

To detect such data flows, during symbolic execution, we input
the value of an SQL SELECT query, which could also contain sym-
bolic/conditional characters, into our variability-aware SQL parser
(similar to the HTML parser in Section 6) to recognize table col-
umn names as SQL definitions (function parseAndFindSqlDe f s
in rule 12 of Figure 5). This set of SQL definitions is propagated
through mysql fetch array function calls (rule 13). When there is an
array access to such SQL data, we detect a relation between them
(rule 14). In this work, we detect data flows from SQL to PHP; we
plan to apply similar ideas for data flows within SQL and from PHP
to SQL (via SQL INSERT/UPDATE statements).

5.7 Traditional vs. Thin Slicing
We compute a thin slice by including all reachable nodes from

a given node in the data-flow graph. However, we could easily
record control dependencies for traditional slicing as follows. At
an if statement (rule 3), we could additionally record the control
dependencies between references on the if condition and the defini-
tions within its branches and extend our graph to have both control
and data dependencies on entities (similar to a PDG on statements).
We can then reduce program slicing to a reachability problem on
this graph.

Limitations: Currently, our symbolic-execution engine handles
the common but not all PHP constructs. For instance, we implement
infix expressions with the concatenation operator only, since we are
interested in the string output of a program. For other operators,
we create fresh symbolic values. For instance, we track α > 1 as a
new symbolic value β ; therefore, we may explore some infeasible
paths. The executor runs at most two iterations of each loop and
skips recursive function calls. We discussed these simplifications
and why they are acceptable for approximating the program’s output
elsewhere [36]. Regarding data-flow detection, if an array access
cannot be resolved, we track data flow from the array variable
instead (e.g., edges 7 and 8 in Figure 4).

375



SQL

PHP

CLIENT SIDESERVER SIDE

Cross-lang.
def-use

Cross-lang.
info-flow

HTML

JavaScript

Cross-lang.
def-use

Cross-lang.
info-flow

Cross-lang.
def-use

Cross-lang.
info-flow

Figure 8: Data-flow relations across different languages

6. EMBEDDED CODE ANALYSIS
We parse the symbolic output of a PHP program with our HTML
and JS variability-aware parsers [34] into a VarDOM representation
of the client-side code (Figure 3). We then analyze the VarDOM to
collect data entities and construct data flows for the embedded code.

Analyzing HTML: Since HTML is a declarative language, we
detect the definitions of HTML entities by traversing the VarDOM
tree and identifying the following types:

(1) HTML definitions by name: These entities are identified by the
‘name’ attribute of an HTML element (e.g., <form name=‘form1 ’>).

(2) HTML definitions by ID: These entities are identified by the
‘id’ attribute of an HTML element (e.g., <div id=‘id1 ’>).

(3) HTML definitions by URL parameters: These entities are
detected in HTML query strings (e.g., the data entity lang in <a href

= ‘index.php?lang=en’>).

Building data flows for JS: To construct data flows for JS, we
first extract JS code from JS locations on the VarDOM. These loca-
tions include HTML <script> tags and HTML event handlers (e.g.,
onload, onclick). The VarDOM already contains the parsed JS ASTs
for these code fragments [34], each of which serves as an entry point.
We then use a light-weight symbolic-execution engine for JS that is
similar to the one for PHP (by adapting the rules in Figure 5 for JS),
run it for every entry point and detect data flows. Currently, we do
not handle client code that is dynamically generated from JS code
such as document.write or eval, and data flows involving AJAX.

7. CROSS-LANGUAGE DATA FLOWS
Data flows can exist among entities of different languages (F3 and
F4 in Table 1). In Figure 8, we show all possible def-use and informa-
tion-flow relations across languages. We detect those cross-language
flows as follows.

F3—Cross-language def-use relations: Table 2 shows the types
of cross-language def-use relations in a web application.

(1) Between HTML/JS and PHP (rows 1–3): A PHP program
can access data sent from a client page via PHP $ POST/$ GET or
$ REQUEST arrays (corresponding to HTTP POST/GET protocols
or both). These arrays hold key/value pairs, where the keys are
the names of the HTML input fields. Therefore, we identify those
array accesses as PHP references to client-side entities. Note that
the submitted destination of the client-side entities (specified by the
‘action’ attribute of an HTML form or the address part in a URL)
must match the PHP page containing the PHP reference.

(2) Between SQL and PHP (row 4): As described in Section 5.6,
we detect these relations during our symbolic execution on PHP.

(3) Between HTML and JS (rows 5–8): In the client code, JS
can operate on HTML elements via the HTML DOM. For example,
the JS expression document.form1.input1.value retrieves the value

Table 2: Types of cross-language def-use relations

Ref. Definition Reference example Definition example

1 PHP HTML input $_GET[‘input1’] <input name=‘input1’ value=‘0’...>
2 PHP HTML URL $_GET[‘input1’] <a href=‘index.php?input1=0’>
3 PHP JS $_GET[‘input1’] document.form1.input1.value=‘0’
4 PHP SQL $row[‘column1’] SELECT column1 FROM table1

JS HTML by name:
5 JS - form document.form1 <form name=‘form1’...>
6 JS - input doc...form1.input1 <input name=‘input1’...>
7 JS - input value doc...input1.value <input name=‘input1’ value=‘0’>
8 JS HTML by ID document. <div id=‘id1’>

getEle...ById(‘id1’)

of an HTML input field named ‘input1’ in a form named ‘form1’.
We identify these JS expressions as JS references to HTML entities.
However, if they appear on the left-hand side of an assignment, we
consider them as JS definitions of HTML entities instead since they
redefine the values of the corresponding HTML entities. Similar
to detecting data flows in PHP, we also check the path constraints
under which these client-side entities are generated to eliminate
infeasible data flows among them.

F4—Cross-language information-flow relation: During sym-
bolic execution on PHP or JS, we track any generated string value
(or symbolic value) to the variable or expression that generates it.
If the value is used in an information-flow relation in the generated
code, we recognize it as a cross-language information-flow relation
from the generating language. For example, the value of the HTML
input field ‘update’ in Section 2 is a symbolic value θ (Figure 3).
During symbolic execution, we track θ to the PHP variable $id.
Thus, we detect a cross-language information-flow relation between
the variable $id and the HTML input’s value (see edge 4 in Figure 1).

We apply the above process for a (predefined) set of page entries
(PHP files that can be requested by a web browser) to build the data
flows within individual pages (the data flows for a page can involve
multiple files). To detect data flows across page entries, we detect
types 1–3 in Table 1. (The other types in Table 1 are applicable for
within-page relations only.) Data flows via cookies and sessions
are currently not supported. Note that the resulting data-flow graph
may contain identical clusters of nodes where there are no edges
across those clusters and the clusters all correspond to the same code
locations in the server-side program (since the same code might be
executed multiple times); in such cases, we retain only one cluster
and discard the others.

Calling-context problem with inter-page data flows: When a
client page submits data to the server side, the corresponding server-
side program is invoked to handle the request. Conceptually, this
process is similar to invoking a function call from the client page
in which the arguments to the function call are the client’s data.
Although we could handle the invocation of pages similarly to
function calls, in our current implementation, we do not execute a
page entry multiple times. Thus, the calling-context problem may
occur for inter-page data flows, resulting in some infeasible data
flows. However, our test results on a real-world system indicated
that this problem does not cause significant imprecision.

8. IMPLEMENTATION
We implemented our WebSlice approach as an Eclipse plugin. Web-
Slice extends our previous symbolic-execution engine [36] and
variability-aware parsers [34]. We use TypeChef’s library for propo-
sitional formulas [25] with a JavaBDD backend [2] for tracking path
constraints and checking satisfiability.
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Table 4: Complexity of data-flow graph
PHP Non-PHP entities Data-flow edges

System entities Total SQL HTML JS Embed. N-Echo Total xLang xFile xFunc xString xPage
AB 10,591 266 8 220 38 46 10 13,406 416 2,538 3,043 474 356

3% 83% 14% 17% 4% 3% 19% 23% 4% 3%
SM 4,935 2,402 404 729 1,269 2,402 452 6,945 2,426 1,565 164 2,603 1,292

17% 30% 53% 100% 19% 35% 23% 2% 37% 19%
TC 15,291 2,145 214 1,717 214 2,145 214 16,490 655 3,493 46 937 332

10% 80% 10% 100% 10% 4% 21% 0% 6% 2%
UPB 32,309 1,308 0* 1,160 148 1,191 447 36,186 4,983 6,986 3,121 5,470 4,886

0% 89% 11% 91% 34% 14% 19% 9% 15% 14%
WC 3,805 497 48 377 72 86 48 3,934 887 1,463 1,056 992 829

10% 76% 14% 17% 10% 23% 37% 27% 25% 21%

Total 66,931 6,618 674 4,203 1,741 5,870 1,171 76,961 9,367 16,045 7,430 10,476 7,695
10% 64% 26% 89% 18% 12% 21% 10% 14% 10%

N-Echo: Embedded entities that are not on echo/print statements; xLang, xFile, xFunc, xString, xPage: Edges that cross languages, files, functions, strings, and page entries

*There are 0 SQL entities in UPB since this system stores data in local files instead of an SQL database.

Table 3: Subject systems
Subject System Size Exec.

Name Version Files LOC Entries Stmts Time
AddressBook (AB) 6.2.12 100 18,874 17 25,713 10.0s
SchoolMate (SM) 1.5.4 63 8,183 1 2,942 5.2s
TimeClock (TC) 1.04 69 23,403 32 26,388 13.3s
UPB 2.2.7 395 104,640 51 77,959 37.6s
WebChess (WC) 1.0.0 39 8,589 9 6,874 4.6s

To test the resulting data-flow graphs (and program slices) com-
puted by WebSlice, we created 100 test cases for SchoolMate-1.5.4,
a real-world web application that we used in our study in Section 9,
covering all types of data flows. For data flows within PHP, we
instrumented Quercus [3], an existing PHP interpreter, and dynami-
cally tracked actual data-flow relations as a basis for our test oracles.
For cross-language and cross-stage data flows and those within JS,
we created the test cases manually. There are 20 test cases that
include inter-page data flows; 2 of them failed because WebSlice
included an infeasible edge (see last paragraph in Section 7). All test
cases for other types of data-flow edges passed. More information
about WebSlice can be viewed on our website [1].

9. EMPIRICAL STUDY
Program slicing tools are intended to help developers in various soft-
ware maintenance tasks such as identifying the impact of a change.
To evaluate a slicing approach, one could design a user study to show
that slices are very difficult to manually identify or that developers
could significantly benefit from a tool in complicated (favorable)
cases. However, slicing in general has been shown to be useful in a
number of applications [47, 51]. The more interesting question is
how often such complicated cases occur. Therefore, we designed
a study to quantify characteristics of data-flow dependencies and
slices in existing web applications. Specifically, we are interested
in how many entities are embedded within PHP strings, how many
data-flow edges are cross-language or cross-string, how many slices
cross languages and even web pages or require investigating embed-
ded code fragments—all properties for which no current slicing tool
is available. Although such complexity measures are only proxies
for actual developer tasks, we argue that identifying a large set of
complex data-flow dependencies or slices would demonstrate the
benefit of automated slicing in dynamic web applications.

Table 5: Complexity of slices
System Slices Size Len xLang xFile xFunc xString xPage
AB 6,827 6 5 287 2,330 3,202 344 243
SM 4,185 5 4 1,518 1,519 917 1,735 890
TC 9,145 6 4 1,193 2,007 643 1,378 224
UPB 17,906 7 5 795 7,904 8,386 1,236 681
WC 2,607 4 3 312 1,557 1,517 408 265
Tot/Avg 40,670 5.6 4.2 4,105 15,317 14,665 5,101 2,303

10% 38% 36% 13% 6%
Size, Len: Median size and length of a slice; xLang, xFile, xFunc, xString, xPage:

Slices that cross languages, files, functions, strings, and page entries

9.1 Experiment Setup
To answer those questions, we collected from sourceforge.net five
PHP web applications with various sizes (Table 3), a corpus also
used in prior and related work [34, 42]. For each system, we auto-
matically chose a set of page entries (i.e., PHP files that generate
output containing an <html> tag) and ran WebSlice on those pages
to create the data-flow graph for the entire system. To compute the
slices, we considered each entity (a node in the data-flow graph) as
a slicing criterion and calculated the program slice for the entity.

9.2 Complexity of Data-Flow Graphs
We also used our tool to investigate the complexity of data-flow
graphs in dynamic web applications. Table 4 shows the complexity
of data-flow graphs. Overall, developers would have to deal with
a large number of SQL, HTML, and JS entities. There are a total
of 4,203 HTML entities in all five systems, accounting for 64% of
all non-PHP entities. There exist cases where developers would
deal with up to 384 HTML entities in a file (e.g., in TimeClock) and
up to 88 JS entities in a file (e.g., in SchoolMate). Especially, they
must process as many as 89% of the non-PHP entities by examining
embedded code in PHP strings (the remaining are directly inlined
in PHP code). Moreover, not all embedded entities are printed
directly on echo/print statements: 18% of them are assigned to
variables, propagated through the program, and printed out at a
different location, which makes it challenging to track the data
flows without tool support. The edges in the data-flow graphs also
demonstrate significant complexity. Out of 76,961 data-flow edges,
12% cross languages, 21% cross files, and 14% cross strings. This
result shows that tool support would be useful in those cases.
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Figure 9: Cross-language data flows in a cross-language slice

9.3 Complexity of Program Slices
Table 5 shows complexity metrics for slices (we exclude those that
have only one entity since the entity is at the end of data flows).

Size of a slice: We compute the medians of sizes and lengths of
slices and calculate their averages. On average, a developer would
need to deal with a slice involving 5.6 entities and having a length
of 4.2 (the longest path in the data-flow graph starting from a slicing
criterion). 10% of the slices involve more than 40 entities (not
shown in Table 5), which would be nontrivial to identify manually.

Cross-language data flows in a slice: Importantly, many of the
slices are cross-language (in all five systems, 4,105 slices contain
at least one cross-language data-flow edge). As shown in Figure 9,
35.8% of those slices have at least 4 cross-language data-flow edges,
and 9.5% have at least 32 cross-language edges.

Cross-location data flows in a slice: Many slices are also often
cross-location: 38% of the slices cross files, 36% cross functions,
and 13% cross string fragments.

9.4 Discussion
Implications: The high complexity of the data-flow graphs and

program slices shows that in real-world web applications, manually
inspecting a program slice can be challenging, and developers would
likely benefit from program slicing tool support.

Performance: The initial symbolic execution on all entries and
construction of the data-flow graphs completed within a few second-
s/entry for all systems. When the source code is changed, WebSlice
needs to re-compute relevant page entries associated with the change
only. This means that WebSlice can be run in the background of
an IDE. Once the initial computations are finished, WebSlice can
instantly show the program slice for any selected program point.

Threats to Validity: Regarding external validity, we used only a
small set of medium-sized subject systems due to our limited support
for PHP object-oriented constructs. Regarding construct validity,
we used complexity as a proxy metric to show the usefulness of our
program-slicing technique.

10. RELATED WORK
There exist excellent surveys on techniques for program slicing [47,
8, 18, 19, 28, 20, 10, 51]. Harman et al. [18] provide an exten-
sive survey with multiple dimensions to classify program-slicing
techniques. Later, Silva extends the dimensions [45]. We compare
WebSlice with the related work in the context of those dimensions.

To approximate the dynamically generated client code, Tonella
and Ricca [48, 40, 41] propose a flow analysis called string-cat
propagation to associate the variables used in print/echo statements
to string concatenations. They also combine with code extrusion,
which unquotes the strings in echo. The slice is computed from such

flows. In contrast, our symbolic execution with variability-aware
analysis is applicable to general cases and a wide range of PHP
constructs. We also handle conditional flows and embedded SQL/JS
code. Unfortunately, according to our correspondence with the
authors, their tool and data are no longer available for comparison.

WebSlice is close to the information-flow approach by Bergeretti
and Carré (BC) [7]. Regarding the algorithms, the information-
flow relations in BC are recursively computed in a syntax-directed,
bottom-up manner. We use symbolic execution to detect the flow re-
lations. Regarding Silva [45]’s and Harman et al. [18]’s dimensions,
WebSlice has key differences. First, we consider more relations to
compute the slices, e.g., cross-language def-use and information-
flow relations (Table 1). Second, regarding path-awareness dimen-
sion, unlike BC, WebSlice is path-sensitive but unsound. Finally, for
dimension of iteration counts, we symbolically execute each loop
twice to detect cyclic data flows. BC does not handle cyclic flows.

There are static slicing approaches based on various static analy-
ses, e.g., incremental slicing [38], call-mark slicing [37], proposition-
based slicing [22], stop-list slicing [15], amorphous slicing [17].
WebSlice is related to PDG-based slicing [39, 23]. However, we
must deal with flows to embedded code. There are dynamic slicing
approaches [27, 9, 24, 29], including language-independent slic-
ing [9], which compute a slice for one specific execution whereas
WebSlice produces a static slice for all possible executions.

WebSlice differs from the family of conditioned program slic-
ing [11, 12], constraint slicing [14], and pre/post-conditioned slic-
ing [21], where an initial state is defined via conditions.

There exist much research on exploring flows among Web pages
for testing [6, 31, 44] or code comprehension [13]. However, they
do not build cross-language, cross-stage slices as in WebSlice.

There exist string analysis approaches for web programs and
software security [32, 26, 49, 50, 52, 4]. They can be used to extract
embedded code in our analysis. Maule et al. [30] and Ngo and
Tan [33] extract database interactions, whereas WebSlice extracts
only database columns’ names and slices through PHP.

In our prior work, we designed a simpler symbolic execution
engine [36] to approximate PHP code’s output. Subsequently, we
developed DRC [35] to analyze both PHP and client-side code to
detect embedded dangling references. Later, we built HTML/JS
variability-aware parsers in Varis [34], using TypeChef [25] to pro-
duce the VarDOM, a representation of all possible variants of client-
side code. We built data flows and slices upon them as explained.
Our symbolic execution on JS is similar but simpler than the one for
PHP. We could also explore Kudzu [43], a powerful engine for JS.

11. CONCLUSION
In this paper, we tackled the challenge of computing program slices
with multiple languages for dynamic web applications. We intro-
duced WebSlice, an approach that combines symbolic execution,
variability-aware parsing, and data-flow analysis on embedded code
to identify PHP data entities as well as embedded SQL, HTML, JS
entities and recognize the data flows among them within one lan-
guage and across different languages. In our empirical study on five
real-world PHP systems, we found many nontrivial cross-language
cross-string program slices. In such cases, cross-language program
slicing tool support such as WebSlice could be useful in assisting
web developers with software maintenance tasks.
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